Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
138 lines
5.5 KiB
138 lines
5.5 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// Intel License Agreement |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of Intel Corporation may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
|
|
void cvReleaseBGStatModel( CvBGStatModel** bg_model ) |
|
{ |
|
if( bg_model && *bg_model && (*bg_model)->release ) |
|
(*bg_model)->release( bg_model ); |
|
} |
|
|
|
int cvUpdateBGStatModel( IplImage* current_frame, |
|
CvBGStatModel* bg_model, |
|
double learningRate ) |
|
{ |
|
return bg_model && bg_model->update ? bg_model->update( current_frame, bg_model, learningRate ) : 0; |
|
} |
|
|
|
|
|
// Function cvRefineForegroundMaskBySegm preforms FG post-processing based on segmentation |
|
// (all pixels of the segment will be classified as FG if majority of pixels of the region are FG). |
|
// parameters: |
|
// segments - pointer to result of segmentation (for example MeanShiftSegmentation) |
|
// bg_model - pointer to CvBGStatModel structure |
|
CV_IMPL void cvRefineForegroundMaskBySegm( CvSeq* segments, CvBGStatModel* bg_model ) |
|
{ |
|
IplImage* tmp_image = cvCreateImage(cvSize(bg_model->foreground->width,bg_model->foreground->height), |
|
IPL_DEPTH_8U, 1); |
|
for( ; segments; segments = ((CvSeq*)segments)->h_next ) |
|
{ |
|
CvSeq seq = *segments; |
|
seq.v_next = seq.h_next = NULL; |
|
cvZero(tmp_image); |
|
cvDrawContours( tmp_image, &seq, CV_RGB(0, 0, 255), CV_RGB(0, 0, 255), 10, -1); |
|
int num1 = cvCountNonZero(tmp_image); |
|
cvAnd(tmp_image, bg_model->foreground, tmp_image); |
|
int num2 = cvCountNonZero(tmp_image); |
|
if( num2 > num1*0.5 ) |
|
cvDrawContours( bg_model->foreground, &seq, CV_RGB(0, 0, 255), CV_RGB(0, 0, 255), 10, -1); |
|
else |
|
cvDrawContours( bg_model->foreground, &seq, CV_RGB(0, 0, 0), CV_RGB(0, 0, 0), 10, -1); |
|
} |
|
cvReleaseImage(&tmp_image); |
|
} |
|
|
|
|
|
|
|
CV_IMPL CvSeq* |
|
cvSegmentFGMask( CvArr* _mask, int poly1Hull0, float perimScale, |
|
CvMemStorage* storage, CvPoint offset ) |
|
{ |
|
CvMat mstub, *mask = cvGetMat( _mask, &mstub ); |
|
CvMemStorage* tempStorage = storage ? storage : cvCreateMemStorage(); |
|
CvSeq *contours, *c; |
|
int nContours = 0; |
|
CvContourScanner scanner; |
|
|
|
// clean up raw mask |
|
cvMorphologyEx( mask, mask, 0, 0, CV_MOP_OPEN, 1 ); |
|
cvMorphologyEx( mask, mask, 0, 0, CV_MOP_CLOSE, 1 ); |
|
|
|
// find contours around only bigger regions |
|
scanner = cvStartFindContours( mask, tempStorage, |
|
sizeof(CvContour), CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE, offset ); |
|
|
|
while( (c = cvFindNextContour( scanner )) != 0 ) |
|
{ |
|
double len = cvContourPerimeter( c ); |
|
double q = (mask->rows + mask->cols)/perimScale; // calculate perimeter len threshold |
|
if( len < q ) //Get rid of blob if it's perimeter is too small |
|
cvSubstituteContour( scanner, 0 ); |
|
else //Smooth it's edges if it's large enough |
|
{ |
|
CvSeq* newC; |
|
if( poly1Hull0 ) //Polygonal approximation of the segmentation |
|
newC = cvApproxPoly( c, sizeof(CvContour), tempStorage, CV_POLY_APPROX_DP, 2, 0 ); |
|
else //Convex Hull of the segmentation |
|
newC = cvConvexHull2( c, tempStorage, CV_CLOCKWISE, 1 ); |
|
cvSubstituteContour( scanner, newC ); |
|
nContours++; |
|
} |
|
} |
|
contours = cvEndFindContours( &scanner ); |
|
|
|
// paint the found regions back into the image |
|
cvZero( mask ); |
|
for( c=contours; c != 0; c = c->h_next ) |
|
cvDrawContours( mask, c, cvScalarAll(255), cvScalarAll(0), -1, CV_FILLED, 8, |
|
cvPoint(-offset.x,-offset.y)); |
|
|
|
if( tempStorage != storage ) |
|
{ |
|
cvReleaseMemStorage( &tempStorage ); |
|
contours = 0; |
|
} |
|
|
|
return contours; |
|
} |
|
|
|
/* End of file. */ |
|
|
|
|