Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

342 lines
15 KiB

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html
#include "opencv2/calib3d.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/imgproc.hpp"
#include <vector>
#include <iostream>
#include <fstream>
using namespace cv;
static double getError2EpipLines (const Mat &F, const Mat &pts1, const Mat &pts2, const Mat &mask) {
Mat points1, points2;
vconcat(pts1, Mat::ones(1, pts1.cols, pts1.type()), points1);
vconcat(pts2, Mat::ones(1, pts2.cols, pts2.type()), points2);
double mean_error = 0;
for (int pt = 0; pt < (int) mask.total(); pt++)
if (mask.at<uchar>(pt)) {
const Mat l2 = F * points1.col(pt);
const Mat l1 = F.t() * points2.col(pt);
mean_error += (fabs(points1.col(pt).dot(l1)) / sqrt(pow(l1.at<double>(0), 2) + pow(l1.at<double>(1), 2)) +
fabs(points2.col(pt).dot(l2) / sqrt(pow(l2.at<double>(0), 2) + pow(l2.at<double>(1), 2)))) / 2;
}
return mean_error / mask.total();
}
static int sgn(double val) { return (0 < val) - (val < 0); }
/*
* @points3d - vector of Point3 or Mat of size Nx3
* @planes - vector of found planes
* @labels - vector of size point3d. Every point which has non-zero label is classified to this plane.
*/
static void getPlanes (InputArray points3d_, std::vector<int> &labels, std::vector<Vec4d> &planes, int desired_num_planes, double thr_, double conf_, int max_iters_) {
Mat points3d = points3d_.getMat();
points3d.convertTo(points3d, CV_64F); // convert points to have double precision
if (points3d_.isVector())
points3d = Mat((int)points3d.total(), 3, CV_64F, points3d.data);
else {
if (points3d.type() != CV_64F)
points3d = points3d.reshape(1, (int)points3d.total()); // convert point to have 1 channel
if (points3d.rows < points3d.cols)
transpose(points3d, points3d); // transpose so points will be in rows
CV_CheckEQ(points3d.cols, 3, "Invalid dimension of point");
}
/*
* 3D plane fitting with RANSAC
* @best_model contains coefficients [a b c d] s.t. ax + by + cz = d
*
*/
auto plane_ransac = [] (const Mat &pts, double thr, double conf, int max_iters, Vec4d &best_model, std::vector<bool> &inliers) {
const int pts_size = pts.rows, max_lo_inliers = 15, max_lo_iters = 10;
int best_inls = 0;
if (pts_size < 3) return false;
RNG rng;
const auto * const points = (double *) pts.data;
std::vector<int> min_sample(3);
inliers = std::vector<bool>(pts_size);
const double log_conf = log(1-conf);
Vec4d model, lo_model;
std::vector<int> random_pool (pts_size);
for (int p = 0; p < pts_size; p++)
random_pool[p] = p;
// estimate plane coefficients using covariance matrix
auto estimate = [&] (const std::vector<int> &sample, Vec4d &model_) {
// https://www.ilikebigbits.com/2017_09_25_plane_from_points_2.html
const int n = static_cast<int>(sample.size());
if (n < 3) return false;
double sum_x = 0, sum_y = 0, sum_z = 0;
for (int s : sample) {
sum_x += points[3*s ];
sum_y += points[3*s+1];
sum_z += points[3*s+2];
}
const double c_x = sum_x / n, c_y = sum_y / n, c_z = sum_z / n;
double xx = 0, yy = 0, zz = 0, xy = 0, xz = 0, yz = 0;
for (int s : sample) {
const double x_ = points[3*s] - c_x, y_ = points[3*s+1] - c_y, z_ = points[3*s+2] - c_z;
xx += x_*x_; yy += y_*y_; zz += z_*z_; xy += x_*y_; yz += y_*z_; xz += x_*z_;
}
xx /= n; yy /= n; zz /= n; xy /= n; yz /= n; xz /= n;
Vec3d weighted_normal(0,0,0);
const double det_x = yy*zz - yz*yz, det_y = xx*zz - xz*xz, det_z = xx*yy - xy*xy;
Vec3d axis_x (det_x, xz*xz-xy*zz, xy*yz-xz*yy);
Vec3d axis_y (xz*yz-xy*zz, det_y, xy*xz-yz*xx);
Vec3d axis_z (xy*yz-xz*yy, xy*xz-yz*xx, det_z);
weighted_normal += axis_x * det_x * det_x;
weighted_normal += sgn(weighted_normal.dot(axis_y)) * axis_y * det_y * det_y;
weighted_normal += sgn(weighted_normal.dot(axis_z)) * axis_z * det_z * det_z;
weighted_normal /= norm(weighted_normal);
if (std::isinf(weighted_normal(0)) ||
std::isinf(weighted_normal(1)) ||
std::isinf(weighted_normal(2))) return false;
// find plane model from normal and centroid
model_ = Vec4d(weighted_normal(0), weighted_normal(1), weighted_normal(2),
weighted_normal.dot(Vec3d(c_x, c_y, c_z)));
return true;
};
// calculate number of inliers
auto getInliers = [&] (const Vec4d &model_) {
const double a = model_(0), b = model_(1), c = model_(2), d = model_(3);
int num_inliers = 0;
std::fill(inliers.begin(), inliers.end(), false);
for (int p = 0; p < pts_size; p++) {
inliers[p] = fabs(a * points[3*p] + b * points[3*p+1] + c * points[3*p+2] - d) < thr;
if (inliers[p]) num_inliers++;
if (num_inliers + pts_size - p < best_inls) break;
}
return num_inliers;
};
// main RANSAC loop
for (int iters = 0; iters < max_iters; iters++) {
// find minimal sample: 3 points
min_sample[0] = rng.uniform(0, pts_size);
min_sample[1] = rng.uniform(0, pts_size);
min_sample[2] = rng.uniform(0, pts_size);
if (! estimate(min_sample, model))
continue;
int num_inliers = getInliers(model);
if (num_inliers > best_inls) {
// store so-far-the-best
std::vector<bool> best_inliers = inliers;
// do Local Optimization
for (int lo_iter = 0; lo_iter < max_lo_iters; lo_iter++) {
std::vector<int> inliers_idx; inliers_idx.reserve(max_lo_inliers);
randShuffle(random_pool);
for (int p : random_pool) {
if (best_inliers[p]) {
inliers_idx.emplace_back(p);
if ((int)inliers_idx.size() >= max_lo_inliers)
break;
}
}
if (! estimate(inliers_idx, lo_model))
continue;
int lo_inls = getInliers(lo_model);
if (best_inls < lo_inls) {
best_model = lo_model;
best_inls = lo_inls;
best_inliers = inliers;
}
}
if (best_inls < num_inliers) {
best_model = model;
best_inls = num_inliers;
}
// update max iters
// because points are quite noisy we need more iterations
const double max_hyp = 3 * log_conf / log(1 - pow(double(best_inls) / pts_size, 3));
if (! std::isinf(max_hyp) && max_hyp < max_iters)
max_iters = static_cast<int>(max_hyp);
}
}
getInliers(best_model);
return best_inls != 0;
};
labels = std::vector<int>(points3d.rows, 0);
Mat pts3d_plane_fit = points3d.clone();
// keep array of indices of points corresponding to original points3d
std::vector<int> to_orig_pts_arr(pts3d_plane_fit.rows);
for (int i = 0; i < (int) to_orig_pts_arr.size(); i++)
to_orig_pts_arr[i] = i;
for (int num_planes = 1; num_planes <= desired_num_planes; num_planes++) {
Vec4d model;
std::vector<bool> inl;
if (!plane_ransac(pts3d_plane_fit, thr_, conf_, max_iters_, model, inl))
break;
planes.emplace_back(model);
const int pts3d_size = pts3d_plane_fit.rows;
pts3d_plane_fit = Mat();
pts3d_plane_fit.reserve(points3d.rows);
int cnt = 0;
for (int p = 0; p < pts3d_size; p++) {
if (! inl[p]) {
// if point is not inlier to found plane - add it to next run
to_orig_pts_arr[cnt] = to_orig_pts_arr[p];
pts3d_plane_fit.push_back(points3d.row(to_orig_pts_arr[cnt]));
cnt++;
} else labels[to_orig_pts_arr[p]] = num_planes; // otherwise label this point
}
}
}
int main(int args, char** argv) {
std::string data_file, image_dir;
if (args < 3) {
CV_Error(Error::StsBadArg,
"Path to data file and directory to image files are missing!\nData file must have"
" format:\n--------------\n image_name_1\nimage_name_2\nk11 k12 k13\n0 k22 k23\n"
"0 0 1\n--------------\nIf image_name_{1,2} are not in the same directory as "
"the data file then add argument with directory to image files.\nFor example: "
"./essential_mat_reconstr essential_mat_data.txt ./");
} else {
data_file = argv[1];
image_dir = argv[2];
}
std::ifstream file(data_file, std::ios_base::in);
CV_CheckEQ((int)file.is_open(), 1, "Data file is not found!");
std::string filename1, filename2;
std::getline(file, filename1);
std::getline(file, filename2);
Mat image1 = imread(image_dir+filename1);
Mat image2 = imread(image_dir+filename2);
CV_CheckEQ((int)image1.empty(), 0, "Image 1 is not found!");
CV_CheckEQ((int)image2.empty(), 0, "Image 2 is not found!");
// read calibration
Matx33d K;
for (int i = 0; i < 3; i++)
for (int j = 0; j < 3; j++)
file >> K(i,j);
file.close();
Mat descriptors1, descriptors2;
std::vector<KeyPoint> keypoints1, keypoints2;
// detect points with SIFT
Ptr<SIFT> detector = SIFT::create();
detector->detect(image1, keypoints1);
detector->detect(image2, keypoints2);
detector->compute(image1, keypoints1, descriptors1);
detector->compute(image2, keypoints2, descriptors2);
FlannBasedMatcher matcher(makePtr<flann::KDTreeIndexParams>(5), makePtr<flann::SearchParams>(32));
// get k=2 best match that we can apply ratio test explained by D.Lowe
std::vector<std::vector<DMatch>> matches_vector;
matcher.knnMatch(descriptors1, descriptors2, matches_vector, 2);
// filter keypoints with Lowe ratio test
std::vector<Point2d> pts1, pts2;
pts1.reserve(matches_vector.size()); pts2.reserve(matches_vector.size());
for (const auto &m : matches_vector) {
// compare best and second match using Lowe ratio test
if (m[0].distance / m[1].distance < 0.75) {
pts1.emplace_back(keypoints1[m[0].queryIdx].pt);
pts2.emplace_back(keypoints2[m[0].trainIdx].pt);
}
}
Mat inliers;
const int pts_size = (int) pts1.size();
const auto begin_time = std::chrono::steady_clock::now();
// fine essential matrix
const Mat E = findEssentialMat(pts1, pts2, Mat(K), RANSAC, 0.99, 1.0, inliers);
std::cout << "RANSAC essential matrix time " << std::chrono::duration_cast<std::chrono::microseconds>
(std::chrono::steady_clock::now() - begin_time).count() <<
"mcs.\nNumber of inliers " << countNonZero(inliers) << "\n";
Mat points1 = Mat((int)pts1.size(), 2, CV_64F, pts1.data());
Mat points2 = Mat((int)pts2.size(), 2, CV_64F, pts2.data());
points1 = points1.t(); points2 = points2.t();
std::cout << "Mean error to epipolar lines " <<
getError2EpipLines(K.inv().t() * E * K.inv(), points1, points2, inliers) << "\n";
// decompose essential into rotation and translation
Mat R1, R2, t;
decomposeEssentialMat(E, R1, R2, t);
// Create two relative pose
// P1 = K [ I | 0 ]
// P2 = K [R{1,2} | {+-}t]
Mat P1;
hconcat(K, Vec3d::zeros(), P1);
std::vector<Mat> P2s(4);
hconcat(K * R1, K * t, P2s[0]);
hconcat(K * R1, -K * t, P2s[1]);
hconcat(K * R2, K * t, P2s[2]);
hconcat(K * R2, -K * t, P2s[3]);
// find objects point by enumerating over 4 different projection matrices of second camera
// vector to keep object points
std::vector<std::vector<Vec3d>> obj_pts_per_cam(4);
// vector to keep indices of image points corresponding to object points
std::vector<std::vector<int>> img_idxs_per_cam(4);
int cam_idx = 0, best_cam_idx = 0, max_obj_pts = 0;
for (const auto &P2 : P2s) {
obj_pts_per_cam[cam_idx].reserve(pts_size);
img_idxs_per_cam[cam_idx].reserve(pts_size);
for (int i = 0; i < pts_size; i++) {
// process only inliers
if (! inliers.at<uchar>(i))
continue;
Vec4d obj_pt;
// find object point using triangulation
triangulatePoints(P1, P2, points1.col(i), points2.col(i), obj_pt);
obj_pt /= obj_pt(3); // normalize 4d point
if (obj_pt(2) > 0) { // check if projected point has positive depth
obj_pts_per_cam[cam_idx].emplace_back(Vec3d(obj_pt(0), obj_pt(1), obj_pt(2)));
img_idxs_per_cam[cam_idx].emplace_back(i);
}
}
if (max_obj_pts < (int) obj_pts_per_cam[cam_idx].size()) {
max_obj_pts = (int) obj_pts_per_cam[cam_idx].size();
best_cam_idx = cam_idx;
}
cam_idx++;
}
std::cout << "Number of object points " << max_obj_pts << "\n";
const int circle_sz = 7;
// draw image points that are inliers on two images
std::vector<int> labels;
std::vector<Vec4d> planes;
getPlanes (obj_pts_per_cam[best_cam_idx], labels, planes, 4, 0.002, 0.99, 10000);
const int num_found_planes = (int) planes.size();
RNG rng;
std::vector<Scalar> plane_colors (num_found_planes);
for (int pl = 0; pl < num_found_planes; pl++)
plane_colors[pl] = Scalar (rng.uniform(0,256), rng.uniform(0,256), rng.uniform(0,256));
for (int obj_pt = 0; obj_pt < max_obj_pts; obj_pt++) {
const int pt = img_idxs_per_cam[best_cam_idx][obj_pt];
if (labels[obj_pt] > 0) { // plot plane points
circle (image1, pts1[pt], circle_sz, plane_colors[labels[obj_pt]-1], -1);
circle (image2, pts2[pt], circle_sz, plane_colors[labels[obj_pt]-1], -1);
} else { // plot inliers
circle (image1, pts1[pt], circle_sz, Scalar(0,0,0), -1);
circle (image2, pts2[pt], circle_sz, Scalar(0,0,0), -1);
}
}
// concatenate two images
hconcat(image1, image2, image1);
const int new_img_size = 1200 * 800; // for example
// resize with the same aspect ratio
resize(image1, image1, Size((int)sqrt ((double) image1.cols * new_img_size / image1.rows),
(int)sqrt ((double) image1.rows * new_img_size / image1.cols)));
imshow("image 1-2", image1);
imwrite("planes.png", image1);
waitKey(0);
}