Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
725 lines
26 KiB
725 lines
26 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved. |
|
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// @Authors |
|
// Jin Ma, jin@multicorewareinc.com |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
// S. Farsiu , D. Robinson, M. Elad, P. Milanfar. Fast and robust multiframe super resolution. |
|
// Dennis Mitzel, Thomas Pock, Thomas Schoenemann, Daniel Cremers. Video Super Resolution using Duality Based TV-L1 Optical Flow. |
|
|
|
#include "precomp.hpp" |
|
|
|
#if !defined(HAVE_OPENCL) || !defined(HAVE_OPENCV_OCL) |
|
|
|
cv::Ptr<cv::superres::SuperResolution> cv::superres::createSuperResolution_BTVL1_OCL() |
|
{ |
|
CV_Error(cv::Error::StsNotImplemented, "The called functionality is disabled for current build or platform"); |
|
return Ptr<SuperResolution>(); |
|
} |
|
|
|
#else |
|
#include "opencl_kernels.hpp" |
|
|
|
using namespace std; |
|
using namespace cv; |
|
using namespace cv::ocl; |
|
using namespace cv::superres; |
|
using namespace cv::superres::detail; |
|
|
|
static ProgramEntry superres_btvl1 = cv::ocl::superres::superres_btvl1; |
|
|
|
namespace cv |
|
{ |
|
namespace ocl |
|
{ |
|
float* btvWeights_ = NULL; |
|
size_t btvWeights_size = 0; |
|
oclMat c_btvRegWeights; |
|
} |
|
} |
|
|
|
namespace btv_l1_device_ocl |
|
{ |
|
void buildMotionMaps(const oclMat& forwardMotionX, const oclMat& forwardMotionY, |
|
const oclMat& backwardMotionX, const oclMat& bacwardMotionY, |
|
oclMat& forwardMapX, oclMat& forwardMapY, |
|
oclMat& backwardMapX, oclMat& backwardMapY); |
|
|
|
void upscale(const oclMat& src, oclMat& dst, int scale); |
|
|
|
void diffSign(const oclMat& src1, const oclMat& src2, oclMat& dst); |
|
|
|
void calcBtvRegularization(const oclMat& src, oclMat& dst, int ksize); |
|
} |
|
|
|
void btv_l1_device_ocl::buildMotionMaps(const oclMat& forwardMotionX, const oclMat& forwardMotionY, |
|
const oclMat& backwardMotionX, const oclMat& backwardMotionY, |
|
oclMat& forwardMapX, oclMat& forwardMapY, |
|
oclMat& backwardMapX, oclMat& backwardMapY) |
|
{ |
|
Context* clCxt = Context::getContext(); |
|
|
|
size_t local_thread[] = {32, 8, 1}; |
|
size_t global_thread[] = {forwardMapX.cols, forwardMapX.rows, 1}; |
|
|
|
int forwardMotionX_step = (int)(forwardMotionX.step/forwardMotionX.elemSize()); |
|
int forwardMotionY_step = (int)(forwardMotionY.step/forwardMotionY.elemSize()); |
|
int backwardMotionX_step = (int)(backwardMotionX.step/backwardMotionX.elemSize()); |
|
int backwardMotionY_step = (int)(backwardMotionY.step/backwardMotionY.elemSize()); |
|
int forwardMapX_step = (int)(forwardMapX.step/forwardMapX.elemSize()); |
|
int forwardMapY_step = (int)(forwardMapY.step/forwardMapY.elemSize()); |
|
int backwardMapX_step = (int)(backwardMapX.step/backwardMapX.elemSize()); |
|
int backwardMapY_step = (int)(backwardMapY.step/backwardMapY.elemSize()); |
|
|
|
String kernel_name = "buildMotionMapsKernel"; |
|
vector< pair<size_t, const void*> > args; |
|
|
|
args.push_back(make_pair(sizeof(cl_mem), (void*)&forwardMotionX.data)); |
|
args.push_back(make_pair(sizeof(cl_mem), (void*)&forwardMotionY.data)); |
|
args.push_back(make_pair(sizeof(cl_mem), (void*)&backwardMotionX.data)); |
|
args.push_back(make_pair(sizeof(cl_mem), (void*)&backwardMotionY.data)); |
|
args.push_back(make_pair(sizeof(cl_mem), (void*)&forwardMapX.data)); |
|
args.push_back(make_pair(sizeof(cl_mem), (void*)&forwardMapY.data)); |
|
args.push_back(make_pair(sizeof(cl_mem), (void*)&backwardMapX.data)); |
|
args.push_back(make_pair(sizeof(cl_mem), (void*)&backwardMapY.data)); |
|
|
|
args.push_back(make_pair(sizeof(cl_int), (void*)&forwardMotionX.rows)); |
|
args.push_back(make_pair(sizeof(cl_int), (void*)&forwardMotionY.cols)); |
|
|
|
args.push_back(make_pair(sizeof(cl_int), (void*)&forwardMotionX_step)); |
|
args.push_back(make_pair(sizeof(cl_int), (void*)&forwardMotionY_step)); |
|
args.push_back(make_pair(sizeof(cl_int), (void*)&backwardMotionX_step)); |
|
args.push_back(make_pair(sizeof(cl_int), (void*)&backwardMotionY_step)); |
|
args.push_back(make_pair(sizeof(cl_int), (void*)&forwardMapX_step)); |
|
args.push_back(make_pair(sizeof(cl_int), (void*)&forwardMapY_step)); |
|
args.push_back(make_pair(sizeof(cl_int), (void*)&backwardMapX_step)); |
|
args.push_back(make_pair(sizeof(cl_int), (void*)&backwardMapY_step)); |
|
|
|
openCLExecuteKernel(clCxt, &superres_btvl1, kernel_name, global_thread, local_thread, args, -1, -1); |
|
} |
|
|
|
void btv_l1_device_ocl::upscale(const oclMat& src, oclMat& dst, int scale) |
|
{ |
|
Context* clCxt = Context::getContext(); |
|
|
|
size_t local_thread[] = {32, 8, 1}; |
|
size_t global_thread[] = {src.cols, src.rows, 1}; |
|
|
|
int src_step = (int)(src.step/src.elemSize()); |
|
int dst_step = (int)(dst.step/dst.elemSize()); |
|
|
|
String kernel_name = "upscaleKernel"; |
|
vector< pair<size_t, const void*> > args; |
|
|
|
int cn = src.oclchannels(); |
|
|
|
args.push_back(make_pair(sizeof(cl_mem), (void*)&src.data)); |
|
args.push_back(make_pair(sizeof(cl_mem), (void*)&dst.data)); |
|
args.push_back(make_pair(sizeof(cl_int), (void*)&src_step)); |
|
args.push_back(make_pair(sizeof(cl_int), (void*)&dst_step)); |
|
args.push_back(make_pair(sizeof(cl_int), (void*)&src.rows)); |
|
args.push_back(make_pair(sizeof(cl_int), (void*)&src.cols)); |
|
args.push_back(make_pair(sizeof(cl_int), (void*)&scale)); |
|
args.push_back(make_pair(sizeof(cl_int), (void*)&cn)); |
|
|
|
openCLExecuteKernel(clCxt, &superres_btvl1, kernel_name, global_thread, local_thread, args, -1, -1); |
|
|
|
} |
|
|
|
void btv_l1_device_ocl::diffSign(const oclMat& src1, const oclMat& src2, oclMat& dst) |
|
{ |
|
Context* clCxt = Context::getContext(); |
|
|
|
oclMat src1_ = src1.reshape(1); |
|
oclMat src2_ = src2.reshape(1); |
|
oclMat dst_ = dst.reshape(1); |
|
|
|
int src1_step = (int)(src1_.step/src1_.elemSize()); |
|
int src2_step = (int)(src2_.step/src2_.elemSize()); |
|
int dst_step = (int)(dst_.step/dst_.elemSize()); |
|
|
|
size_t local_thread[] = {32, 8, 1}; |
|
size_t global_thread[] = {src1_.cols, src1_.rows, 1}; |
|
|
|
String kernel_name = "diffSignKernel"; |
|
vector< pair<size_t, const void*> > args; |
|
|
|
args.push_back(make_pair(sizeof(cl_mem), (void*)&src1_.data)); |
|
args.push_back(make_pair(sizeof(cl_mem), (void*)&src2_.data)); |
|
args.push_back(make_pair(sizeof(cl_mem), (void*)&dst_.data)); |
|
|
|
args.push_back(make_pair(sizeof(cl_int), (void*)&src1_.rows)); |
|
args.push_back(make_pair(sizeof(cl_int), (void*)&src1_.cols)); |
|
args.push_back(make_pair(sizeof(cl_int), (void*)&dst_step)); |
|
args.push_back(make_pair(sizeof(cl_int), (void*)&src1_step)); |
|
args.push_back(make_pair(sizeof(cl_int), (void*)&src2_step)); |
|
|
|
openCLExecuteKernel(clCxt, &superres_btvl1, kernel_name, global_thread, local_thread, args, -1, -1); |
|
} |
|
|
|
void btv_l1_device_ocl::calcBtvRegularization(const oclMat& src, oclMat& dst, int ksize) |
|
{ |
|
Context* clCxt = Context::getContext(); |
|
|
|
oclMat src_ = src.reshape(1); |
|
oclMat dst_ = dst.reshape(1); |
|
|
|
size_t local_thread[] = {32, 8, 1}; |
|
size_t global_thread[] = {src.cols, src.rows, 1}; |
|
|
|
int src_step = (int)(src_.step/src_.elemSize()); |
|
int dst_step = (int)(dst_.step/dst_.elemSize()); |
|
|
|
String kernel_name = "calcBtvRegularizationKernel"; |
|
vector< pair<size_t, const void*> > args; |
|
|
|
int cn = src.oclchannels(); |
|
|
|
args.push_back(make_pair(sizeof(cl_mem), (void*)&src_.data)); |
|
args.push_back(make_pair(sizeof(cl_mem), (void*)&dst_.data)); |
|
args.push_back(make_pair(sizeof(cl_int), (void*)&src_step)); |
|
args.push_back(make_pair(sizeof(cl_int), (void*)&dst_step)); |
|
args.push_back(make_pair(sizeof(cl_int), (void*)&src.rows)); |
|
args.push_back(make_pair(sizeof(cl_int), (void*)&src.cols)); |
|
args.push_back(make_pair(sizeof(cl_int), (void*)&ksize)); |
|
args.push_back(make_pair(sizeof(cl_int), (void*)&cn)); |
|
args.push_back(make_pair(sizeof(cl_mem), (void*)&c_btvRegWeights.data)); |
|
|
|
openCLExecuteKernel(clCxt, &superres_btvl1, kernel_name, global_thread, local_thread, args, -1, -1); |
|
} |
|
|
|
namespace |
|
{ |
|
void calcRelativeMotions(const vector<pair<oclMat, oclMat> >& forwardMotions, const vector<pair<oclMat, oclMat> >& backwardMotions, |
|
vector<pair<oclMat, oclMat> >& relForwardMotions, vector<pair<oclMat, oclMat> >& relBackwardMotions, |
|
int baseIdx, Size size) |
|
{ |
|
const int count = static_cast<int>(forwardMotions.size()); |
|
|
|
relForwardMotions.resize(count); |
|
relForwardMotions[baseIdx].first.create(size, CV_32FC1); |
|
relForwardMotions[baseIdx].first.setTo(Scalar::all(0)); |
|
relForwardMotions[baseIdx].second.create(size, CV_32FC1); |
|
relForwardMotions[baseIdx].second.setTo(Scalar::all(0)); |
|
|
|
relBackwardMotions.resize(count); |
|
relBackwardMotions[baseIdx].first.create(size, CV_32FC1); |
|
relBackwardMotions[baseIdx].first.setTo(Scalar::all(0)); |
|
relBackwardMotions[baseIdx].second.create(size, CV_32FC1); |
|
relBackwardMotions[baseIdx].second.setTo(Scalar::all(0)); |
|
|
|
for (int i = baseIdx - 1; i >= 0; --i) |
|
{ |
|
ocl::add(relForwardMotions[i + 1].first, forwardMotions[i].first, relForwardMotions[i].first); |
|
ocl::add(relForwardMotions[i + 1].second, forwardMotions[i].second, relForwardMotions[i].second); |
|
|
|
ocl::add(relBackwardMotions[i + 1].first, backwardMotions[i + 1].first, relBackwardMotions[i].first); |
|
ocl::add(relBackwardMotions[i + 1].second, backwardMotions[i + 1].second, relBackwardMotions[i].second); |
|
} |
|
|
|
for (int i = baseIdx + 1; i < count; ++i) |
|
{ |
|
ocl::add(relForwardMotions[i - 1].first, backwardMotions[i].first, relForwardMotions[i].first); |
|
ocl::add(relForwardMotions[i - 1].second, backwardMotions[i].second, relForwardMotions[i].second); |
|
|
|
ocl::add(relBackwardMotions[i - 1].first, forwardMotions[i - 1].first, relBackwardMotions[i].first); |
|
ocl::add(relBackwardMotions[i - 1].second, forwardMotions[i - 1].second, relBackwardMotions[i].second); |
|
} |
|
} |
|
|
|
void upscaleMotions(const vector<pair<oclMat, oclMat> >& lowResMotions, vector<pair<oclMat, oclMat> >& highResMotions, int scale) |
|
{ |
|
highResMotions.resize(lowResMotions.size()); |
|
|
|
for (size_t i = 0; i < lowResMotions.size(); ++i) |
|
{ |
|
ocl::resize(lowResMotions[i].first, highResMotions[i].first, Size(), scale, scale, INTER_LINEAR); |
|
ocl::resize(lowResMotions[i].second, highResMotions[i].second, Size(), scale, scale, INTER_LINEAR); |
|
|
|
ocl::multiply(scale, highResMotions[i].first, highResMotions[i].first); |
|
ocl::multiply(scale, highResMotions[i].second, highResMotions[i].second); |
|
} |
|
} |
|
|
|
void buildMotionMaps(const pair<oclMat, oclMat>& forwardMotion, const pair<oclMat, oclMat>& backwardMotion, |
|
pair<oclMat, oclMat>& forwardMap, pair<oclMat, oclMat>& backwardMap) |
|
{ |
|
forwardMap.first.create(forwardMotion.first.size(), CV_32FC1); |
|
forwardMap.second.create(forwardMotion.first.size(), CV_32FC1); |
|
|
|
backwardMap.first.create(forwardMotion.first.size(), CV_32FC1); |
|
backwardMap.second.create(forwardMotion.first.size(), CV_32FC1); |
|
|
|
btv_l1_device_ocl::buildMotionMaps(forwardMotion.first, forwardMotion.second, |
|
backwardMotion.first, backwardMotion.second, |
|
forwardMap.first, forwardMap.second, |
|
backwardMap.first, backwardMap.second); |
|
} |
|
|
|
void upscale(const oclMat& src, oclMat& dst, int scale) |
|
{ |
|
CV_Assert( src.channels() == 1 || src.channels() == 3 || src.channels() == 4 ); |
|
|
|
btv_l1_device_ocl::upscale(src, dst, scale); |
|
} |
|
|
|
void diffSign(const oclMat& src1, const oclMat& src2, oclMat& dst) |
|
{ |
|
dst.create(src1.size(), src1.type()); |
|
|
|
btv_l1_device_ocl::diffSign(src1, src2, dst); |
|
} |
|
|
|
void calcBtvWeights(int btvKernelSize, double alpha, vector<float>& btvWeights) |
|
{ |
|
const size_t size = btvKernelSize * btvKernelSize; |
|
|
|
btvWeights.resize(size); |
|
|
|
const int ksize = (btvKernelSize - 1) / 2; |
|
const float alpha_f = static_cast<float>(alpha); |
|
|
|
for (int m = 0, ind = 0; m <= ksize; ++m) |
|
{ |
|
for (int l = ksize; l + m >= 0; --l, ++ind) |
|
btvWeights[ind] = pow(alpha_f, std::abs(m) + std::abs(l)); |
|
} |
|
|
|
btvWeights_ = &btvWeights[0]; |
|
btvWeights_size = size; |
|
Mat btvWeights_mheader(1, static_cast<int>(size), CV_32FC1, btvWeights_); |
|
c_btvRegWeights = btvWeights_mheader; |
|
} |
|
|
|
void calcBtvRegularization(const oclMat& src, oclMat& dst, int btvKernelSize) |
|
{ |
|
dst.create(src.size(), src.type()); |
|
|
|
const int ksize = (btvKernelSize - 1) / 2; |
|
|
|
btv_l1_device_ocl::calcBtvRegularization(src, dst, ksize); |
|
} |
|
|
|
class BTVL1_OCL_Base |
|
{ |
|
public: |
|
BTVL1_OCL_Base(); |
|
|
|
void process(const vector<oclMat>& src, oclMat& dst, |
|
const vector<pair<oclMat, oclMat> >& forwardMotions, const vector<pair<oclMat, oclMat> >& backwardMotions, |
|
int baseIdx); |
|
|
|
void collectGarbage(); |
|
|
|
protected: |
|
int scale_; |
|
int iterations_; |
|
double lambda_; |
|
double tau_; |
|
double alpha_; |
|
int btvKernelSize_; |
|
int blurKernelSize_; |
|
double blurSigma_; |
|
Ptr<DenseOpticalFlowExt> opticalFlow_; |
|
|
|
private: |
|
vector<Ptr<cv::ocl::FilterEngine_GPU> > filters_; |
|
int curBlurKernelSize_; |
|
double curBlurSigma_; |
|
int curSrcType_; |
|
|
|
vector<float> btvWeights_; |
|
int curBtvKernelSize_; |
|
double curAlpha_; |
|
|
|
vector<pair<oclMat, oclMat> > lowResForwardMotions_; |
|
vector<pair<oclMat, oclMat> > lowResBackwardMotions_; |
|
|
|
vector<pair<oclMat, oclMat> > highResForwardMotions_; |
|
vector<pair<oclMat, oclMat> > highResBackwardMotions_; |
|
|
|
vector<pair<oclMat, oclMat> > forwardMaps_; |
|
vector<pair<oclMat, oclMat> > backwardMaps_; |
|
|
|
oclMat highRes_; |
|
|
|
vector<oclMat> diffTerms_; |
|
oclMat a_, b_, c_, d_; |
|
oclMat regTerm_; |
|
}; |
|
|
|
BTVL1_OCL_Base::BTVL1_OCL_Base() |
|
{ |
|
scale_ = 4; |
|
iterations_ = 180; |
|
lambda_ = 0.03; |
|
tau_ = 1.3; |
|
alpha_ = 0.7; |
|
btvKernelSize_ = 7; |
|
blurKernelSize_ = 5; |
|
blurSigma_ = 0.0; |
|
opticalFlow_ = createOptFlow_Farneback_OCL(); |
|
|
|
curBlurKernelSize_ = -1; |
|
curBlurSigma_ = -1.0; |
|
curSrcType_ = -1; |
|
|
|
curBtvKernelSize_ = -1; |
|
curAlpha_ = -1.0; |
|
} |
|
|
|
void BTVL1_OCL_Base::process(const vector<oclMat>& src, oclMat& dst, |
|
const vector<pair<oclMat, oclMat> >& forwardMotions, const vector<pair<oclMat, oclMat> >& backwardMotions, |
|
int baseIdx) |
|
{ |
|
CV_Assert( scale_ > 1 ); |
|
CV_Assert( iterations_ > 0 ); |
|
CV_Assert( tau_ > 0.0 ); |
|
CV_Assert( alpha_ > 0.0 ); |
|
CV_Assert( btvKernelSize_ > 0 && btvKernelSize_ <= 16 ); |
|
CV_Assert( blurKernelSize_ > 0 ); |
|
CV_Assert( blurSigma_ >= 0.0 ); |
|
|
|
// update blur filter and btv weights |
|
|
|
if (filters_.size() != src.size() || blurKernelSize_ != curBlurKernelSize_ || blurSigma_ != curBlurSigma_ || src[0].type() != curSrcType_) |
|
{ |
|
filters_.resize(src.size()); |
|
for (size_t i = 0; i < src.size(); ++i) |
|
filters_[i] = cv::ocl::createGaussianFilter_GPU(src[0].type(), Size(blurKernelSize_, blurKernelSize_), blurSigma_); |
|
curBlurKernelSize_ = blurKernelSize_; |
|
curBlurSigma_ = blurSigma_; |
|
curSrcType_ = src[0].type(); |
|
} |
|
|
|
if (btvWeights_.empty() || btvKernelSize_ != curBtvKernelSize_ || alpha_ != curAlpha_) |
|
{ |
|
calcBtvWeights(btvKernelSize_, alpha_, btvWeights_); |
|
curBtvKernelSize_ = btvKernelSize_; |
|
curAlpha_ = alpha_; |
|
} |
|
|
|
// calc motions between input frames |
|
|
|
calcRelativeMotions(forwardMotions, backwardMotions, |
|
lowResForwardMotions_, lowResBackwardMotions_, |
|
baseIdx, src[0].size()); |
|
|
|
upscaleMotions(lowResForwardMotions_, highResForwardMotions_, scale_); |
|
upscaleMotions(lowResBackwardMotions_, highResBackwardMotions_, scale_); |
|
|
|
forwardMaps_.resize(highResForwardMotions_.size()); |
|
backwardMaps_.resize(highResForwardMotions_.size()); |
|
for (size_t i = 0; i < highResForwardMotions_.size(); ++i) |
|
{ |
|
buildMotionMaps(highResForwardMotions_[i], highResBackwardMotions_[i], forwardMaps_[i], backwardMaps_[i]); |
|
} |
|
// initial estimation |
|
|
|
const Size lowResSize = src[0].size(); |
|
const Size highResSize(lowResSize.width * scale_, lowResSize.height * scale_); |
|
|
|
ocl::resize(src[baseIdx], highRes_, highResSize, 0, 0, INTER_LINEAR); |
|
|
|
// iterations |
|
|
|
diffTerms_.resize(src.size()); |
|
bool d_inited = false; |
|
a_.create(highRes_.size(), highRes_.type()); |
|
b_.create(highRes_.size(), highRes_.type()); |
|
c_.create(lowResSize, highRes_.type()); |
|
d_.create(highRes_.rows, highRes_.cols, highRes_.type()); |
|
for (int i = 0; i < iterations_; ++i) |
|
{ |
|
if(!d_inited) |
|
{ |
|
d_.setTo(0); |
|
d_inited = true; |
|
} |
|
for (size_t k = 0; k < src.size(); ++k) |
|
{ |
|
diffTerms_[k].create(highRes_.size(), highRes_.type()); |
|
// a = M * Ih |
|
ocl::remap(highRes_, a_, backwardMaps_[k].first, backwardMaps_[k].second, INTER_NEAREST, BORDER_CONSTANT, Scalar()); |
|
// b = HM * Ih |
|
filters_[k]->apply(a_, b_, Rect(0,0,-1,-1)); |
|
// c = DHF * Ih |
|
ocl::resize(b_, c_, lowResSize, 0, 0, INTER_NEAREST); |
|
|
|
diffSign(src[k], c_, c_); |
|
|
|
// a = Dt * diff |
|
upscale(c_, d_, scale_); |
|
// b = HtDt * diff |
|
filters_[k]->apply(d_, b_, Rect(0,0,-1,-1)); |
|
// diffTerm = MtHtDt * diff |
|
ocl::remap(b_, diffTerms_[k], forwardMaps_[k].first, forwardMaps_[k].second, INTER_NEAREST, BORDER_CONSTANT, Scalar()); |
|
} |
|
|
|
if (lambda_ > 0) |
|
{ |
|
calcBtvRegularization(highRes_, regTerm_, btvKernelSize_); |
|
ocl::addWeighted(highRes_, 1.0, regTerm_, -tau_ * lambda_, 0.0, highRes_); |
|
} |
|
|
|
for (size_t k = 0; k < src.size(); ++k) |
|
{ |
|
ocl::addWeighted(highRes_, 1.0, diffTerms_[k], tau_, 0.0, highRes_); |
|
} |
|
} |
|
|
|
Rect inner(btvKernelSize_, btvKernelSize_, highRes_.cols - 2 * btvKernelSize_, highRes_.rows - 2 * btvKernelSize_); |
|
highRes_(inner).copyTo(dst); |
|
} |
|
|
|
void BTVL1_OCL_Base::collectGarbage() |
|
{ |
|
filters_.clear(); |
|
|
|
lowResForwardMotions_.clear(); |
|
lowResBackwardMotions_.clear(); |
|
|
|
highResForwardMotions_.clear(); |
|
highResBackwardMotions_.clear(); |
|
|
|
forwardMaps_.clear(); |
|
backwardMaps_.clear(); |
|
|
|
highRes_.release(); |
|
|
|
diffTerms_.clear(); |
|
a_.release(); |
|
b_.release(); |
|
c_.release(); |
|
regTerm_.release(); |
|
c_btvRegWeights.release(); |
|
} |
|
|
|
//////////////////////////////////////////////////////////// |
|
|
|
class BTVL1_OCL : public SuperResolution, private BTVL1_OCL_Base |
|
{ |
|
public: |
|
AlgorithmInfo* info() const; |
|
|
|
BTVL1_OCL(); |
|
|
|
void collectGarbage(); |
|
|
|
protected: |
|
void initImpl(Ptr<FrameSource>& frameSource); |
|
void processImpl(Ptr<FrameSource>& frameSource, OutputArray output); |
|
|
|
private: |
|
int temporalAreaRadius_; |
|
|
|
void readNextFrame(Ptr<FrameSource>& frameSource); |
|
void processFrame(int idx); |
|
|
|
oclMat curFrame_; |
|
oclMat prevFrame_; |
|
|
|
vector<oclMat> frames_; |
|
vector<pair<oclMat, oclMat> > forwardMotions_; |
|
vector<pair<oclMat, oclMat> > backwardMotions_; |
|
vector<oclMat> outputs_; |
|
|
|
int storePos_; |
|
int procPos_; |
|
int outPos_; |
|
|
|
vector<oclMat> srcFrames_; |
|
vector<pair<oclMat, oclMat> > srcForwardMotions_; |
|
vector<pair<oclMat, oclMat> > srcBackwardMotions_; |
|
oclMat finalOutput_; |
|
}; |
|
|
|
CV_INIT_ALGORITHM(BTVL1_OCL, "SuperResolution.BTVL1_OCL", |
|
obj.info()->addParam(obj, "scale", obj.scale_, false, 0, 0, "Scale factor."); |
|
obj.info()->addParam(obj, "iterations", obj.iterations_, false, 0, 0, "Iteration count."); |
|
obj.info()->addParam(obj, "tau", obj.tau_, false, 0, 0, "Asymptotic value of steepest descent method."); |
|
obj.info()->addParam(obj, "lambda", obj.lambda_, false, 0, 0, "Weight parameter to balance data term and smoothness term."); |
|
obj.info()->addParam(obj, "alpha", obj.alpha_, false, 0, 0, "Parameter of spacial distribution in Bilateral-TV."); |
|
obj.info()->addParam(obj, "btvKernelSize", obj.btvKernelSize_, false, 0, 0, "Kernel size of Bilateral-TV filter."); |
|
obj.info()->addParam(obj, "blurKernelSize", obj.blurKernelSize_, false, 0, 0, "Gaussian blur kernel size."); |
|
obj.info()->addParam(obj, "blurSigma", obj.blurSigma_, false, 0, 0, "Gaussian blur sigma."); |
|
obj.info()->addParam(obj, "temporalAreaRadius", obj.temporalAreaRadius_, false, 0, 0, "Radius of the temporal search area."); |
|
obj.info()->addParam<DenseOpticalFlowExt>(obj, "opticalFlow", obj.opticalFlow_, false, 0, 0, "Dense optical flow algorithm.")); |
|
|
|
BTVL1_OCL::BTVL1_OCL() |
|
{ |
|
temporalAreaRadius_ = 4; |
|
} |
|
|
|
void BTVL1_OCL::collectGarbage() |
|
{ |
|
curFrame_.release(); |
|
prevFrame_.release(); |
|
|
|
frames_.clear(); |
|
forwardMotions_.clear(); |
|
backwardMotions_.clear(); |
|
outputs_.clear(); |
|
|
|
srcFrames_.clear(); |
|
srcForwardMotions_.clear(); |
|
srcBackwardMotions_.clear(); |
|
finalOutput_.release(); |
|
|
|
SuperResolution::collectGarbage(); |
|
BTVL1_OCL_Base::collectGarbage(); |
|
} |
|
|
|
void BTVL1_OCL::initImpl(Ptr<FrameSource>& frameSource) |
|
{ |
|
const int cacheSize = 2 * temporalAreaRadius_ + 1; |
|
|
|
frames_.resize(cacheSize); |
|
forwardMotions_.resize(cacheSize); |
|
backwardMotions_.resize(cacheSize); |
|
outputs_.resize(cacheSize); |
|
|
|
storePos_ = -1; |
|
|
|
for (int t = -temporalAreaRadius_; t <= temporalAreaRadius_; ++t) |
|
readNextFrame(frameSource); |
|
|
|
for (int i = 0; i <= temporalAreaRadius_; ++i) |
|
processFrame(i); |
|
|
|
procPos_ = temporalAreaRadius_; |
|
outPos_ = -1; |
|
} |
|
|
|
void BTVL1_OCL::processImpl(Ptr<FrameSource>& frameSource, OutputArray _output) |
|
{ |
|
if (outPos_ >= storePos_) |
|
{ |
|
if(_output.kind() == _InputArray::OCL_MAT) |
|
{ |
|
getOclMatRef(_output).release(); |
|
} |
|
else |
|
{ |
|
_output.release(); |
|
} |
|
return; |
|
} |
|
|
|
readNextFrame(frameSource); |
|
|
|
if (procPos_ < storePos_) |
|
{ |
|
++procPos_; |
|
processFrame(procPos_); |
|
} |
|
|
|
++outPos_; |
|
const oclMat& curOutput = at(outPos_, outputs_); |
|
|
|
if (_output.kind() == _InputArray::OCL_MAT) |
|
curOutput.convertTo(getOclMatRef(_output), CV_8U); |
|
else |
|
{ |
|
curOutput.convertTo(finalOutput_, CV_8U); |
|
arrCopy(finalOutput_, _output); |
|
} |
|
} |
|
|
|
void BTVL1_OCL::readNextFrame(Ptr<FrameSource>& frameSource) |
|
{ |
|
curFrame_.release(); |
|
frameSource->nextFrame(curFrame_); |
|
|
|
if (curFrame_.empty()) |
|
return; |
|
|
|
++storePos_; |
|
curFrame_.convertTo(at(storePos_, frames_), CV_32F); |
|
|
|
if (storePos_ > 0) |
|
{ |
|
pair<oclMat, oclMat>& forwardMotion = at(storePos_ - 1, forwardMotions_); |
|
pair<oclMat, oclMat>& backwardMotion = at(storePos_, backwardMotions_); |
|
|
|
opticalFlow_->calc(prevFrame_, curFrame_, forwardMotion.first, forwardMotion.second); |
|
opticalFlow_->calc(curFrame_, prevFrame_, backwardMotion.first, backwardMotion.second); |
|
} |
|
|
|
curFrame_.copyTo(prevFrame_); |
|
} |
|
|
|
void BTVL1_OCL::processFrame(int idx) |
|
{ |
|
const int startIdx = max(idx - temporalAreaRadius_, 0); |
|
const int procIdx = idx; |
|
const int endIdx = min(startIdx + 2 * temporalAreaRadius_, storePos_); |
|
|
|
const int count = endIdx - startIdx + 1; |
|
|
|
srcFrames_.resize(count); |
|
srcForwardMotions_.resize(count); |
|
srcBackwardMotions_.resize(count); |
|
|
|
int baseIdx = -1; |
|
|
|
for (int i = startIdx, k = 0; i <= endIdx; ++i, ++k) |
|
{ |
|
if (i == procIdx) |
|
baseIdx = k; |
|
|
|
srcFrames_[k] = at(i, frames_); |
|
|
|
if (i < endIdx) |
|
srcForwardMotions_[k] = at(i, forwardMotions_); |
|
if (i > startIdx) |
|
srcBackwardMotions_[k] = at(i, backwardMotions_); |
|
} |
|
|
|
process(srcFrames_, at(idx, outputs_), srcForwardMotions_, srcBackwardMotions_, baseIdx); |
|
} |
|
} |
|
|
|
Ptr<SuperResolution> cv::superres::createSuperResolution_BTVL1_OCL() |
|
{ |
|
return makePtr<BTVL1_OCL>(); |
|
} |
|
#endif
|
|
|