mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
458 lines
18 KiB
458 lines
18 KiB
/* This is sample from the OpenCV book. The copyright notice is below */ |
|
|
|
/* *************** License:************************** |
|
Oct. 3, 2008 |
|
Right to use this code in any way you want without warranty, support or any guarantee of it working. |
|
|
|
BOOK: It would be nice if you cited it: |
|
Learning OpenCV: Computer Vision with the OpenCV Library |
|
by Gary Bradski and Adrian Kaehler |
|
Published by O'Reilly Media, October 3, 2008 |
|
|
|
AVAILABLE AT: |
|
http://www.amazon.com/Learning-OpenCV-Computer-Vision-Library/dp/0596516134 |
|
Or: http://oreilly.com/catalog/9780596516130/ |
|
ISBN-10: 0596516134 or: ISBN-13: 978-0596516130 |
|
|
|
OPENCV WEBSITES: |
|
Homepage: http://opencv.org |
|
Online docs: http://docs.opencv.org |
|
GitHub: https://github.com/opencv/opencv/ |
|
************************************************** */ |
|
|
|
#include "opencv2/calib3d.hpp" |
|
#include "opencv2/imgcodecs.hpp" |
|
#include "opencv2/highgui.hpp" |
|
#include "opencv2/imgproc.hpp" |
|
#include "opencv2/objdetect/charuco_detector.hpp" |
|
|
|
#include <vector> |
|
#include <string> |
|
#include <algorithm> |
|
#include <iostream> |
|
#include <iterator> |
|
#include <stdio.h> |
|
#include <stdlib.h> |
|
#include <ctype.h> |
|
|
|
using namespace cv; |
|
using namespace std; |
|
|
|
static int print_help(char** argv) |
|
{ |
|
cout << |
|
" Given a list of chessboard or ChArUco images, the number of corners (nx, ny)\n" |
|
" on the chessboards and the number of squares (nx, ny) on ChArUco,\n" |
|
" and a flag: useCalibrated for \n" |
|
" calibrated (0) or\n" |
|
" uncalibrated \n" |
|
" (1: use stereoCalibrate(), 2: compute fundamental\n" |
|
" matrix separately) stereo. \n" |
|
" Calibrate the cameras and display the\n" |
|
" rectified results along with the computed disparity images. \n" << endl; |
|
cout << "Usage:\n " << argv[0] << " -w=<board_width default=9> -h=<board_height default=6>" |
|
<<" -t=<pattern type: chessboard or charucoboard default=chessboard> -s=<square_size default=1.0> -ms=<marker size default=0.5>" |
|
<<" -ad=<predefined aruco dictionary name default=DICT_4X4_50> -adf=<aruco dictionary file default=None>" |
|
<<" <image list XML/YML file default=stereo_calib.xml>\n" << endl; |
|
cout << "Available Aruco dictionaries: DICT_4X4_50, DICT_4X4_100, DICT_4X4_250, " |
|
<< "DICT_4X4_1000, DICT_5X5_50, DICT_5X5_100, DICT_5X5_250, DICT_5X5_1000, " |
|
<< "DICT_6X6_50, DICT_6X6_100, DICT_6X6_250, DICT_6X6_1000, DICT_7X7_50, " |
|
<< "DICT_7X7_100, DICT_7X7_250, DICT_7X7_1000, DICT_ARUCO_ORIGINAL, " |
|
<< "DICT_APRILTAG_16h5, DICT_APRILTAG_25h9, DICT_APRILTAG_36h10, DICT_APRILTAG_36h11\n"; |
|
|
|
return 0; |
|
} |
|
|
|
|
|
static void |
|
StereoCalib(const vector<string>& imagelist, Size inputBoardSize, string type, float squareSize, float markerSize, cv::aruco::PredefinedDictionaryType arucoDict, string arucoDictFile, bool displayCorners = false, bool useCalibrated=true, bool showRectified=true) |
|
{ |
|
if( imagelist.size() % 2 != 0 ) |
|
{ |
|
cout << "Error: the image list contains odd (non-even) number of elements\n"; |
|
return; |
|
} |
|
|
|
const int maxScale = 2; |
|
// ARRAY AND VECTOR STORAGE: |
|
|
|
vector<vector<Point2f> > imagePoints[2]; |
|
vector<vector<Point3f> > objectPoints; |
|
Size imageSize; |
|
|
|
int i, j, k, nimages = (int)imagelist.size()/2; |
|
|
|
imagePoints[0].resize(nimages); |
|
imagePoints[1].resize(nimages); |
|
vector<string> goodImageList; |
|
|
|
Size boardSizeInnerCorners, boardSizeUnits; |
|
if (type == "chessboard") { |
|
//chess board pattern boardSize is given in inner corners |
|
boardSizeInnerCorners = inputBoardSize; |
|
boardSizeUnits.height = inputBoardSize.height+1; |
|
boardSizeUnits.width = inputBoardSize.width+1; |
|
} |
|
else if (type == "charucoboard") { |
|
//ChArUco board pattern boardSize is given in squares units |
|
boardSizeUnits = inputBoardSize; |
|
boardSizeInnerCorners.width = inputBoardSize.width - 1; |
|
boardSizeInnerCorners.height = inputBoardSize.height - 1; |
|
} |
|
else { |
|
std::cout << "unknown pattern type " << type << "\n"; |
|
return; |
|
} |
|
|
|
cv::aruco::Dictionary dictionary; |
|
if (arucoDictFile == "None") { |
|
dictionary = cv::aruco::getPredefinedDictionary(arucoDict); |
|
} |
|
else { |
|
cv::FileStorage dict_file(arucoDictFile, cv::FileStorage::Mode::READ); |
|
cv::FileNode fn(dict_file.root()); |
|
dictionary.readDictionary(fn); |
|
} |
|
cv::aruco::CharucoBoard ch_board(boardSizeUnits, squareSize, markerSize, dictionary); |
|
cv::aruco::CharucoDetector ch_detector(ch_board); |
|
std::vector<int> markerIds; |
|
|
|
for( i = j = 0; i < nimages; i++ ) |
|
{ |
|
for( k = 0; k < 2; k++ ) |
|
{ |
|
const string& filename = imagelist[i*2+k]; |
|
Mat img = imread(filename, IMREAD_GRAYSCALE); |
|
if(img.empty()) |
|
break; |
|
if( imageSize == Size() ) |
|
imageSize = img.size(); |
|
else if( img.size() != imageSize ) |
|
{ |
|
cout << "The image " << filename << " has the size different from the first image size. Skipping the pair\n"; |
|
break; |
|
} |
|
bool found = false; |
|
vector<Point2f>& corners = imagePoints[k][j]; |
|
for( int scale = 1; scale <= maxScale; scale++ ) |
|
{ |
|
Mat timg; |
|
if( scale == 1 ) |
|
timg = img; |
|
else |
|
resize(img, timg, Size(), scale, scale, INTER_LINEAR_EXACT); |
|
|
|
if (type == "chessboard") { |
|
found = findChessboardCorners(timg, boardSizeInnerCorners, corners, |
|
CALIB_CB_ADAPTIVE_THRESH | CALIB_CB_NORMALIZE_IMAGE); |
|
} |
|
else if (type == "charucoboard") { |
|
ch_detector.detectBoard(timg, corners, markerIds); |
|
found = corners.size() == (size_t) (boardSizeInnerCorners.height*boardSizeInnerCorners.width); |
|
} |
|
else { |
|
cout << "Error: unknown pattern " << type << "\n"; |
|
return; |
|
} |
|
if( found ) |
|
{ |
|
if( scale > 1 ) |
|
{ |
|
Mat cornersMat(corners); |
|
cornersMat *= 1./scale; |
|
} |
|
break; |
|
} |
|
} |
|
if( displayCorners ) |
|
{ |
|
cout << filename << endl; |
|
Mat cimg, cimg1; |
|
cvtColor(img, cimg, COLOR_GRAY2BGR); |
|
drawChessboardCorners(cimg, boardSizeInnerCorners, corners, found); |
|
double sf = 640./MAX(img.rows, img.cols); |
|
resize(cimg, cimg1, Size(), sf, sf, INTER_LINEAR_EXACT); |
|
imshow("corners", cimg1); |
|
char c = (char)waitKey(500); |
|
if( c == 27 || c == 'q' || c == 'Q' ) //Allow ESC to quit |
|
exit(-1); |
|
} |
|
else |
|
putchar('.'); |
|
if( !found ) |
|
break; |
|
if (type == "chessboard") { |
|
cornerSubPix(img, corners, Size(11, 11), Size(-1, -1), |
|
TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, |
|
30, 0.01)); |
|
} |
|
} |
|
if( k == 2 ) |
|
{ |
|
goodImageList.push_back(imagelist[i*2]); |
|
goodImageList.push_back(imagelist[i*2+1]); |
|
j++; |
|
} |
|
} |
|
cout << j << " pairs have been successfully detected.\n"; |
|
nimages = j; |
|
if( nimages < 2 ) |
|
{ |
|
cout << "Error: too little pairs to run the calibration\n"; |
|
return; |
|
} |
|
|
|
imagePoints[0].resize(nimages); |
|
imagePoints[1].resize(nimages); |
|
objectPoints.resize(nimages); |
|
|
|
for( i = 0; i < nimages; i++ ) |
|
{ |
|
for( j = 0; j < boardSizeInnerCorners.height; j++ ) |
|
for( k = 0; k < boardSizeInnerCorners.width; k++ ) |
|
objectPoints[i].push_back(Point3f(k*squareSize, j*squareSize, 0)); |
|
} |
|
|
|
cout << "Running stereo calibration ...\n"; |
|
|
|
Mat cameraMatrix[2], distCoeffs[2]; |
|
cameraMatrix[0] = initCameraMatrix2D(objectPoints,imagePoints[0],imageSize,0); |
|
cameraMatrix[1] = initCameraMatrix2D(objectPoints,imagePoints[1],imageSize,0); |
|
Mat R, T, E, F; |
|
|
|
double rms = stereoCalibrate(objectPoints, imagePoints[0], imagePoints[1], |
|
cameraMatrix[0], distCoeffs[0], |
|
cameraMatrix[1], distCoeffs[1], |
|
imageSize, R, T, E, F, |
|
CALIB_FIX_ASPECT_RATIO + |
|
CALIB_ZERO_TANGENT_DIST + |
|
CALIB_USE_INTRINSIC_GUESS + |
|
CALIB_SAME_FOCAL_LENGTH + |
|
CALIB_RATIONAL_MODEL + |
|
CALIB_FIX_K3 + CALIB_FIX_K4 + CALIB_FIX_K5, |
|
TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 100, 1e-5) ); |
|
cout << "done with RMS error=" << rms << endl; |
|
|
|
// CALIBRATION QUALITY CHECK |
|
// because the output fundamental matrix implicitly |
|
// includes all the output information, |
|
// we can check the quality of calibration using the |
|
// epipolar geometry constraint: m2^t*F*m1=0 |
|
double err = 0; |
|
int npoints = 0; |
|
vector<Vec3f> lines[2]; |
|
for( i = 0; i < nimages; i++ ) |
|
{ |
|
int npt = (int)imagePoints[0][i].size(); |
|
Mat imgpt[2]; |
|
for( k = 0; k < 2; k++ ) |
|
{ |
|
imgpt[k] = Mat(imagePoints[k][i]); |
|
undistortPoints(imgpt[k], imgpt[k], cameraMatrix[k], distCoeffs[k], Mat(), cameraMatrix[k]); |
|
computeCorrespondEpilines(imgpt[k], k+1, F, lines[k]); |
|
} |
|
for( j = 0; j < npt; j++ ) |
|
{ |
|
double errij = fabs(imagePoints[0][i][j].x*lines[1][j][0] + |
|
imagePoints[0][i][j].y*lines[1][j][1] + lines[1][j][2]) + |
|
fabs(imagePoints[1][i][j].x*lines[0][j][0] + |
|
imagePoints[1][i][j].y*lines[0][j][1] + lines[0][j][2]); |
|
err += errij; |
|
} |
|
npoints += npt; |
|
} |
|
cout << "average epipolar err = " << err/npoints << endl; |
|
|
|
// save intrinsic parameters |
|
FileStorage fs("intrinsics.yml", FileStorage::WRITE); |
|
if( fs.isOpened() ) |
|
{ |
|
fs << "M1" << cameraMatrix[0] << "D1" << distCoeffs[0] << |
|
"M2" << cameraMatrix[1] << "D2" << distCoeffs[1]; |
|
fs.release(); |
|
} |
|
else |
|
cout << "Error: can not save the intrinsic parameters\n"; |
|
|
|
Mat R1, R2, P1, P2, Q; |
|
Rect validRoi[2]; |
|
|
|
stereoRectify(cameraMatrix[0], distCoeffs[0], |
|
cameraMatrix[1], distCoeffs[1], |
|
imageSize, R, T, R1, R2, P1, P2, Q, |
|
CALIB_ZERO_DISPARITY, 1, imageSize, &validRoi[0], &validRoi[1]); |
|
|
|
fs.open("extrinsics.yml", FileStorage::WRITE); |
|
if( fs.isOpened() ) |
|
{ |
|
fs << "R" << R << "T" << T << "R1" << R1 << "R2" << R2 << "P1" << P1 << "P2" << P2 << "Q" << Q; |
|
fs.release(); |
|
} |
|
else |
|
cout << "Error: can not save the extrinsic parameters\n"; |
|
|
|
// OpenCV can handle left-right |
|
// or up-down camera arrangements |
|
bool isVerticalStereo = fabs(P2.at<double>(1, 3)) > fabs(P2.at<double>(0, 3)); |
|
|
|
// COMPUTE AND DISPLAY RECTIFICATION |
|
if( !showRectified ) |
|
return; |
|
|
|
Mat rmap[2][2]; |
|
// IF BY CALIBRATED (BOUGUET'S METHOD) |
|
if( useCalibrated ) |
|
{ |
|
// we already computed everything |
|
} |
|
// OR ELSE HARTLEY'S METHOD |
|
else |
|
// use intrinsic parameters of each camera, but |
|
// compute the rectification transformation directly |
|
// from the fundamental matrix |
|
{ |
|
vector<Point2f> allimgpt[2]; |
|
for( k = 0; k < 2; k++ ) |
|
{ |
|
for( i = 0; i < nimages; i++ ) |
|
std::copy(imagePoints[k][i].begin(), imagePoints[k][i].end(), back_inserter(allimgpt[k])); |
|
} |
|
F = findFundamentalMat(Mat(allimgpt[0]), Mat(allimgpt[1]), FM_8POINT, 0, 0); |
|
Mat H1, H2; |
|
stereoRectifyUncalibrated(Mat(allimgpt[0]), Mat(allimgpt[1]), F, imageSize, H1, H2, 3); |
|
|
|
R1 = cameraMatrix[0].inv()*H1*cameraMatrix[0]; |
|
R2 = cameraMatrix[1].inv()*H2*cameraMatrix[1]; |
|
P1 = cameraMatrix[0]; |
|
P2 = cameraMatrix[1]; |
|
} |
|
|
|
//Precompute maps for cv::remap() |
|
initUndistortRectifyMap(cameraMatrix[0], distCoeffs[0], R1, P1, imageSize, CV_16SC2, rmap[0][0], rmap[0][1]); |
|
initUndistortRectifyMap(cameraMatrix[1], distCoeffs[1], R2, P2, imageSize, CV_16SC2, rmap[1][0], rmap[1][1]); |
|
|
|
Mat canvas; |
|
double sf; |
|
int w, h; |
|
if( !isVerticalStereo ) |
|
{ |
|
sf = 600./MAX(imageSize.width, imageSize.height); |
|
w = cvRound(imageSize.width*sf); |
|
h = cvRound(imageSize.height*sf); |
|
canvas.create(h, w*2, CV_8UC3); |
|
} |
|
else |
|
{ |
|
sf = 300./MAX(imageSize.width, imageSize.height); |
|
w = cvRound(imageSize.width*sf); |
|
h = cvRound(imageSize.height*sf); |
|
canvas.create(h*2, w, CV_8UC3); |
|
} |
|
|
|
for( i = 0; i < nimages; i++ ) |
|
{ |
|
for( k = 0; k < 2; k++ ) |
|
{ |
|
Mat img = imread(goodImageList[i*2+k], IMREAD_GRAYSCALE), rimg, cimg; |
|
remap(img, rimg, rmap[k][0], rmap[k][1], INTER_LINEAR); |
|
cvtColor(rimg, cimg, COLOR_GRAY2BGR); |
|
Mat canvasPart = !isVerticalStereo ? canvas(Rect(w*k, 0, w, h)) : canvas(Rect(0, h*k, w, h)); |
|
resize(cimg, canvasPart, canvasPart.size(), 0, 0, INTER_AREA); |
|
if( useCalibrated ) |
|
{ |
|
Rect vroi(cvRound(validRoi[k].x*sf), cvRound(validRoi[k].y*sf), |
|
cvRound(validRoi[k].width*sf), cvRound(validRoi[k].height*sf)); |
|
rectangle(canvasPart, vroi, Scalar(0,0,255), 3, 8); |
|
} |
|
} |
|
|
|
if( !isVerticalStereo ) |
|
for( j = 0; j < canvas.rows; j += 16 ) |
|
line(canvas, Point(0, j), Point(canvas.cols, j), Scalar(0, 255, 0), 1, 8); |
|
else |
|
for( j = 0; j < canvas.cols; j += 16 ) |
|
line(canvas, Point(j, 0), Point(j, canvas.rows), Scalar(0, 255, 0), 1, 8); |
|
imshow("rectified", canvas); |
|
char c = (char)waitKey(); |
|
if( c == 27 || c == 'q' || c == 'Q' ) |
|
break; |
|
} |
|
} |
|
|
|
|
|
static bool readStringList( const string& filename, vector<string>& l ) |
|
{ |
|
l.resize(0); |
|
FileStorage fs(filename, FileStorage::READ); |
|
if( !fs.isOpened() ) |
|
return false; |
|
FileNode n = fs.getFirstTopLevelNode(); |
|
if( n.type() != FileNode::SEQ ) |
|
return false; |
|
FileNodeIterator it = n.begin(), it_end = n.end(); |
|
for( ; it != it_end; ++it ) |
|
l.push_back((string)*it); |
|
return true; |
|
} |
|
|
|
int main(int argc, char** argv) |
|
{ |
|
Size inputBoardSize; |
|
string imagelistfn; |
|
bool showRectified; |
|
cv::CommandLineParser parser(argc, argv, "{w|9|}{h|6|}{t|chessboard|}{s|1.0|}{ms|0.5|}{ad|DICT_4X4_50|}{adf|None|}{nr||}{help||}{@input|stereo_calib.xml|}"); |
|
if (parser.has("help")) |
|
return print_help(argv); |
|
showRectified = !parser.has("nr"); |
|
imagelistfn = samples::findFile(parser.get<string>("@input")); |
|
inputBoardSize.width = parser.get<int>("w"); |
|
inputBoardSize.height = parser.get<int>("h"); |
|
string type = parser.get<string>("t"); |
|
float squareSize = parser.get<float>("s"); |
|
float markerSize = parser.get<float>("ms"); |
|
string arucoDictName = parser.get<string>("ad"); |
|
string arucoDictFile = parser.get<string>("adf"); |
|
|
|
cv::aruco::PredefinedDictionaryType arucoDict; |
|
if (arucoDictName == "DICT_4X4_50") { arucoDict = cv::aruco::DICT_4X4_50; } |
|
else if (arucoDictName == "DICT_4X4_100") { arucoDict = cv::aruco::DICT_4X4_100; } |
|
else if (arucoDictName == "DICT_4X4_250") { arucoDict = cv::aruco::DICT_4X4_250; } |
|
else if (arucoDictName == "DICT_4X4_1000") { arucoDict = cv::aruco::DICT_4X4_1000; } |
|
else if (arucoDictName == "DICT_5X5_50") { arucoDict = cv::aruco::DICT_5X5_50; } |
|
else if (arucoDictName == "DICT_5X5_100") { arucoDict = cv::aruco::DICT_5X5_100; } |
|
else if (arucoDictName == "DICT_5X5_250") { arucoDict = cv::aruco::DICT_5X5_250; } |
|
else if (arucoDictName == "DICT_5X5_1000") { arucoDict = cv::aruco::DICT_5X5_1000; } |
|
else if (arucoDictName == "DICT_6X6_50") { arucoDict = cv::aruco::DICT_6X6_50; } |
|
else if (arucoDictName == "DICT_6X6_100") { arucoDict = cv::aruco::DICT_6X6_100; } |
|
else if (arucoDictName == "DICT_6X6_250") { arucoDict = cv::aruco::DICT_6X6_250; } |
|
else if (arucoDictName == "DICT_6X6_1000") { arucoDict = cv::aruco::DICT_6X6_1000; } |
|
else if (arucoDictName == "DICT_7X7_50") { arucoDict = cv::aruco::DICT_7X7_50; } |
|
else if (arucoDictName == "DICT_7X7_100") { arucoDict = cv::aruco::DICT_7X7_100; } |
|
else if (arucoDictName == "DICT_7X7_250") { arucoDict = cv::aruco::DICT_7X7_250; } |
|
else if (arucoDictName == "DICT_7X7_1000") { arucoDict = cv::aruco::DICT_7X7_1000; } |
|
else if (arucoDictName == "DICT_ARUCO_ORIGINAL") { arucoDict = cv::aruco::DICT_ARUCO_ORIGINAL; } |
|
else if (arucoDictName == "DICT_APRILTAG_16h5") { arucoDict = cv::aruco::DICT_APRILTAG_16h5; } |
|
else if (arucoDictName == "DICT_APRILTAG_25h9") { arucoDict = cv::aruco::DICT_APRILTAG_25h9; } |
|
else if (arucoDictName == "DICT_APRILTAG_36h10") { arucoDict = cv::aruco::DICT_APRILTAG_36h10; } |
|
else if (arucoDictName == "DICT_APRILTAG_36h11") { arucoDict = cv::aruco::DICT_APRILTAG_36h11; } |
|
else { |
|
cout << "incorrect name of aruco dictionary \n"; |
|
return 1; |
|
} |
|
|
|
if (!parser.check()) |
|
{ |
|
parser.printErrors(); |
|
return 1; |
|
} |
|
vector<string> imagelist; |
|
bool ok = readStringList(imagelistfn, imagelist); |
|
if(!ok || imagelist.empty()) |
|
{ |
|
cout << "can not open " << imagelistfn << " or the string list is empty" << endl; |
|
return print_help(argv); |
|
} |
|
|
|
StereoCalib(imagelist, inputBoardSize, type, squareSize, markerSize, arucoDict, arucoDictFile, false, true, showRectified); |
|
return 0; |
|
}
|
|
|