Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1830 lines
74 KiB
1830 lines
74 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved. |
|
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// @Authors |
|
// Niko Li, newlife20080214@gmail.com |
|
// Wang Weiyan, wangweiyanster@gmail.com |
|
// Jia Haipeng, jiahaipeng95@gmail.com |
|
// Wu Xinglong, wxl370@126.com |
|
// Wang Yao, bitwangyaoyao@gmail.com |
|
// Sen Liu, swjtuls1987@126.com |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
#include "opencl_kernels.hpp" |
|
|
|
using namespace cv; |
|
using namespace cv::ocl; |
|
|
|
/* these settings affect the quality of detection: change with care */ |
|
#define CV_ADJUST_FEATURES 1 |
|
#define CV_ADJUST_WEIGHTS 0 |
|
|
|
typedef int sumtype; |
|
typedef double sqsumtype; |
|
|
|
typedef struct CvHidHaarFeature |
|
{ |
|
struct |
|
{ |
|
sumtype *p0, *p1, *p2, *p3; |
|
float weight; |
|
} |
|
rect[CV_HAAR_FEATURE_MAX]; |
|
} |
|
CvHidHaarFeature; |
|
|
|
|
|
typedef struct CvHidHaarTreeNode |
|
{ |
|
CvHidHaarFeature feature; |
|
float threshold; |
|
int left; |
|
int right; |
|
} |
|
CvHidHaarTreeNode; |
|
|
|
|
|
typedef struct CvHidHaarClassifier |
|
{ |
|
int count; |
|
//CvHaarFeature* orig_feature; |
|
CvHidHaarTreeNode *node; |
|
float *alpha; |
|
} |
|
CvHidHaarClassifier; |
|
|
|
|
|
typedef struct CvHidHaarStageClassifier |
|
{ |
|
int count; |
|
float threshold; |
|
CvHidHaarClassifier *classifier; |
|
int two_rects; |
|
|
|
struct CvHidHaarStageClassifier *next; |
|
struct CvHidHaarStageClassifier *child; |
|
struct CvHidHaarStageClassifier *parent; |
|
} |
|
CvHidHaarStageClassifier; |
|
|
|
|
|
struct CvHidHaarClassifierCascade |
|
{ |
|
int count; |
|
int is_stump_based; |
|
int has_tilted_features; |
|
int is_tree; |
|
double inv_window_area; |
|
CvMat sum, sqsum, tilted; |
|
CvHidHaarStageClassifier *stage_classifier; |
|
sqsumtype *pq0, *pq1, *pq2, *pq3; |
|
sumtype *p0, *p1, *p2, *p3; |
|
|
|
void **ipp_stages; |
|
}; |
|
typedef struct |
|
{ |
|
int width_height; |
|
int grpnumperline_totalgrp; |
|
int imgoff; |
|
float factor; |
|
} detect_piramid_info; |
|
#ifdef _MSC_VER |
|
#define _ALIGNED_ON(_ALIGNMENT) __declspec(align(_ALIGNMENT)) |
|
|
|
typedef _ALIGNED_ON(128) struct GpuHidHaarTreeNode |
|
{ |
|
_ALIGNED_ON(64) int p[CV_HAAR_FEATURE_MAX][4]; |
|
float weight[CV_HAAR_FEATURE_MAX] ; |
|
float threshold ; |
|
_ALIGNED_ON(16) float alpha[3] ; |
|
_ALIGNED_ON(4) int left ; |
|
_ALIGNED_ON(4) int right ; |
|
} |
|
GpuHidHaarTreeNode; |
|
|
|
|
|
typedef _ALIGNED_ON(32) struct GpuHidHaarClassifier |
|
{ |
|
_ALIGNED_ON(4) int count; |
|
_ALIGNED_ON(8) GpuHidHaarTreeNode *node ; |
|
_ALIGNED_ON(8) float *alpha ; |
|
} |
|
GpuHidHaarClassifier; |
|
|
|
|
|
typedef _ALIGNED_ON(64) struct GpuHidHaarStageClassifier |
|
{ |
|
_ALIGNED_ON(4) int count ; |
|
_ALIGNED_ON(4) float threshold ; |
|
_ALIGNED_ON(4) int two_rects ; |
|
_ALIGNED_ON(8) GpuHidHaarClassifier *classifier ; |
|
_ALIGNED_ON(8) struct GpuHidHaarStageClassifier *next; |
|
_ALIGNED_ON(8) struct GpuHidHaarStageClassifier *child ; |
|
_ALIGNED_ON(8) struct GpuHidHaarStageClassifier *parent ; |
|
} |
|
GpuHidHaarStageClassifier; |
|
|
|
|
|
typedef _ALIGNED_ON(64) struct GpuHidHaarClassifierCascade |
|
{ |
|
_ALIGNED_ON(4) int count ; |
|
_ALIGNED_ON(4) int is_stump_based ; |
|
_ALIGNED_ON(4) int has_tilted_features ; |
|
_ALIGNED_ON(4) int is_tree ; |
|
_ALIGNED_ON(4) int pq0 ; |
|
_ALIGNED_ON(4) int pq1 ; |
|
_ALIGNED_ON(4) int pq2 ; |
|
_ALIGNED_ON(4) int pq3 ; |
|
_ALIGNED_ON(4) int p0 ; |
|
_ALIGNED_ON(4) int p1 ; |
|
_ALIGNED_ON(4) int p2 ; |
|
_ALIGNED_ON(4) int p3 ; |
|
_ALIGNED_ON(4) float inv_window_area ; |
|
} GpuHidHaarClassifierCascade; |
|
#else |
|
#define _ALIGNED_ON(_ALIGNMENT) __attribute__((aligned(_ALIGNMENT) )) |
|
|
|
typedef struct _ALIGNED_ON(128) GpuHidHaarTreeNode |
|
{ |
|
int p[CV_HAAR_FEATURE_MAX][4] _ALIGNED_ON(64); |
|
float weight[CV_HAAR_FEATURE_MAX];// _ALIGNED_ON(16); |
|
float threshold;// _ALIGNED_ON(4); |
|
float alpha[3] _ALIGNED_ON(16); |
|
int left _ALIGNED_ON(4); |
|
int right _ALIGNED_ON(4); |
|
} |
|
GpuHidHaarTreeNode; |
|
|
|
typedef struct _ALIGNED_ON(32) GpuHidHaarClassifier |
|
{ |
|
int count _ALIGNED_ON(4); |
|
GpuHidHaarTreeNode *node _ALIGNED_ON(8); |
|
float *alpha _ALIGNED_ON(8); |
|
} |
|
GpuHidHaarClassifier; |
|
|
|
|
|
typedef struct _ALIGNED_ON(64) GpuHidHaarStageClassifier |
|
{ |
|
int count _ALIGNED_ON(4); |
|
float threshold _ALIGNED_ON(4); |
|
int two_rects _ALIGNED_ON(4); |
|
GpuHidHaarClassifier *classifier _ALIGNED_ON(8); |
|
struct GpuHidHaarStageClassifier *next _ALIGNED_ON(8); |
|
struct GpuHidHaarStageClassifier *child _ALIGNED_ON(8); |
|
struct GpuHidHaarStageClassifier *parent _ALIGNED_ON(8); |
|
} |
|
GpuHidHaarStageClassifier; |
|
|
|
|
|
typedef struct _ALIGNED_ON(64) GpuHidHaarClassifierCascade |
|
{ |
|
int count _ALIGNED_ON(4); |
|
int is_stump_based _ALIGNED_ON(4); |
|
int has_tilted_features _ALIGNED_ON(4); |
|
int is_tree _ALIGNED_ON(4); |
|
int pq0 _ALIGNED_ON(4); |
|
int pq1 _ALIGNED_ON(4); |
|
int pq2 _ALIGNED_ON(4); |
|
int pq3 _ALIGNED_ON(4); |
|
int p0 _ALIGNED_ON(4); |
|
int p1 _ALIGNED_ON(4); |
|
int p2 _ALIGNED_ON(4); |
|
int p3 _ALIGNED_ON(4); |
|
float inv_window_area _ALIGNED_ON(4); |
|
} GpuHidHaarClassifierCascade; |
|
#endif |
|
|
|
const int icv_object_win_border = 1; |
|
const float icv_stage_threshold_bias = 0.0001f; |
|
double globaltime = 0; |
|
|
|
/* create more efficient internal representation of haar classifier cascade */ |
|
static GpuHidHaarClassifierCascade * gpuCreateHidHaarClassifierCascade( CvHaarClassifierCascade *cascade, int *size, int *totalclassifier) |
|
{ |
|
GpuHidHaarClassifierCascade *out = 0; |
|
|
|
int i, j, k, l; |
|
int datasize; |
|
int total_classifiers = 0; |
|
int total_nodes = 0; |
|
char errorstr[256]; |
|
|
|
GpuHidHaarStageClassifier *stage_classifier_ptr; |
|
GpuHidHaarClassifier *haar_classifier_ptr; |
|
GpuHidHaarTreeNode *haar_node_ptr; |
|
|
|
CvSize orig_window_size; |
|
int has_tilted_features = 0; |
|
|
|
if( !CV_IS_HAAR_CLASSIFIER(cascade) ) |
|
CV_Error( !cascade ? CV_StsNullPtr : CV_StsBadArg, "Invalid classifier pointer" ); |
|
|
|
if( cascade->hid_cascade ) |
|
CV_Error( CV_StsError, "hid_cascade has been already created" ); |
|
|
|
if( !cascade->stage_classifier ) |
|
CV_Error( CV_StsNullPtr, "" ); |
|
|
|
if( cascade->count <= 0 ) |
|
CV_Error( CV_StsOutOfRange, "Negative number of cascade stages" ); |
|
|
|
orig_window_size = cascade->orig_window_size; |
|
|
|
/* check input structure correctness and calculate total memory size needed for |
|
internal representation of the classifier cascade */ |
|
for( i = 0; i < cascade->count; i++ ) |
|
{ |
|
CvHaarStageClassifier *stage_classifier = cascade->stage_classifier + i; |
|
|
|
if( !stage_classifier->classifier || |
|
stage_classifier->count <= 0 ) |
|
{ |
|
sprintf( errorstr, "header of the stage classifier #%d is invalid " |
|
"(has null pointers or non-positive classfier count)", i ); |
|
CV_Error( CV_StsError, errorstr ); |
|
} |
|
|
|
total_classifiers += stage_classifier->count; |
|
|
|
for( j = 0; j < stage_classifier->count; j++ ) |
|
{ |
|
CvHaarClassifier *classifier = stage_classifier->classifier + j; |
|
|
|
total_nodes += classifier->count; |
|
for( l = 0; l < classifier->count; l++ ) |
|
{ |
|
for( k = 0; k < CV_HAAR_FEATURE_MAX; k++ ) |
|
{ |
|
if( classifier->haar_feature[l].rect[k].r.width ) |
|
{ |
|
CvRect r = classifier->haar_feature[l].rect[k].r; |
|
int tilted = classifier->haar_feature[l].tilted; |
|
has_tilted_features |= tilted != 0; |
|
if( r.width < 0 || r.height < 0 || r.y < 0 || |
|
r.x + r.width > orig_window_size.width |
|
|| |
|
(!tilted && |
|
(r.x < 0 || r.y + r.height > orig_window_size.height)) |
|
|| |
|
(tilted && (r.x - r.height < 0 || |
|
r.y + r.width + r.height > orig_window_size.height))) |
|
{ |
|
sprintf( errorstr, "rectangle #%d of the classifier #%d of " |
|
"the stage classifier #%d is not inside " |
|
"the reference (original) cascade window", k, j, i ); |
|
CV_Error( CV_StsNullPtr, errorstr ); |
|
} |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
// this is an upper boundary for the whole hidden cascade size |
|
datasize = sizeof(GpuHidHaarClassifierCascade) + |
|
sizeof(GpuHidHaarStageClassifier) * cascade->count + |
|
sizeof(GpuHidHaarClassifier) * total_classifiers + |
|
sizeof(GpuHidHaarTreeNode) * total_nodes; |
|
|
|
*totalclassifier = total_classifiers; |
|
*size = datasize; |
|
out = (GpuHidHaarClassifierCascade *)cvAlloc( datasize ); |
|
memset( out, 0, sizeof(*out) ); |
|
|
|
/* init header */ |
|
out->count = cascade->count; |
|
stage_classifier_ptr = (GpuHidHaarStageClassifier *)(out + 1); |
|
haar_classifier_ptr = (GpuHidHaarClassifier *)(stage_classifier_ptr + cascade->count); |
|
haar_node_ptr = (GpuHidHaarTreeNode *)(haar_classifier_ptr + total_classifiers); |
|
|
|
out->is_stump_based = 1; |
|
out->has_tilted_features = has_tilted_features; |
|
out->is_tree = 0; |
|
|
|
/* initialize internal representation */ |
|
for( i = 0; i < cascade->count; i++ ) |
|
{ |
|
CvHaarStageClassifier *stage_classifier = cascade->stage_classifier + i; |
|
GpuHidHaarStageClassifier *hid_stage_classifier = stage_classifier_ptr + i; |
|
|
|
hid_stage_classifier->count = stage_classifier->count; |
|
hid_stage_classifier->threshold = stage_classifier->threshold - icv_stage_threshold_bias; |
|
hid_stage_classifier->classifier = haar_classifier_ptr; |
|
hid_stage_classifier->two_rects = 1; |
|
haar_classifier_ptr += stage_classifier->count; |
|
|
|
for( j = 0; j < stage_classifier->count; j++ ) |
|
{ |
|
CvHaarClassifier *classifier = stage_classifier->classifier + j; |
|
GpuHidHaarClassifier *hid_classifier = hid_stage_classifier->classifier + j; |
|
int node_count = classifier->count; |
|
|
|
float *alpha_ptr = &haar_node_ptr->alpha[0]; |
|
|
|
hid_classifier->count = node_count; |
|
hid_classifier->node = haar_node_ptr; |
|
hid_classifier->alpha = alpha_ptr; |
|
|
|
for( l = 0; l < node_count; l++ ) |
|
{ |
|
GpuHidHaarTreeNode *node = hid_classifier->node + l; |
|
CvHaarFeature *feature = classifier->haar_feature + l; |
|
|
|
memset( node, -1, sizeof(*node) ); |
|
node->threshold = classifier->threshold[l]; |
|
node->left = classifier->left[l]; |
|
node->right = classifier->right[l]; |
|
|
|
if( fabs(feature->rect[2].weight) < DBL_EPSILON || |
|
feature->rect[2].r.width == 0 || |
|
feature->rect[2].r.height == 0 ) |
|
{ |
|
node->p[2][0] = 0; |
|
node->p[2][1] = 0; |
|
node->p[2][2] = 0; |
|
node->p[2][3] = 0; |
|
node->weight[2] = 0; |
|
} |
|
else |
|
hid_stage_classifier->two_rects = 0; |
|
|
|
memcpy( node->alpha, classifier->alpha, (node_count + 1)*sizeof(alpha_ptr[0])); |
|
haar_node_ptr = haar_node_ptr + 1; |
|
} |
|
out->is_stump_based &= node_count == 1; |
|
} |
|
} |
|
|
|
cascade->hid_cascade = (CvHidHaarClassifierCascade *)out; |
|
assert( (char *)haar_node_ptr - (char *)out <= datasize ); |
|
|
|
return out; |
|
} |
|
|
|
|
|
#define sum_elem_ptr(sum,row,col) \ |
|
((sumtype*)CV_MAT_ELEM_PTR_FAST((sum),(row),(col),sizeof(sumtype))) |
|
|
|
#define sqsum_elem_ptr(sqsum,row,col) \ |
|
((sqsumtype*)CV_MAT_ELEM_PTR_FAST((sqsum),(row),(col),sizeof(sqsumtype))) |
|
|
|
#define calc_sum(rect,offset) \ |
|
((rect).p0[offset] - (rect).p1[offset] - (rect).p2[offset] + (rect).p3[offset]) |
|
|
|
|
|
static void gpuSetImagesForHaarClassifierCascade( CvHaarClassifierCascade *_cascade, |
|
double scale, |
|
int step) |
|
{ |
|
GpuHidHaarClassifierCascade *cascade; |
|
int coi0 = 0, coi1 = 0; |
|
int i; |
|
int datasize; |
|
int total; |
|
CvRect equRect; |
|
double weight_scale; |
|
GpuHidHaarStageClassifier *stage_classifier; |
|
|
|
if( !CV_IS_HAAR_CLASSIFIER(_cascade) ) |
|
CV_Error( !_cascade ? CV_StsNullPtr : CV_StsBadArg, "Invalid classifier pointer" ); |
|
|
|
if( scale <= 0 ) |
|
CV_Error( CV_StsOutOfRange, "Scale must be positive" ); |
|
|
|
if( coi0 || coi1 ) |
|
CV_Error( CV_BadCOI, "COI is not supported" ); |
|
|
|
if( !_cascade->hid_cascade ) |
|
gpuCreateHidHaarClassifierCascade(_cascade, &datasize, &total); |
|
|
|
cascade = (GpuHidHaarClassifierCascade *) _cascade->hid_cascade; |
|
stage_classifier = (GpuHidHaarStageClassifier *) (cascade + 1); |
|
|
|
_cascade->scale = scale; |
|
_cascade->real_window_size.width = cvRound( _cascade->orig_window_size.width * scale ); |
|
_cascade->real_window_size.height = cvRound( _cascade->orig_window_size.height * scale ); |
|
|
|
equRect.x = equRect.y = cvRound(scale); |
|
equRect.width = cvRound((_cascade->orig_window_size.width - 2) * scale); |
|
equRect.height = cvRound((_cascade->orig_window_size.height - 2) * scale); |
|
weight_scale = 1. / (equRect.width * equRect.height); |
|
cascade->inv_window_area = weight_scale; |
|
|
|
cascade->pq0 = equRect.x; |
|
cascade->pq1 = equRect.y; |
|
cascade->pq2 = equRect.x + equRect.width; |
|
cascade->pq3 = equRect.y + equRect.height; |
|
|
|
cascade->p0 = equRect.x; |
|
cascade->p1 = equRect.y; |
|
cascade->p2 = equRect.x + equRect.width; |
|
cascade->p3 = equRect.y + equRect.height; |
|
|
|
|
|
/* init pointers in haar features according to real window size and |
|
given image pointers */ |
|
for( i = 0; i < _cascade->count; i++ ) |
|
{ |
|
int j, k, l; |
|
for( j = 0; j < stage_classifier[i].count; j++ ) |
|
{ |
|
for( l = 0; l < stage_classifier[i].classifier[j].count; l++ ) |
|
{ |
|
CvHaarFeature *feature = |
|
&_cascade->stage_classifier[i].classifier[j].haar_feature[l]; |
|
GpuHidHaarTreeNode *hidnode = &stage_classifier[i].classifier[j].node[l]; |
|
double sum0 = 0, area0 = 0; |
|
CvRect r[3]; |
|
|
|
int base_w = -1, base_h = -1; |
|
int new_base_w = 0, new_base_h = 0; |
|
int kx, ky; |
|
int flagx = 0, flagy = 0; |
|
int x0 = 0, y0 = 0; |
|
int nr; |
|
|
|
/* align blocks */ |
|
for( k = 0; k < CV_HAAR_FEATURE_MAX; k++ ) |
|
{ |
|
if(!hidnode->p[k][0]) |
|
break; |
|
r[k] = feature->rect[k].r; |
|
base_w = (int)CV_IMIN( (unsigned)base_w, (unsigned)(r[k].width - 1) ); |
|
base_w = (int)CV_IMIN( (unsigned)base_w, (unsigned)(r[k].x - r[0].x - 1) ); |
|
base_h = (int)CV_IMIN( (unsigned)base_h, (unsigned)(r[k].height - 1) ); |
|
base_h = (int)CV_IMIN( (unsigned)base_h, (unsigned)(r[k].y - r[0].y - 1) ); |
|
} |
|
|
|
nr = k; |
|
base_w += 1; |
|
base_h += 1; |
|
if(base_w == 0) |
|
base_w = 1; |
|
kx = r[0].width / base_w; |
|
if(base_h == 0) |
|
base_h = 1; |
|
ky = r[0].height / base_h; |
|
|
|
if( kx <= 0 ) |
|
{ |
|
flagx = 1; |
|
new_base_w = cvRound( r[0].width * scale ) / kx; |
|
x0 = cvRound( r[0].x * scale ); |
|
} |
|
|
|
if( ky <= 0 ) |
|
{ |
|
flagy = 1; |
|
new_base_h = cvRound( r[0].height * scale ) / ky; |
|
y0 = cvRound( r[0].y * scale ); |
|
} |
|
|
|
for( k = 0; k < nr; k++ ) |
|
{ |
|
CvRect tr; |
|
double correction_ratio; |
|
|
|
if( flagx ) |
|
{ |
|
tr.x = (r[k].x - r[0].x) * new_base_w / base_w + x0; |
|
tr.width = r[k].width * new_base_w / base_w; |
|
} |
|
else |
|
{ |
|
tr.x = cvRound( r[k].x * scale ); |
|
tr.width = cvRound( r[k].width * scale ); |
|
} |
|
|
|
if( flagy ) |
|
{ |
|
tr.y = (r[k].y - r[0].y) * new_base_h / base_h + y0; |
|
tr.height = r[k].height * new_base_h / base_h; |
|
} |
|
else |
|
{ |
|
tr.y = cvRound( r[k].y * scale ); |
|
tr.height = cvRound( r[k].height * scale ); |
|
} |
|
|
|
#if CV_ADJUST_WEIGHTS |
|
{ |
|
// RAINER START |
|
const float orig_feature_size = (float)(feature->rect[k].r.width) * feature->rect[k].r.height; |
|
const float orig_norm_size = (float)(_cascade->orig_window_size.width) * (_cascade->orig_window_size.height); |
|
const float feature_size = float(tr.width * tr.height); |
|
//const float normSize = float(equRect.width*equRect.height); |
|
float target_ratio = orig_feature_size / orig_norm_size; |
|
//float isRatio = featureSize / normSize; |
|
//correctionRatio = targetRatio / isRatio / normSize; |
|
correction_ratio = target_ratio / feature_size; |
|
// RAINER END |
|
} |
|
#else |
|
correction_ratio = weight_scale * (!feature->tilted ? 1 : 0.5); |
|
#endif |
|
|
|
if( !feature->tilted ) |
|
{ |
|
hidnode->p[k][0] = tr.x; |
|
hidnode->p[k][1] = tr.y; |
|
hidnode->p[k][2] = tr.x + tr.width; |
|
hidnode->p[k][3] = tr.y + tr.height; |
|
} |
|
else |
|
{ |
|
hidnode->p[k][2] = (tr.y + tr.width) * step + tr.x + tr.width; |
|
hidnode->p[k][3] = (tr.y + tr.width + tr.height) * step + tr.x + tr.width - tr.height; |
|
hidnode->p[k][0] = tr.y * step + tr.x; |
|
hidnode->p[k][1] = (tr.y + tr.height) * step + tr.x - tr.height; |
|
} |
|
hidnode->weight[k] = (float)(feature->rect[k].weight * correction_ratio); |
|
if( k == 0 ) |
|
area0 = tr.width * tr.height; |
|
else |
|
sum0 += hidnode->weight[k] * tr.width * tr.height; |
|
} |
|
hidnode->weight[0] = (float)(-sum0 / area0); |
|
} /* l */ |
|
} /* j */ |
|
} |
|
} |
|
|
|
static void gpuSetHaarClassifierCascade( CvHaarClassifierCascade *_cascade) |
|
{ |
|
GpuHidHaarClassifierCascade *cascade; |
|
int i; |
|
int datasize; |
|
int total; |
|
CvRect equRect; |
|
double weight_scale; |
|
GpuHidHaarStageClassifier *stage_classifier; |
|
|
|
if( !CV_IS_HAAR_CLASSIFIER(_cascade) ) |
|
CV_Error( !_cascade ? CV_StsNullPtr : CV_StsBadArg, "Invalid classifier pointer" ); |
|
|
|
if( !_cascade->hid_cascade ) |
|
gpuCreateHidHaarClassifierCascade(_cascade, &datasize, &total); |
|
|
|
cascade = (GpuHidHaarClassifierCascade *) _cascade->hid_cascade; |
|
stage_classifier = (GpuHidHaarStageClassifier *) cascade + 1; |
|
|
|
_cascade->scale = 1.0; |
|
_cascade->real_window_size.width = _cascade->orig_window_size.width ; |
|
_cascade->real_window_size.height = _cascade->orig_window_size.height; |
|
|
|
equRect.x = equRect.y = 1; |
|
equRect.width = _cascade->orig_window_size.width - 2; |
|
equRect.height = _cascade->orig_window_size.height - 2; |
|
weight_scale = 1; |
|
cascade->inv_window_area = weight_scale; |
|
|
|
cascade->p0 = equRect.x; |
|
cascade->p1 = equRect.y; |
|
cascade->p2 = equRect.height; |
|
cascade->p3 = equRect.width ; |
|
for( i = 0; i < _cascade->count; i++ ) |
|
{ |
|
int j, l; |
|
for( j = 0; j < stage_classifier[i].count; j++ ) |
|
{ |
|
for( l = 0; l < stage_classifier[i].classifier[j].count; l++ ) |
|
{ |
|
const CvHaarFeature *feature = |
|
&_cascade->stage_classifier[i].classifier[j].haar_feature[l]; |
|
GpuHidHaarTreeNode *hidnode = &stage_classifier[i].classifier[j].node[l]; |
|
|
|
for( int k = 0; k < CV_HAAR_FEATURE_MAX; k++ ) |
|
{ |
|
const CvRect tr = feature->rect[k].r; |
|
if (tr.width == 0) |
|
break; |
|
double correction_ratio = weight_scale * (!feature->tilted ? 1 : 0.5); |
|
hidnode->p[k][0] = tr.x; |
|
hidnode->p[k][1] = tr.y; |
|
hidnode->p[k][2] = tr.width; |
|
hidnode->p[k][3] = tr.height; |
|
hidnode->weight[k] = (float)(feature->rect[k].weight * correction_ratio); |
|
} |
|
} /* l */ |
|
} /* j */ |
|
} |
|
} |
|
|
|
CvSeq *cv::ocl::OclCascadeClassifier::oclHaarDetectObjects( oclMat &gimg, CvMemStorage *storage, double scaleFactor, |
|
int minNeighbors, int flags, CvSize minSize, CvSize maxSize) |
|
{ |
|
CvHaarClassifierCascade *cascade = oldCascade; |
|
|
|
const double GROUP_EPS = 0.2; |
|
CvSeq *result_seq = 0; |
|
|
|
cv::ConcurrentRectVector allCandidates; |
|
std::vector<cv::Rect> rectList; |
|
std::vector<int> rweights; |
|
double factor; |
|
int datasize=0; |
|
int totalclassifier=0; |
|
|
|
GpuHidHaarClassifierCascade *gcascade; |
|
GpuHidHaarStageClassifier *stage; |
|
GpuHidHaarClassifier *classifier; |
|
GpuHidHaarTreeNode *node; |
|
|
|
int *candidate; |
|
cl_int status; |
|
|
|
bool findBiggestObject = (flags & CV_HAAR_FIND_BIGGEST_OBJECT) != 0; |
|
|
|
if( maxSize.height == 0 || maxSize.width == 0 ) |
|
{ |
|
maxSize.height = gimg.rows; |
|
maxSize.width = gimg.cols; |
|
} |
|
|
|
if( !CV_IS_HAAR_CLASSIFIER(cascade) ) |
|
CV_Error( !cascade ? CV_StsNullPtr : CV_StsBadArg, "Invalid classifier cascade" ); |
|
|
|
if( !storage ) |
|
CV_Error( CV_StsNullPtr, "Null storage pointer" ); |
|
|
|
if( CV_MAT_DEPTH(gimg.type()) != CV_8U ) |
|
CV_Error( CV_StsUnsupportedFormat, "Only 8-bit images are supported" ); |
|
|
|
if( scaleFactor <= 1 ) |
|
CV_Error( CV_StsOutOfRange, "scale factor must be > 1" ); |
|
|
|
if( findBiggestObject ) |
|
flags &= ~CV_HAAR_SCALE_IMAGE; |
|
|
|
if( !cascade->hid_cascade ) |
|
gpuCreateHidHaarClassifierCascade(cascade, &datasize, &totalclassifier); |
|
|
|
result_seq = cvCreateSeq( 0, sizeof(CvSeq), sizeof(CvAvgComp), storage ); |
|
|
|
if( CV_MAT_CN(gimg.type()) > 1 ) |
|
{ |
|
oclMat gtemp; |
|
cvtColor( gimg, gtemp, CV_BGR2GRAY ); |
|
gimg = gtemp; |
|
} |
|
|
|
if( findBiggestObject ) |
|
flags &= ~(CV_HAAR_SCALE_IMAGE | CV_HAAR_DO_CANNY_PRUNING); |
|
|
|
if( gimg.cols < minSize.width || gimg.rows < minSize.height ) |
|
CV_Error(CV_StsError, "Image too small"); |
|
|
|
cl_command_queue qu = getClCommandQueue(Context::getContext()); |
|
if( (flags & CV_HAAR_SCALE_IMAGE) ) |
|
{ |
|
CvSize winSize0 = cascade->orig_window_size; |
|
int totalheight = 0; |
|
int indexy = 0; |
|
CvSize sz; |
|
vector<CvSize> sizev; |
|
vector<float> scalev; |
|
for(factor = 1.f;; factor *= scaleFactor) |
|
{ |
|
CvSize winSize = { cvRound(winSize0.width * factor), cvRound(winSize0.height * factor) }; |
|
sz.width = cvRound( gimg.cols / factor ) + 1; |
|
sz.height = cvRound( gimg.rows / factor ) + 1; |
|
CvSize sz1 = { sz.width - winSize0.width - 1, sz.height - winSize0.height - 1 }; |
|
|
|
if( sz1.width <= 0 || sz1.height <= 0 ) |
|
break; |
|
if( winSize.width > maxSize.width || winSize.height > maxSize.height ) |
|
break; |
|
if( winSize.width < minSize.width || winSize.height < minSize.height ) |
|
continue; |
|
|
|
totalheight += sz.height; |
|
sizev.push_back(sz); |
|
scalev.push_back(factor); |
|
} |
|
|
|
oclMat gimg1(gimg.rows, gimg.cols, CV_8UC1); |
|
oclMat gsum(totalheight + 4, gimg.cols + 1, CV_32SC1); |
|
oclMat gsqsum(totalheight + 4, gimg.cols + 1, CV_32FC1); |
|
|
|
int sdepth = 0; |
|
if(Context::getContext()->supportsFeature(FEATURE_CL_DOUBLE)) |
|
sdepth = CV_64FC1; |
|
else |
|
sdepth = CV_32FC1; |
|
sdepth = CV_MAT_DEPTH(sdepth); |
|
int type = CV_MAKE_TYPE(sdepth, 1); |
|
oclMat gsqsum_t(totalheight + 4, gimg.cols + 1, type); |
|
|
|
cl_mem stagebuffer; |
|
cl_mem nodebuffer; |
|
cl_mem candidatebuffer; |
|
cl_mem scaleinfobuffer; |
|
cv::Rect roi, roi2; |
|
cv::Mat imgroi, imgroisq; |
|
cv::ocl::oclMat resizeroi, gimgroi, gimgroisq; |
|
|
|
int grp_per_CU = 12; |
|
|
|
size_t blocksize = 8; |
|
size_t localThreads[3] = { blocksize, blocksize , 1 }; |
|
size_t globalThreads[3] = { grp_per_CU *(gsum.clCxt->getDeviceInfo().maxComputeUnits) *localThreads[0], |
|
localThreads[1], 1 |
|
}; |
|
int outputsz = 256 * globalThreads[0] / localThreads[0]; |
|
int loopcount = sizev.size(); |
|
detect_piramid_info *scaleinfo = (detect_piramid_info *)malloc(sizeof(detect_piramid_info) * loopcount); |
|
|
|
for( int i = 0; i < loopcount; i++ ) |
|
{ |
|
sz = sizev[i]; |
|
factor = scalev[i]; |
|
roi = Rect(0, indexy, sz.width, sz.height); |
|
roi2 = Rect(0, 0, sz.width - 1, sz.height - 1); |
|
resizeroi = gimg1(roi2); |
|
gimgroi = gsum(roi); |
|
gimgroisq = gsqsum_t(roi); |
|
int width = gimgroi.cols - 1 - cascade->orig_window_size.width; |
|
int height = gimgroi.rows - 1 - cascade->orig_window_size.height; |
|
scaleinfo[i].width_height = (width << 16) | height; |
|
|
|
|
|
int grpnumperline = (width + localThreads[0] - 1) / localThreads[0]; |
|
int totalgrp = ((height + localThreads[1] - 1) / localThreads[1]) * grpnumperline; |
|
|
|
scaleinfo[i].grpnumperline_totalgrp = (grpnumperline << 16) | totalgrp; |
|
scaleinfo[i].imgoff = gimgroi.offset >> 2; |
|
scaleinfo[i].factor = factor; |
|
cv::ocl::resize(gimg, resizeroi, Size(sz.width - 1, sz.height - 1), 0, 0, INTER_LINEAR); |
|
cv::ocl::integral(resizeroi, gimgroi, gimgroisq); |
|
|
|
indexy += sz.height; |
|
} |
|
if(gsqsum_t.depth() == CV_64F) |
|
gsqsum_t.convertTo(gsqsum, CV_32FC1); |
|
else |
|
gsqsum = gsqsum_t; |
|
|
|
gcascade = (GpuHidHaarClassifierCascade *)cascade->hid_cascade; |
|
stage = (GpuHidHaarStageClassifier *)(gcascade + 1); |
|
classifier = (GpuHidHaarClassifier *)(stage + gcascade->count); |
|
node = (GpuHidHaarTreeNode *)(classifier->node); |
|
|
|
int nodenum = (datasize - sizeof(GpuHidHaarClassifierCascade) - |
|
sizeof(GpuHidHaarStageClassifier) * gcascade->count - sizeof(GpuHidHaarClassifier) * totalclassifier) / sizeof(GpuHidHaarTreeNode); |
|
|
|
candidate = (int *)malloc(4 * sizeof(int) * outputsz); |
|
|
|
gpuSetImagesForHaarClassifierCascade( cascade, 1., gsum.step / 4 ); |
|
|
|
stagebuffer = openCLCreateBuffer(gsum.clCxt, CL_MEM_READ_ONLY, sizeof(GpuHidHaarStageClassifier) * gcascade->count); |
|
openCLSafeCall(clEnqueueWriteBuffer(qu, stagebuffer, 1, 0, sizeof(GpuHidHaarStageClassifier)*gcascade->count, stage, 0, NULL, NULL)); |
|
|
|
nodebuffer = openCLCreateBuffer(gsum.clCxt, CL_MEM_READ_ONLY, nodenum * sizeof(GpuHidHaarTreeNode)); |
|
|
|
openCLSafeCall(clEnqueueWriteBuffer(qu, nodebuffer, 1, 0, nodenum * sizeof(GpuHidHaarTreeNode), |
|
node, 0, NULL, NULL)); |
|
candidatebuffer = openCLCreateBuffer(gsum.clCxt, CL_MEM_WRITE_ONLY, 4 * sizeof(int) * outputsz); |
|
|
|
scaleinfobuffer = openCLCreateBuffer(gsum.clCxt, CL_MEM_READ_ONLY, sizeof(detect_piramid_info) * loopcount); |
|
openCLSafeCall(clEnqueueWriteBuffer(qu, scaleinfobuffer, 1, 0, sizeof(detect_piramid_info)*loopcount, scaleinfo, 0, NULL, NULL)); |
|
|
|
int startstage = 0; |
|
int endstage = gcascade->count; |
|
int startnode = 0; |
|
int pixelstep = gsum.step / 4; |
|
int splitstage = 3; |
|
int splitnode = stage[0].count + stage[1].count + stage[2].count; |
|
cl_int4 p, pq; |
|
p.s[0] = gcascade->p0; |
|
p.s[1] = gcascade->p1; |
|
p.s[2] = gcascade->p2; |
|
p.s[3] = gcascade->p3; |
|
pq.s[0] = gcascade->pq0; |
|
pq.s[1] = gcascade->pq1; |
|
pq.s[2] = gcascade->pq2; |
|
pq.s[3] = gcascade->pq3; |
|
float correction = gcascade->inv_window_area; |
|
|
|
vector<pair<size_t, const void *> > args; |
|
args.push_back ( make_pair(sizeof(cl_mem) , (void *)&stagebuffer )); |
|
args.push_back ( make_pair(sizeof(cl_mem) , (void *)&scaleinfobuffer )); |
|
args.push_back ( make_pair(sizeof(cl_mem) , (void *)&nodebuffer )); |
|
args.push_back ( make_pair(sizeof(cl_mem) , (void *)&gsum.data )); |
|
args.push_back ( make_pair(sizeof(cl_mem) , (void *)&gsqsum.data )); |
|
args.push_back ( make_pair(sizeof(cl_mem) , (void *)&candidatebuffer )); |
|
args.push_back ( make_pair(sizeof(cl_int) , (void *)&pixelstep )); |
|
args.push_back ( make_pair(sizeof(cl_int) , (void *)&loopcount )); |
|
args.push_back ( make_pair(sizeof(cl_int) , (void *)&startstage )); |
|
args.push_back ( make_pair(sizeof(cl_int) , (void *)&splitstage )); |
|
args.push_back ( make_pair(sizeof(cl_int) , (void *)&endstage )); |
|
args.push_back ( make_pair(sizeof(cl_int) , (void *)&startnode )); |
|
args.push_back ( make_pair(sizeof(cl_int) , (void *)&splitnode )); |
|
args.push_back ( make_pair(sizeof(cl_int4) , (void *)&p )); |
|
args.push_back ( make_pair(sizeof(cl_int4) , (void *)&pq )); |
|
args.push_back ( make_pair(sizeof(cl_float) , (void *)&correction )); |
|
|
|
if(gcascade->is_stump_based && gsum.clCxt->supportsFeature(FEATURE_CL_INTEL_DEVICE)) |
|
{ |
|
//setup local group size |
|
localThreads[0] = 8; |
|
localThreads[1] = 16; |
|
localThreads[2] = 1; |
|
|
|
//init maximal number of workgroups |
|
int WGNumX = 1+(sizev[0].width /(localThreads[0])); |
|
int WGNumY = 1+(sizev[0].height/(localThreads[1])); |
|
int WGNumZ = loopcount; |
|
int WGNum = 0; //accurate number of non -empty workgroups |
|
oclMat oclWGInfo(1,sizeof(cl_int4) * WGNumX*WGNumY*WGNumZ,CV_8U); |
|
{ |
|
cl_int4* pWGInfo = (cl_int4*)clEnqueueMapBuffer(getClCommandQueue(oclWGInfo.clCxt),(cl_mem)oclWGInfo.datastart,true,CL_MAP_WRITE, 0, oclWGInfo.step, 0,0,0,&status); |
|
openCLVerifyCall(status); |
|
for(int z=0;z<WGNumZ;++z) |
|
{ |
|
int Width = (scaleinfo[z].width_height >> 16)&0xFFFF; |
|
int Height = (scaleinfo[z].width_height >> 0 )& 0xFFFF; |
|
for(int y=0;y<WGNumY;++y) |
|
{ |
|
int gy = y*localThreads[1]; |
|
if(gy>=(Height-cascade->orig_window_size.height)) |
|
continue; // no data to process |
|
for(int x=0;x<WGNumX;++x) |
|
{ |
|
int gx = x*localThreads[0]; |
|
if(gx>=(Width-cascade->orig_window_size.width)) |
|
continue; // no data to process |
|
|
|
// save no-empty workgroup info into array |
|
pWGInfo[WGNum].s[0] = scaleinfo[z].width_height; |
|
pWGInfo[WGNum].s[1] = (gx << 16) | gy; |
|
pWGInfo[WGNum].s[2] = scaleinfo[z].imgoff; |
|
memcpy(&(pWGInfo[WGNum].s[3]),&(scaleinfo[z].factor),sizeof(float)); |
|
WGNum++; |
|
} |
|
} |
|
} |
|
openCLSafeCall(clEnqueueUnmapMemObject(getClCommandQueue(oclWGInfo.clCxt),(cl_mem)oclWGInfo.datastart,pWGInfo,0,0,0)); |
|
pWGInfo = NULL; |
|
} |
|
|
|
// setup global sizes to have linear array of workgroups with WGNum size |
|
globalThreads[0] = localThreads[0]*WGNum; |
|
globalThreads[1] = localThreads[1]; |
|
globalThreads[2] = 1; |
|
|
|
#define NODE_SIZE 12 |
|
// pack node info to have less memory loads |
|
oclMat oclNodesPK(1,sizeof(cl_int) * NODE_SIZE * nodenum,CV_8U); |
|
{ |
|
cl_int status; |
|
cl_int* pNodesPK = (cl_int*)clEnqueueMapBuffer(getClCommandQueue(oclNodesPK.clCxt),(cl_mem)oclNodesPK.datastart,true,CL_MAP_WRITE, 0, oclNodesPK.step, 0,0,0,&status); |
|
openCLVerifyCall(status); |
|
//use known local data stride to precalulate indexes |
|
int DATA_SIZE_X = (localThreads[0]+cascade->orig_window_size.width); |
|
// check that maximal value is less than maximal unsigned short |
|
assert(DATA_SIZE_X*cascade->orig_window_size.height+cascade->orig_window_size.width < (int)USHRT_MAX); |
|
for(int i = 0;i<nodenum;++i) |
|
{//process each node from classifier |
|
struct NodePK |
|
{ |
|
unsigned short slm_index[3][4]; |
|
float weight[3]; |
|
float threshold; |
|
float alpha[2]; |
|
}; |
|
struct NodePK * pOut = (struct NodePK *)(pNodesPK + NODE_SIZE*i); |
|
for(int k=0;k<3;++k) |
|
{// calc 4 short indexes in shared local mem for each rectangle instead of 2 (x,y) pair. |
|
int* p = &(node[i].p[k][0]); |
|
pOut->slm_index[k][0] = (unsigned short)(p[1]*DATA_SIZE_X+p[0]); |
|
pOut->slm_index[k][1] = (unsigned short)(p[1]*DATA_SIZE_X+p[2]); |
|
pOut->slm_index[k][2] = (unsigned short)(p[3]*DATA_SIZE_X+p[0]); |
|
pOut->slm_index[k][3] = (unsigned short)(p[3]*DATA_SIZE_X+p[2]); |
|
} |
|
//store used float point values for each node |
|
pOut->weight[0] = node[i].weight[0]; |
|
pOut->weight[1] = node[i].weight[1]; |
|
pOut->weight[2] = node[i].weight[2]; |
|
pOut->threshold = node[i].threshold; |
|
pOut->alpha[0] = node[i].alpha[0]; |
|
pOut->alpha[1] = node[i].alpha[1]; |
|
} |
|
openCLSafeCall(clEnqueueUnmapMemObject(getClCommandQueue(oclNodesPK.clCxt),(cl_mem)oclNodesPK.datastart,pNodesPK,0,0,0)); |
|
pNodesPK = NULL; |
|
} |
|
// add 2 additional buffers (WGinfo and packed nodes) as 2 last args |
|
args.push_back ( make_pair(sizeof(cl_mem) , (void *)&oclNodesPK.datastart )); |
|
args.push_back ( make_pair(sizeof(cl_mem) , (void *)&oclWGInfo.datastart )); |
|
|
|
//form build options for kernel |
|
string options = "-D PACKED_CLASSIFIER"; |
|
options += format(" -D NODE_SIZE=%d",NODE_SIZE); |
|
options += format(" -D WND_SIZE_X=%d",cascade->orig_window_size.width); |
|
options += format(" -D WND_SIZE_Y=%d",cascade->orig_window_size.height); |
|
options += format(" -D STUMP_BASED=%d",gcascade->is_stump_based); |
|
options += format(" -D LSx=%d",localThreads[0]); |
|
options += format(" -D LSy=%d",localThreads[1]); |
|
options += format(" -D SPLITNODE=%d",splitnode); |
|
options += format(" -D SPLITSTAGE=%d",splitstage); |
|
options += format(" -D OUTPUTSZ=%d",outputsz); |
|
|
|
// init candiate global count by 0 |
|
int pattern = 0; |
|
openCLSafeCall(clEnqueueWriteBuffer(qu, candidatebuffer, 1, 0, 1 * sizeof(pattern),&pattern, 0, NULL, NULL)); |
|
// execute face detector |
|
openCLExecuteKernel(gsum.clCxt, &haarobjectdetect, "gpuRunHaarClassifierCascadePacked", globalThreads, localThreads, args, -1, -1, options.c_str()); |
|
//read candidate buffer back and put it into host list |
|
openCLReadBuffer( gsum.clCxt, candidatebuffer, candidate, 4 * sizeof(int)*outputsz ); |
|
assert(candidate[0]<outputsz); |
|
//printf("candidate[0]=%d\n",candidate[0]); |
|
for(int i = 1; i <= candidate[0]; i++) |
|
{ |
|
allCandidates.push_back(Rect(candidate[4 * i], candidate[4 * i + 1],candidate[4 * i + 2], candidate[4 * i + 3])); |
|
} |
|
} |
|
else |
|
{ |
|
const char * build_options = gcascade->is_stump_based ? "-D STUMP_BASED=1" : "-D STUMP_BASED=0"; |
|
|
|
openCLExecuteKernel(gsum.clCxt, &haarobjectdetect, "gpuRunHaarClassifierCascade", globalThreads, localThreads, args, -1, -1, build_options); |
|
|
|
openCLReadBuffer( gsum.clCxt, candidatebuffer, candidate, 4 * sizeof(int)*outputsz ); |
|
|
|
for(int i = 0; i < outputsz; i++) |
|
if(candidate[4 * i + 2] != 0) |
|
allCandidates.push_back(Rect(candidate[4 * i], candidate[4 * i + 1], |
|
candidate[4 * i + 2], candidate[4 * i + 3])); |
|
} |
|
|
|
free(scaleinfo); |
|
free(candidate); |
|
openCLSafeCall(clReleaseMemObject(stagebuffer)); |
|
openCLSafeCall(clReleaseMemObject(scaleinfobuffer)); |
|
openCLSafeCall(clReleaseMemObject(nodebuffer)); |
|
openCLSafeCall(clReleaseMemObject(candidatebuffer)); |
|
|
|
} |
|
else |
|
{ |
|
CvSize winsize0 = cascade->orig_window_size; |
|
int n_factors = 0; |
|
oclMat gsum; |
|
oclMat gsqsum; |
|
oclMat gsqsum_t; |
|
cv::ocl::integral(gimg, gsum, gsqsum_t); |
|
if(gsqsum_t.depth() == CV_64F) |
|
gsqsum_t.convertTo(gsqsum, CV_32FC1); |
|
else |
|
gsqsum = gsqsum_t; |
|
CvSize sz; |
|
vector<CvSize> sizev; |
|
vector<float> scalev; |
|
gpuSetHaarClassifierCascade(cascade); |
|
gcascade = (GpuHidHaarClassifierCascade *)cascade->hid_cascade; |
|
stage = (GpuHidHaarStageClassifier *)(gcascade + 1); |
|
classifier = (GpuHidHaarClassifier *)(stage + gcascade->count); |
|
node = (GpuHidHaarTreeNode *)(classifier->node); |
|
cl_mem stagebuffer; |
|
cl_mem nodebuffer; |
|
cl_mem candidatebuffer; |
|
cl_mem scaleinfobuffer; |
|
cl_mem pbuffer; |
|
cl_mem correctionbuffer; |
|
for( n_factors = 0, factor = 1; |
|
cvRound(factor * winsize0.width) < gimg.cols - 10 && |
|
cvRound(factor * winsize0.height) < gimg.rows - 10; |
|
n_factors++, factor *= scaleFactor ) |
|
{ |
|
CvSize winSize = { cvRound( winsize0.width * factor ), |
|
cvRound( winsize0.height * factor ) |
|
}; |
|
if( winSize.width < minSize.width || winSize.height < minSize.height ) |
|
{ |
|
continue; |
|
} |
|
sizev.push_back(winSize); |
|
scalev.push_back(factor); |
|
} |
|
int loopcount = scalev.size(); |
|
if(loopcount == 0) |
|
{ |
|
loopcount = 1; |
|
n_factors = 1; |
|
sizev.push_back(minSize); |
|
scalev.push_back( std::min(cvRound(minSize.width / winsize0.width), cvRound(minSize.height / winsize0.height)) ); |
|
|
|
} |
|
detect_piramid_info *scaleinfo = (detect_piramid_info *)malloc(sizeof(detect_piramid_info) * loopcount); |
|
cl_int4 *p = (cl_int4 *)malloc(sizeof(cl_int4) * loopcount); |
|
float *correction = (float *)malloc(sizeof(float) * loopcount); |
|
int grp_per_CU = 12; |
|
size_t blocksize = 8; |
|
size_t localThreads[3] = { blocksize, blocksize , 1 }; |
|
size_t globalThreads[3] = { grp_per_CU *gsum.clCxt->getDeviceInfo().maxComputeUnits *localThreads[0], |
|
localThreads[1], 1 }; |
|
int outputsz = 256 * globalThreads[0] / localThreads[0]; |
|
int nodenum = (datasize - sizeof(GpuHidHaarClassifierCascade) - |
|
sizeof(GpuHidHaarStageClassifier) * gcascade->count - sizeof(GpuHidHaarClassifier) * totalclassifier) / sizeof(GpuHidHaarTreeNode); |
|
nodebuffer = openCLCreateBuffer(gsum.clCxt, CL_MEM_READ_ONLY, |
|
nodenum * sizeof(GpuHidHaarTreeNode)); |
|
openCLSafeCall(clEnqueueWriteBuffer(qu, nodebuffer, 1, 0, |
|
nodenum * sizeof(GpuHidHaarTreeNode), |
|
node, 0, NULL, NULL)); |
|
cl_mem newnodebuffer = openCLCreateBuffer(gsum.clCxt, CL_MEM_READ_WRITE, |
|
loopcount * nodenum * sizeof(GpuHidHaarTreeNode)); |
|
int startstage = 0; |
|
int endstage = gcascade->count; |
|
for(int i = 0; i < loopcount; i++) |
|
{ |
|
sz = sizev[i]; |
|
factor = scalev[i]; |
|
double ystep = std::max(2., factor); |
|
int equRect_x = cvRound(factor * gcascade->p0); |
|
int equRect_y = cvRound(factor * gcascade->p1); |
|
int equRect_w = cvRound(factor * gcascade->p3); |
|
int equRect_h = cvRound(factor * gcascade->p2); |
|
p[i].s[0] = equRect_x; |
|
p[i].s[1] = equRect_y; |
|
p[i].s[2] = equRect_x + equRect_w; |
|
p[i].s[3] = equRect_y + equRect_h; |
|
correction[i] = 1. / (equRect_w * equRect_h); |
|
int width = (gsum.cols - 1 - sz.width + ystep - 1) / ystep; |
|
int height = (gsum.rows - 1 - sz.height + ystep - 1) / ystep; |
|
int grpnumperline = (width + localThreads[0] - 1) / localThreads[0]; |
|
int totalgrp = ((height + localThreads[1] - 1) / localThreads[1]) * grpnumperline; |
|
|
|
scaleinfo[i].width_height = (width << 16) | height; |
|
scaleinfo[i].grpnumperline_totalgrp = (grpnumperline << 16) | totalgrp; |
|
scaleinfo[i].imgoff = 0; |
|
scaleinfo[i].factor = factor; |
|
int startnodenum = nodenum * i; |
|
float factor2 = (float)factor; |
|
|
|
vector<pair<size_t, const void *> > args1; |
|
args1.push_back ( make_pair(sizeof(cl_mem) , (void *)&nodebuffer )); |
|
args1.push_back ( make_pair(sizeof(cl_mem) , (void *)&newnodebuffer )); |
|
args1.push_back ( make_pair(sizeof(cl_float) , (void *)&factor2 )); |
|
args1.push_back ( make_pair(sizeof(cl_float) , (void *)&correction[i] )); |
|
args1.push_back ( make_pair(sizeof(cl_int) , (void *)&startnodenum )); |
|
|
|
size_t globalThreads2[3] = {nodenum, 1, 1}; |
|
openCLExecuteKernel(gsum.clCxt, &haarobjectdetect_scaled2, "gpuscaleclassifier", globalThreads2, NULL/*localThreads2*/, args1, -1, -1); |
|
} |
|
|
|
int step = gsum.step / 4; |
|
int startnode = 0; |
|
int splitstage = 3; |
|
stagebuffer = openCLCreateBuffer(gsum.clCxt, CL_MEM_READ_ONLY, sizeof(GpuHidHaarStageClassifier) * gcascade->count); |
|
openCLSafeCall(clEnqueueWriteBuffer(qu, stagebuffer, 1, 0, sizeof(GpuHidHaarStageClassifier)*gcascade->count, stage, 0, NULL, NULL)); |
|
candidatebuffer = openCLCreateBuffer(gsum.clCxt, CL_MEM_WRITE_ONLY | CL_MEM_ALLOC_HOST_PTR, 4 * sizeof(int) * outputsz); |
|
scaleinfobuffer = openCLCreateBuffer(gsum.clCxt, CL_MEM_READ_ONLY, sizeof(detect_piramid_info) * loopcount); |
|
openCLSafeCall(clEnqueueWriteBuffer(qu, scaleinfobuffer, 1, 0, sizeof(detect_piramid_info)*loopcount, scaleinfo, 0, NULL, NULL)); |
|
pbuffer = openCLCreateBuffer(gsum.clCxt, CL_MEM_READ_ONLY, sizeof(cl_int4) * loopcount); |
|
openCLSafeCall(clEnqueueWriteBuffer(qu, pbuffer, 1, 0, sizeof(cl_int4)*loopcount, p, 0, NULL, NULL)); |
|
correctionbuffer = openCLCreateBuffer(gsum.clCxt, CL_MEM_READ_ONLY, sizeof(cl_float) * loopcount); |
|
openCLSafeCall(clEnqueueWriteBuffer(qu, correctionbuffer, 1, 0, sizeof(cl_float)*loopcount, correction, 0, NULL, NULL)); |
|
|
|
vector<pair<size_t, const void *> > args; |
|
args.push_back ( make_pair(sizeof(cl_mem) , (void *)&stagebuffer )); |
|
args.push_back ( make_pair(sizeof(cl_mem) , (void *)&scaleinfobuffer )); |
|
args.push_back ( make_pair(sizeof(cl_mem) , (void *)&newnodebuffer )); |
|
args.push_back ( make_pair(sizeof(cl_mem) , (void *)&gsum.data )); |
|
args.push_back ( make_pair(sizeof(cl_mem) , (void *)&gsqsum.data )); |
|
args.push_back ( make_pair(sizeof(cl_mem) , (void *)&candidatebuffer )); |
|
args.push_back ( make_pair(sizeof(cl_int) , (void *)&gsum.rows )); |
|
args.push_back ( make_pair(sizeof(cl_int) , (void *)&gsum.cols )); |
|
args.push_back ( make_pair(sizeof(cl_int) , (void *)&step )); |
|
args.push_back ( make_pair(sizeof(cl_int) , (void *)&loopcount )); |
|
args.push_back ( make_pair(sizeof(cl_int) , (void *)&startstage )); |
|
args.push_back ( make_pair(sizeof(cl_int) , (void *)&splitstage )); |
|
args.push_back ( make_pair(sizeof(cl_int) , (void *)&endstage )); |
|
args.push_back ( make_pair(sizeof(cl_int) , (void *)&startnode )); |
|
args.push_back ( make_pair(sizeof(cl_mem) , (void *)&pbuffer )); |
|
args.push_back ( make_pair(sizeof(cl_mem) , (void *)&correctionbuffer )); |
|
args.push_back ( make_pair(sizeof(cl_int) , (void *)&nodenum )); |
|
const char * build_options = gcascade->is_stump_based ? "-D STUMP_BASED=1" : "-D STUMP_BASED=0"; |
|
openCLExecuteKernel(gsum.clCxt, &haarobjectdetect_scaled2, "gpuRunHaarClassifierCascade_scaled2", globalThreads, localThreads, args, -1, -1, build_options); |
|
|
|
candidate = (int *)clEnqueueMapBuffer(qu, candidatebuffer, 1, CL_MAP_READ, 0, 4 * sizeof(int) * outputsz, 0, 0, 0, &status); |
|
|
|
for(int i = 0; i < outputsz; i++) |
|
{ |
|
if(candidate[4 * i + 2] != 0) |
|
allCandidates.push_back(Rect(candidate[4 * i], candidate[4 * i + 1], candidate[4 * i + 2], candidate[4 * i + 3])); |
|
} |
|
|
|
free(scaleinfo); |
|
free(p); |
|
free(correction); |
|
clEnqueueUnmapMemObject(qu, candidatebuffer, candidate, 0, 0, 0); |
|
openCLSafeCall(clReleaseMemObject(stagebuffer)); |
|
openCLSafeCall(clReleaseMemObject(scaleinfobuffer)); |
|
openCLSafeCall(clReleaseMemObject(nodebuffer)); |
|
openCLSafeCall(clReleaseMemObject(newnodebuffer)); |
|
openCLSafeCall(clReleaseMemObject(candidatebuffer)); |
|
openCLSafeCall(clReleaseMemObject(pbuffer)); |
|
openCLSafeCall(clReleaseMemObject(correctionbuffer)); |
|
} |
|
|
|
cvFree(&cascade->hid_cascade); |
|
rectList.resize(allCandidates.size()); |
|
if(!allCandidates.empty()) |
|
std::copy(allCandidates.begin(), allCandidates.end(), rectList.begin()); |
|
|
|
if( minNeighbors != 0 || findBiggestObject ) |
|
groupRectangles(rectList, rweights, std::max(minNeighbors, 1), GROUP_EPS); |
|
else |
|
rweights.resize(rectList.size(), 0); |
|
|
|
if( findBiggestObject && rectList.size() ) |
|
{ |
|
CvAvgComp result_comp = {{0, 0, 0, 0}, 0}; |
|
|
|
for( size_t i = 0; i < rectList.size(); i++ ) |
|
{ |
|
cv::Rect r = rectList[i]; |
|
if( r.area() > cv::Rect(result_comp.rect).area() ) |
|
{ |
|
result_comp.rect = r; |
|
result_comp.neighbors = rweights[i]; |
|
} |
|
} |
|
cvSeqPush( result_seq, &result_comp ); |
|
} |
|
else |
|
{ |
|
for( size_t i = 0; i < rectList.size(); i++ ) |
|
{ |
|
CvAvgComp c; |
|
c.rect = rectList[i]; |
|
c.neighbors = rweights[i]; |
|
cvSeqPush( result_seq, &c ); |
|
} |
|
} |
|
|
|
return result_seq; |
|
} |
|
|
|
|
|
struct getRect |
|
{ |
|
Rect operator()(const CvAvgComp &e) const |
|
{ |
|
return e.rect; |
|
} |
|
}; |
|
|
|
void cv::ocl::OclCascadeClassifier::detectMultiScale(oclMat &gimg, CV_OUT std::vector<cv::Rect>& faces, |
|
double scaleFactor, int minNeighbors, int flags, |
|
Size minSize, Size maxSize) |
|
{ |
|
CvSeq* _objects; |
|
MemStorage storage(cvCreateMemStorage(0)); |
|
_objects = oclHaarDetectObjects(gimg, storage, scaleFactor, minNeighbors, flags, minSize, maxSize); |
|
vector<CvAvgComp> vecAvgComp; |
|
Seq<CvAvgComp>(_objects).copyTo(vecAvgComp); |
|
faces.resize(vecAvgComp.size()); |
|
std::transform(vecAvgComp.begin(), vecAvgComp.end(), faces.begin(), getRect()); |
|
} |
|
|
|
struct OclBuffers |
|
{ |
|
cl_mem stagebuffer; |
|
cl_mem nodebuffer; |
|
cl_mem candidatebuffer; |
|
cl_mem scaleinfobuffer; |
|
cl_mem pbuffer; |
|
cl_mem correctionbuffer; |
|
cl_mem newnodebuffer; |
|
}; |
|
|
|
|
|
void cv::ocl::OclCascadeClassifierBuf::detectMultiScale(oclMat &gimg, CV_OUT std::vector<cv::Rect>& faces, |
|
double scaleFactor, int minNeighbors, int flags, |
|
Size minSize, Size maxSize) |
|
{ |
|
int blocksize = 8; |
|
int grp_per_CU = 12; |
|
size_t localThreads[3] = { blocksize, blocksize, 1 }; |
|
size_t globalThreads[3] = { grp_per_CU * cv::ocl::Context::getContext()->getDeviceInfo().maxComputeUnits *localThreads[0], |
|
localThreads[1], |
|
1 }; |
|
int outputsz = 256 * globalThreads[0] / localThreads[0]; |
|
|
|
Init(gimg.rows, gimg.cols, scaleFactor, flags, outputsz, localThreads, minSize, maxSize); |
|
|
|
const double GROUP_EPS = 0.2; |
|
|
|
cv::ConcurrentRectVector allCandidates; |
|
std::vector<cv::Rect> rectList; |
|
std::vector<int> rweights; |
|
|
|
CvHaarClassifierCascade *cascade = oldCascade; |
|
GpuHidHaarClassifierCascade *gcascade; |
|
GpuHidHaarStageClassifier *stage; |
|
|
|
if( CV_MAT_DEPTH(gimg.type()) != CV_8U ) |
|
CV_Error( CV_StsUnsupportedFormat, "Only 8-bit images are supported" ); |
|
|
|
if( CV_MAT_CN(gimg.type()) > 1 ) |
|
{ |
|
oclMat gtemp; |
|
cvtColor( gimg, gtemp, CV_BGR2GRAY ); |
|
gimg = gtemp; |
|
} |
|
|
|
int *candidate; |
|
cl_command_queue qu = getClCommandQueue(Context::getContext()); |
|
if( (flags & CV_HAAR_SCALE_IMAGE) ) |
|
{ |
|
int indexy = 0; |
|
CvSize sz; |
|
|
|
cv::Rect roi, roi2; |
|
cv::ocl::oclMat resizeroi, gimgroi, gimgroisq; |
|
|
|
for( int i = 0; i < m_loopcount; i++ ) |
|
{ |
|
sz = sizev[i]; |
|
roi = Rect(0, indexy, sz.width, sz.height); |
|
roi2 = Rect(0, 0, sz.width - 1, sz.height - 1); |
|
resizeroi = gimg1(roi2); |
|
gimgroi = gsum(roi); |
|
gimgroisq = gsqsum_t(roi); |
|
|
|
cv::ocl::resize(gimg, resizeroi, Size(sz.width - 1, sz.height - 1), 0, 0, INTER_LINEAR); |
|
cv::ocl::integral(resizeroi, gimgroi, gimgroisq); |
|
indexy += sz.height; |
|
} |
|
if(gsqsum_t.depth() == CV_64F) |
|
gsqsum_t.convertTo(gsqsum, CV_32FC1); |
|
else |
|
gsqsum = gsqsum_t; |
|
|
|
gcascade = (GpuHidHaarClassifierCascade *)(cascade->hid_cascade); |
|
stage = (GpuHidHaarStageClassifier *)(gcascade + 1); |
|
|
|
int startstage = 0; |
|
int endstage = gcascade->count; |
|
int startnode = 0; |
|
int pixelstep = gsum.step / 4; |
|
int splitstage = 3; |
|
int splitnode = stage[0].count + stage[1].count + stage[2].count; |
|
cl_int4 p, pq; |
|
p.s[0] = gcascade->p0; |
|
p.s[1] = gcascade->p1; |
|
p.s[2] = gcascade->p2; |
|
p.s[3] = gcascade->p3; |
|
pq.s[0] = gcascade->pq0; |
|
pq.s[1] = gcascade->pq1; |
|
pq.s[2] = gcascade->pq2; |
|
pq.s[3] = gcascade->pq3; |
|
float correction = gcascade->inv_window_area; |
|
|
|
vector<pair<size_t, const void *> > args; |
|
args.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->stagebuffer )); |
|
args.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->scaleinfobuffer )); |
|
args.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->nodebuffer )); |
|
args.push_back ( make_pair(sizeof(cl_mem) , (void *)&gsum.data )); |
|
args.push_back ( make_pair(sizeof(cl_mem) , (void *)&gsqsum.data )); |
|
args.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->candidatebuffer )); |
|
args.push_back ( make_pair(sizeof(cl_int) , (void *)&pixelstep )); |
|
args.push_back ( make_pair(sizeof(cl_int) , (void *)&m_loopcount )); |
|
args.push_back ( make_pair(sizeof(cl_int) , (void *)&startstage )); |
|
args.push_back ( make_pair(sizeof(cl_int) , (void *)&splitstage )); |
|
args.push_back ( make_pair(sizeof(cl_int) , (void *)&endstage )); |
|
args.push_back ( make_pair(sizeof(cl_int) , (void *)&startnode )); |
|
args.push_back ( make_pair(sizeof(cl_int) , (void *)&splitnode )); |
|
args.push_back ( make_pair(sizeof(cl_int4) , (void *)&p )); |
|
args.push_back ( make_pair(sizeof(cl_int4) , (void *)&pq )); |
|
args.push_back ( make_pair(sizeof(cl_float) , (void *)&correction )); |
|
|
|
const char * build_options = gcascade->is_stump_based ? "-D STUMP_BASED=1" : "-D STUMP_BASED=0"; |
|
|
|
openCLExecuteKernel(gsum.clCxt, &haarobjectdetect, "gpuRunHaarClassifierCascade", globalThreads, localThreads, args, -1, -1, build_options); |
|
|
|
candidate = (int *)malloc(4 * sizeof(int) * outputsz); |
|
memset(candidate, 0, 4 * sizeof(int) * outputsz); |
|
|
|
openCLReadBuffer( gsum.clCxt, ((OclBuffers *)buffers)->candidatebuffer, candidate, 4 * sizeof(int)*outputsz ); |
|
|
|
for(int i = 0; i < outputsz; i++) |
|
{ |
|
if(candidate[4 * i + 2] != 0) |
|
{ |
|
allCandidates.push_back(Rect(candidate[4 * i], candidate[4 * i + 1], |
|
candidate[4 * i + 2], candidate[4 * i + 3])); |
|
} |
|
} |
|
free((void *)candidate); |
|
candidate = NULL; |
|
} |
|
else |
|
{ |
|
cv::ocl::integral(gimg, gsum, gsqsum_t); |
|
if(gsqsum_t.depth() == CV_64F) |
|
gsqsum_t.convertTo(gsqsum, CV_32FC1); |
|
else |
|
gsqsum = gsqsum_t; |
|
|
|
gcascade = (GpuHidHaarClassifierCascade *)cascade->hid_cascade; |
|
|
|
int step = gsum.step / 4; |
|
int startnode = 0; |
|
int splitstage = 3; |
|
|
|
int startstage = 0; |
|
int endstage = gcascade->count; |
|
|
|
vector<pair<size_t, const void *> > args; |
|
args.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->stagebuffer )); |
|
args.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->scaleinfobuffer )); |
|
args.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->newnodebuffer )); |
|
args.push_back ( make_pair(sizeof(cl_mem) , (void *)&gsum.data )); |
|
args.push_back ( make_pair(sizeof(cl_mem) , (void *)&gsqsum.data )); |
|
args.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->candidatebuffer )); |
|
args.push_back ( make_pair(sizeof(cl_int) , (void *)&gsum.rows )); |
|
args.push_back ( make_pair(sizeof(cl_int) , (void *)&gsum.cols )); |
|
args.push_back ( make_pair(sizeof(cl_int) , (void *)&step )); |
|
args.push_back ( make_pair(sizeof(cl_int) , (void *)&m_loopcount )); |
|
args.push_back ( make_pair(sizeof(cl_int) , (void *)&startstage )); |
|
args.push_back ( make_pair(sizeof(cl_int) , (void *)&splitstage )); |
|
args.push_back ( make_pair(sizeof(cl_int) , (void *)&endstage )); |
|
args.push_back ( make_pair(sizeof(cl_int) , (void *)&startnode )); |
|
args.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->pbuffer )); |
|
args.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->correctionbuffer )); |
|
args.push_back ( make_pair(sizeof(cl_int) , (void *)&m_nodenum )); |
|
|
|
const char * build_options = gcascade->is_stump_based ? "-D STUMP_BASED=1" : "-D STUMP_BASED=0"; |
|
openCLExecuteKernel(gsum.clCxt, &haarobjectdetect_scaled2, "gpuRunHaarClassifierCascade_scaled2", globalThreads, localThreads, args, -1, -1, build_options); |
|
|
|
candidate = (int *)clEnqueueMapBuffer(qu, ((OclBuffers *)buffers)->candidatebuffer, 1, CL_MAP_READ, 0, 4 * sizeof(int) * outputsz, 0, 0, 0, NULL); |
|
|
|
for(int i = 0; i < outputsz; i++) |
|
{ |
|
if(candidate[4 * i + 2] != 0) |
|
allCandidates.push_back(Rect(candidate[4 * i], candidate[4 * i + 1], |
|
candidate[4 * i + 2], candidate[4 * i + 3])); |
|
} |
|
clEnqueueUnmapMemObject(qu, ((OclBuffers *)buffers)->candidatebuffer, candidate, 0, 0, 0); |
|
} |
|
rectList.resize(allCandidates.size()); |
|
if(!allCandidates.empty()) |
|
std::copy(allCandidates.begin(), allCandidates.end(), rectList.begin()); |
|
|
|
if( minNeighbors != 0 || findBiggestObject ) |
|
groupRectangles(rectList, rweights, std::max(minNeighbors, 1), GROUP_EPS); |
|
else |
|
rweights.resize(rectList.size(), 0); |
|
|
|
GenResult(faces, rectList, rweights); |
|
} |
|
|
|
void cv::ocl::OclCascadeClassifierBuf::Init(const int rows, const int cols, |
|
double scaleFactor, int flags, |
|
const int outputsz, const size_t localThreads[], |
|
CvSize minSize, CvSize maxSize) |
|
{ |
|
if(initialized) |
|
{ |
|
return; // we only allow one time initialization |
|
} |
|
CvHaarClassifierCascade *cascade = oldCascade; |
|
|
|
if( !CV_IS_HAAR_CLASSIFIER(cascade) ) |
|
CV_Error( !cascade ? CV_StsNullPtr : CV_StsBadArg, "Invalid classifier cascade" ); |
|
|
|
if( scaleFactor <= 1 ) |
|
CV_Error( CV_StsOutOfRange, "scale factor must be > 1" ); |
|
|
|
if( cols < minSize.width || rows < minSize.height ) |
|
CV_Error(CV_StsError, "Image too small"); |
|
|
|
int datasize=0; |
|
int totalclassifier=0; |
|
|
|
if( !cascade->hid_cascade ) |
|
{ |
|
gpuCreateHidHaarClassifierCascade(cascade, &datasize, &totalclassifier); |
|
} |
|
|
|
if( maxSize.height == 0 || maxSize.width == 0 ) |
|
{ |
|
maxSize.height = rows; |
|
maxSize.width = cols; |
|
} |
|
|
|
findBiggestObject = (flags & CV_HAAR_FIND_BIGGEST_OBJECT) != 0; |
|
if( findBiggestObject ) |
|
flags &= ~(CV_HAAR_SCALE_IMAGE | CV_HAAR_DO_CANNY_PRUNING); |
|
|
|
CreateBaseBufs(datasize, totalclassifier, flags, outputsz); |
|
CreateFactorRelatedBufs(rows, cols, flags, scaleFactor, localThreads, minSize, maxSize); |
|
|
|
m_scaleFactor = scaleFactor; |
|
m_rows = rows; |
|
m_cols = cols; |
|
m_flags = flags; |
|
m_minSize = minSize; |
|
m_maxSize = maxSize; |
|
|
|
// initialize nodes |
|
GpuHidHaarClassifierCascade *gcascade; |
|
GpuHidHaarStageClassifier *stage; |
|
GpuHidHaarClassifier *classifier; |
|
GpuHidHaarTreeNode *node; |
|
cl_command_queue qu = getClCommandQueue(Context::getContext()); |
|
if( (flags & CV_HAAR_SCALE_IMAGE) ) |
|
{ |
|
gcascade = (GpuHidHaarClassifierCascade *)(cascade->hid_cascade); |
|
stage = (GpuHidHaarStageClassifier *)(gcascade + 1); |
|
classifier = (GpuHidHaarClassifier *)(stage + gcascade->count); |
|
node = (GpuHidHaarTreeNode *)(classifier->node); |
|
|
|
gpuSetImagesForHaarClassifierCascade( cascade, 1., gsum.step / 4 ); |
|
|
|
openCLSafeCall(clEnqueueWriteBuffer(qu, ((OclBuffers *)buffers)->stagebuffer, 1, 0, |
|
sizeof(GpuHidHaarStageClassifier) * gcascade->count, |
|
stage, 0, NULL, NULL)); |
|
|
|
openCLSafeCall(clEnqueueWriteBuffer(qu, ((OclBuffers *)buffers)->nodebuffer, 1, 0, |
|
m_nodenum * sizeof(GpuHidHaarTreeNode), |
|
node, 0, NULL, NULL)); |
|
} |
|
else |
|
{ |
|
gpuSetHaarClassifierCascade(cascade); |
|
|
|
gcascade = (GpuHidHaarClassifierCascade *)cascade->hid_cascade; |
|
stage = (GpuHidHaarStageClassifier *)(gcascade + 1); |
|
classifier = (GpuHidHaarClassifier *)(stage + gcascade->count); |
|
node = (GpuHidHaarTreeNode *)(classifier->node); |
|
|
|
openCLSafeCall(clEnqueueWriteBuffer(qu, ((OclBuffers *)buffers)->nodebuffer, 1, 0, |
|
m_nodenum * sizeof(GpuHidHaarTreeNode), |
|
node, 0, NULL, NULL)); |
|
|
|
cl_int4 *p = (cl_int4 *)malloc(sizeof(cl_int4) * m_loopcount); |
|
float *correction = (float *)malloc(sizeof(float) * m_loopcount); |
|
double factor; |
|
for(int i = 0; i < m_loopcount; i++) |
|
{ |
|
factor = scalev[i]; |
|
int equRect_x = (int)(factor * gcascade->p0 + 0.5); |
|
int equRect_y = (int)(factor * gcascade->p1 + 0.5); |
|
int equRect_w = (int)(factor * gcascade->p3 + 0.5); |
|
int equRect_h = (int)(factor * gcascade->p2 + 0.5); |
|
p[i].s[0] = equRect_x; |
|
p[i].s[1] = equRect_y; |
|
p[i].s[2] = equRect_x + equRect_w; |
|
p[i].s[3] = equRect_y + equRect_h; |
|
correction[i] = 1. / (equRect_w * equRect_h); |
|
int startnodenum = m_nodenum * i; |
|
float factor2 = (float)factor; |
|
|
|
vector<pair<size_t, const void *> > args1; |
|
args1.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->nodebuffer )); |
|
args1.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->newnodebuffer )); |
|
args1.push_back ( make_pair(sizeof(cl_float) , (void *)&factor2 )); |
|
args1.push_back ( make_pair(sizeof(cl_float) , (void *)&correction[i] )); |
|
args1.push_back ( make_pair(sizeof(cl_int) , (void *)&startnodenum )); |
|
|
|
size_t globalThreads2[3] = {m_nodenum, 1, 1}; |
|
|
|
openCLExecuteKernel(Context::getContext(), &haarobjectdetect_scaled2, "gpuscaleclassifier", globalThreads2, NULL/*localThreads2*/, args1, -1, -1); |
|
} |
|
openCLSafeCall(clEnqueueWriteBuffer(qu, ((OclBuffers *)buffers)->stagebuffer, 1, 0, sizeof(GpuHidHaarStageClassifier)*gcascade->count, stage, 0, NULL, NULL)); |
|
openCLSafeCall(clEnqueueWriteBuffer(qu, ((OclBuffers *)buffers)->pbuffer, 1, 0, sizeof(cl_int4)*m_loopcount, p, 0, NULL, NULL)); |
|
openCLSafeCall(clEnqueueWriteBuffer(qu, ((OclBuffers *)buffers)->correctionbuffer, 1, 0, sizeof(cl_float)*m_loopcount, correction, 0, NULL, NULL)); |
|
|
|
free(p); |
|
free(correction); |
|
} |
|
initialized = true; |
|
} |
|
|
|
void cv::ocl::OclCascadeClassifierBuf::CreateBaseBufs(const int datasize, const int totalclassifier, |
|
const int flags, const int outputsz) |
|
{ |
|
if (!initialized) |
|
{ |
|
buffers = malloc(sizeof(OclBuffers)); |
|
|
|
size_t tempSize = |
|
sizeof(GpuHidHaarStageClassifier) * ((GpuHidHaarClassifierCascade *)oldCascade->hid_cascade)->count; |
|
m_nodenum = (datasize - sizeof(GpuHidHaarClassifierCascade) - tempSize - sizeof(GpuHidHaarClassifier) * totalclassifier) |
|
/ sizeof(GpuHidHaarTreeNode); |
|
|
|
((OclBuffers *)buffers)->stagebuffer = openCLCreateBuffer(cv::ocl::Context::getContext(), CL_MEM_READ_ONLY, tempSize); |
|
((OclBuffers *)buffers)->nodebuffer = openCLCreateBuffer(cv::ocl::Context::getContext(), CL_MEM_READ_ONLY, m_nodenum * sizeof(GpuHidHaarTreeNode)); |
|
} |
|
|
|
if (initialized |
|
&& ((m_flags & CV_HAAR_SCALE_IMAGE) ^ (flags & CV_HAAR_SCALE_IMAGE))) |
|
{ |
|
openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->candidatebuffer)); |
|
} |
|
|
|
if (flags & CV_HAAR_SCALE_IMAGE) |
|
{ |
|
((OclBuffers *)buffers)->candidatebuffer = openCLCreateBuffer(cv::ocl::Context::getContext(), |
|
CL_MEM_WRITE_ONLY, |
|
4 * sizeof(int) * outputsz); |
|
} |
|
else |
|
{ |
|
((OclBuffers *)buffers)->candidatebuffer = openCLCreateBuffer(cv::ocl::Context::getContext(), |
|
CL_MEM_WRITE_ONLY | CL_MEM_ALLOC_HOST_PTR, |
|
4 * sizeof(int) * outputsz); |
|
} |
|
} |
|
|
|
void cv::ocl::OclCascadeClassifierBuf::CreateFactorRelatedBufs( |
|
const int rows, const int cols, const int flags, |
|
const double scaleFactor, const size_t localThreads[], |
|
CvSize minSize, CvSize maxSize) |
|
{ |
|
if (initialized) |
|
{ |
|
if ((m_flags & CV_HAAR_SCALE_IMAGE) && !(flags & CV_HAAR_SCALE_IMAGE)) |
|
{ |
|
gimg1.release(); |
|
gsum.release(); |
|
gsqsum.release(); |
|
gsqsum_t.release(); |
|
} |
|
else if (!(m_flags & CV_HAAR_SCALE_IMAGE) && (flags & CV_HAAR_SCALE_IMAGE)) |
|
{ |
|
openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->newnodebuffer)); |
|
openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->correctionbuffer)); |
|
openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->pbuffer)); |
|
} |
|
else if ((m_flags & CV_HAAR_SCALE_IMAGE) && (flags & CV_HAAR_SCALE_IMAGE)) |
|
{ |
|
if (fabs(m_scaleFactor - scaleFactor) < 1e-6 |
|
&& (rows == m_rows && cols == m_cols) |
|
&& (minSize.width == m_minSize.width) |
|
&& (minSize.height == m_minSize.height) |
|
&& (maxSize.width == m_maxSize.width) |
|
&& (maxSize.height == m_maxSize.height)) |
|
{ |
|
return; |
|
} |
|
} |
|
else |
|
{ |
|
if (fabs(m_scaleFactor - scaleFactor) < 1e-6 |
|
&& (rows == m_rows && cols == m_cols) |
|
&& (minSize.width == m_minSize.width) |
|
&& (minSize.height == m_minSize.height) |
|
&& (maxSize.width == m_maxSize.width) |
|
&& (maxSize.height == m_maxSize.height)) |
|
{ |
|
return; |
|
} |
|
else |
|
{ |
|
openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->newnodebuffer)); |
|
openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->correctionbuffer)); |
|
openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->pbuffer)); |
|
} |
|
} |
|
} |
|
|
|
int loopcount; |
|
int indexy = 0; |
|
int totalheight = 0; |
|
double factor; |
|
Rect roi; |
|
CvSize sz; |
|
CvSize winSize0 = oldCascade->orig_window_size; |
|
detect_piramid_info *scaleinfo; |
|
cl_command_queue qu = getClCommandQueue(Context::getContext()); |
|
if (flags & CV_HAAR_SCALE_IMAGE) |
|
{ |
|
for(factor = 1.f;; factor *= scaleFactor) |
|
{ |
|
CvSize winSize = { cvRound(winSize0.width * factor), cvRound(winSize0.height * factor) }; |
|
sz.width = cvRound( cols / factor ) + 1; |
|
sz.height = cvRound( rows / factor ) + 1; |
|
CvSize sz1 = { sz.width - winSize0.width - 1, sz.height - winSize0.height - 1 }; |
|
|
|
if( sz1.width <= 0 || sz1.height <= 0 ) |
|
break; |
|
if( winSize.width > maxSize.width || winSize.height > maxSize.height ) |
|
break; |
|
if( winSize.width < minSize.width || winSize.height < minSize.height ) |
|
continue; |
|
|
|
totalheight += sz.height; |
|
sizev.push_back(sz); |
|
scalev.push_back(static_cast<float>(factor)); |
|
} |
|
|
|
loopcount = sizev.size(); |
|
gimg1.create(rows, cols, CV_8UC1); |
|
gsum.create(totalheight + 4, cols + 1, CV_32SC1); |
|
gsqsum.create(totalheight + 4, cols + 1, CV_32FC1); |
|
|
|
int sdepth = 0; |
|
if(Context::getContext()->supportsFeature(FEATURE_CL_DOUBLE)) |
|
sdepth = CV_64FC1; |
|
else |
|
sdepth = CV_32FC1; |
|
sdepth = CV_MAT_DEPTH(sdepth); |
|
int type = CV_MAKE_TYPE(sdepth, 1); |
|
|
|
gsqsum_t.create(totalheight + 4, cols + 1, type); |
|
|
|
scaleinfo = (detect_piramid_info *)malloc(sizeof(detect_piramid_info) * loopcount); |
|
for( int i = 0; i < loopcount; i++ ) |
|
{ |
|
sz = sizev[i]; |
|
roi = Rect(0, indexy, sz.width, sz.height); |
|
int width = sz.width - 1 - oldCascade->orig_window_size.width; |
|
int height = sz.height - 1 - oldCascade->orig_window_size.height; |
|
int grpnumperline = (width + localThreads[0] - 1) / localThreads[0]; |
|
int totalgrp = ((height + localThreads[1] - 1) / localThreads[1]) * grpnumperline; |
|
|
|
((detect_piramid_info *)scaleinfo)[i].width_height = (width << 16) | height; |
|
((detect_piramid_info *)scaleinfo)[i].grpnumperline_totalgrp = (grpnumperline << 16) | totalgrp; |
|
((detect_piramid_info *)scaleinfo)[i].imgoff = gsum(roi).offset >> 2; |
|
((detect_piramid_info *)scaleinfo)[i].factor = scalev[i]; |
|
|
|
indexy += sz.height; |
|
} |
|
} |
|
else |
|
{ |
|
for(factor = 1; |
|
cvRound(factor * winSize0.width) < cols - 10 && cvRound(factor * winSize0.height) < rows - 10; |
|
factor *= scaleFactor) |
|
{ |
|
CvSize winSize = { cvRound( winSize0.width * factor ), cvRound( winSize0.height * factor ) }; |
|
if( winSize.width < minSize.width || winSize.height < minSize.height ) |
|
{ |
|
continue; |
|
} |
|
sizev.push_back(winSize); |
|
scalev.push_back(factor); |
|
} |
|
|
|
loopcount = scalev.size(); |
|
if(loopcount == 0) |
|
{ |
|
loopcount = 1; |
|
sizev.push_back(minSize); |
|
scalev.push_back( std::min(cvRound(minSize.width / winSize0.width), cvRound(minSize.height / winSize0.height)) ); |
|
} |
|
|
|
((OclBuffers *)buffers)->pbuffer = openCLCreateBuffer(cv::ocl::Context::getContext(), CL_MEM_READ_ONLY, |
|
sizeof(cl_int4) * loopcount); |
|
((OclBuffers *)buffers)->correctionbuffer = openCLCreateBuffer(cv::ocl::Context::getContext(), CL_MEM_READ_ONLY, |
|
sizeof(cl_float) * loopcount); |
|
((OclBuffers *)buffers)->newnodebuffer = openCLCreateBuffer(cv::ocl::Context::getContext(), CL_MEM_READ_WRITE, |
|
loopcount * m_nodenum * sizeof(GpuHidHaarTreeNode)); |
|
|
|
scaleinfo = (detect_piramid_info *)malloc(sizeof(detect_piramid_info) * loopcount); |
|
for( int i = 0; i < loopcount; i++ ) |
|
{ |
|
sz = sizev[i]; |
|
factor = scalev[i]; |
|
double ystep = cv::max(2.,factor); |
|
int width = cvRound((cols - 1 - sz.width + ystep - 1) / ystep); |
|
int height = cvRound((rows - 1 - sz.height + ystep - 1) / ystep); |
|
int grpnumperline = (width + localThreads[0] - 1) / localThreads[0]; |
|
int totalgrp = ((height + localThreads[1] - 1) / localThreads[1]) * grpnumperline; |
|
|
|
((detect_piramid_info *)scaleinfo)[i].width_height = (width << 16) | height; |
|
((detect_piramid_info *)scaleinfo)[i].grpnumperline_totalgrp = (grpnumperline << 16) | totalgrp; |
|
((detect_piramid_info *)scaleinfo)[i].imgoff = 0; |
|
((detect_piramid_info *)scaleinfo)[i].factor = factor; |
|
} |
|
} |
|
|
|
if (loopcount != m_loopcount) |
|
{ |
|
if (initialized) |
|
{ |
|
openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->scaleinfobuffer)); |
|
} |
|
((OclBuffers *)buffers)->scaleinfobuffer = openCLCreateBuffer(cv::ocl::Context::getContext(), CL_MEM_READ_ONLY, sizeof(detect_piramid_info) * loopcount); |
|
} |
|
|
|
openCLSafeCall(clEnqueueWriteBuffer(qu, ((OclBuffers *)buffers)->scaleinfobuffer, 1, 0, |
|
sizeof(detect_piramid_info)*loopcount, |
|
scaleinfo, 0, NULL, NULL)); |
|
free(scaleinfo); |
|
|
|
m_loopcount = loopcount; |
|
} |
|
|
|
void cv::ocl::OclCascadeClassifierBuf::GenResult(CV_OUT std::vector<cv::Rect>& faces, |
|
const std::vector<cv::Rect> &rectList, |
|
const std::vector<int> &rweights) |
|
{ |
|
MemStorage tempStorage(cvCreateMemStorage(0)); |
|
CvSeq *result_seq = cvCreateSeq( 0, sizeof(CvSeq), sizeof(CvAvgComp), tempStorage ); |
|
|
|
if( findBiggestObject && rectList.size() ) |
|
{ |
|
CvAvgComp result_comp = {{0, 0, 0, 0}, 0}; |
|
|
|
for( size_t i = 0; i < rectList.size(); i++ ) |
|
{ |
|
cv::Rect r = rectList[i]; |
|
if( r.area() > cv::Rect(result_comp.rect).area() ) |
|
{ |
|
result_comp.rect = r; |
|
result_comp.neighbors = rweights[i]; |
|
} |
|
} |
|
cvSeqPush( result_seq, &result_comp ); |
|
} |
|
else |
|
{ |
|
for( size_t i = 0; i < rectList.size(); i++ ) |
|
{ |
|
CvAvgComp c; |
|
c.rect = rectList[i]; |
|
c.neighbors = rweights[i]; |
|
cvSeqPush( result_seq, &c ); |
|
} |
|
} |
|
|
|
vector<CvAvgComp> vecAvgComp; |
|
Seq<CvAvgComp>(result_seq).copyTo(vecAvgComp); |
|
faces.resize(vecAvgComp.size()); |
|
std::transform(vecAvgComp.begin(), vecAvgComp.end(), faces.begin(), getRect()); |
|
} |
|
|
|
void cv::ocl::OclCascadeClassifierBuf::release() |
|
{ |
|
if(initialized) |
|
{ |
|
openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->stagebuffer)); |
|
openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->scaleinfobuffer)); |
|
openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->nodebuffer)); |
|
openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->candidatebuffer)); |
|
|
|
if( (m_flags & CV_HAAR_SCALE_IMAGE) ) |
|
{ |
|
cvFree(&oldCascade->hid_cascade); |
|
} |
|
else |
|
{ |
|
openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->newnodebuffer)); |
|
openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->correctionbuffer)); |
|
openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->pbuffer)); |
|
} |
|
|
|
free(buffers); |
|
buffers = NULL; |
|
initialized = false; |
|
} |
|
} |
|
|
|
#ifndef _MAX_PATH |
|
#define _MAX_PATH 1024 |
|
#endif
|
|
|