mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
535 lines
27 KiB
535 lines
27 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved. |
|
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// @Authors |
|
// Peng Xiao, pengxiao@multicorewareinc.com |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors as is and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
|
|
#include "precomp.hpp" |
|
#include "opencl_kernels.hpp" |
|
|
|
using namespace cv; |
|
using namespace cv::ocl; |
|
|
|
namespace cv |
|
{ |
|
namespace ocl |
|
{ |
|
void matchTemplate_SQDIFF( |
|
const oclMat &image, const oclMat &templ, oclMat &result, MatchTemplateBuf &buf); |
|
|
|
void matchTemplate_SQDIFF_NORMED( |
|
const oclMat &image, const oclMat &templ, oclMat &result, MatchTemplateBuf &buf); |
|
|
|
void convolve_32F( |
|
const oclMat &image, const oclMat &templ, oclMat &result, MatchTemplateBuf &buf); |
|
|
|
void matchTemplate_CCORR( |
|
const oclMat &image, const oclMat &templ, oclMat &result, MatchTemplateBuf &buf); |
|
|
|
void matchTemplate_CCORR_NORMED( |
|
const oclMat &image, const oclMat &templ, oclMat &result, MatchTemplateBuf &buf); |
|
|
|
void matchTemplate_CCOFF( |
|
const oclMat &image, const oclMat &templ, oclMat &result, MatchTemplateBuf &buf); |
|
|
|
void matchTemplate_CCOFF_NORMED( |
|
const oclMat &image, const oclMat &templ, oclMat &result, MatchTemplateBuf &buf); |
|
|
|
|
|
void matchTemplateNaive_SQDIFF( |
|
const oclMat &image, const oclMat &templ, oclMat &result, int cn); |
|
|
|
void matchTemplateNaive_CCORR( |
|
const oclMat &image, const oclMat &templ, oclMat &result, int cn); |
|
|
|
void extractFirstChannel_32F( |
|
const oclMat &image, oclMat &result); |
|
|
|
// Evaluates optimal template's area threshold. If |
|
// template's area is less than the threshold, we use naive match |
|
// template version, otherwise FFT-based (if available) |
|
static bool useNaive(int , int , Size ) |
|
{ |
|
// FIXME! |
|
// always use naive until convolve is imported |
|
return true; |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// SQDIFF |
|
void matchTemplate_SQDIFF( |
|
const oclMat &image, const oclMat &templ, oclMat &result, MatchTemplateBuf & buf) |
|
{ |
|
result.create(image.rows - templ.rows + 1, image.cols - templ.cols + 1, CV_32F); |
|
if (useNaive(CV_TM_SQDIFF, image.depth(), templ.size())) |
|
{ |
|
matchTemplateNaive_SQDIFF(image, templ, result, image.oclchannels()); |
|
return; |
|
} |
|
else |
|
{ |
|
buf.image_sqsums.resize(1); |
|
|
|
// TODO, add double support for ocl::integral |
|
// use CPU integral temporarily |
|
Mat sums, sqsums; |
|
cv::integral(Mat(image.reshape(1)), sums, sqsums); |
|
buf.image_sqsums[0] = sqsums; |
|
|
|
unsigned long long templ_sqsum = (unsigned long long)sqrSum(templ.reshape(1))[0]; |
|
matchTemplate_CCORR(image, templ, result, buf); |
|
|
|
//port CUDA's matchTemplatePrepared_SQDIFF_8U |
|
Context *clCxt = image.clCxt; |
|
string kernelName = "matchTemplate_Prepared_SQDIFF"; |
|
vector< pair<size_t, const void *> > args; |
|
|
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&buf.image_sqsums[0].data)); |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&result.data)); |
|
args.push_back( make_pair( sizeof(cl_ulong), (void *)&templ_sqsum)); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&result.rows)); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&result.cols)); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&templ.rows)); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&templ.cols)); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&buf.image_sqsums[0].offset)); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&buf.image_sqsums[0].step)); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&result.offset)); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&result.step)); |
|
|
|
size_t globalThreads[3] = {result.cols, result.rows, 1}; |
|
size_t localThreads[3] = {16, 16, 1}; |
|
|
|
const char * build_opt = image.oclchannels() == 4 ? "-D CN4" : ""; |
|
openCLExecuteKernel(clCxt, &match_template, kernelName, globalThreads, localThreads, args, 1, CV_8U, build_opt); |
|
} |
|
} |
|
|
|
void matchTemplate_SQDIFF_NORMED( |
|
const oclMat &image, const oclMat &templ, oclMat &result, MatchTemplateBuf &buf) |
|
{ |
|
matchTemplate_CCORR(image, templ, result, buf); |
|
buf.image_sums.resize(1); |
|
|
|
integral(image.reshape(1), buf.image_sums[0]); |
|
|
|
unsigned long long templ_sqsum = (unsigned long long)sqrSum(templ.reshape(1))[0]; |
|
|
|
Context *clCxt = image.clCxt; |
|
string kernelName = "matchTemplate_Prepared_SQDIFF_NORMED"; |
|
vector< pair<size_t, const void *> > args; |
|
|
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&buf.image_sums[0].data)); |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&result.data)); |
|
args.push_back( make_pair( sizeof(cl_ulong), (void *)&templ_sqsum)); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&result.rows)); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&result.cols)); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&templ.rows)); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&templ.cols)); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&buf.image_sums[0].offset)); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&buf.image_sums[0].step)); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&result.offset)); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&result.step)); |
|
|
|
size_t globalThreads[3] = {result.cols, result.rows, 1}; |
|
size_t localThreads[3] = {16, 16, 1}; |
|
openCLExecuteKernel(clCxt, &match_template, kernelName, globalThreads, localThreads, args, 1, CV_8U); |
|
} |
|
|
|
void matchTemplateNaive_SQDIFF( |
|
const oclMat &image, const oclMat &templ, oclMat &result, int) |
|
{ |
|
CV_Assert((image.depth() == CV_8U && templ.depth() == CV_8U ) |
|
|| ((image.depth() == CV_32F && templ.depth() == CV_32F) && result.depth() == CV_32F) |
|
); |
|
CV_Assert(image.oclchannels() == templ.oclchannels() && (image.oclchannels() == 1 || image.oclchannels() == 4) && result.oclchannels() == 1); |
|
CV_Assert(result.rows == image.rows - templ.rows + 1 && result.cols == image.cols - templ.cols + 1); |
|
|
|
Context *clCxt = image.clCxt; |
|
string kernelName = "matchTemplate_Naive_SQDIFF"; |
|
|
|
vector< pair<size_t, const void *> > args; |
|
|
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&image.data)); |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&templ.data)); |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&result.data)); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&image.rows)); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&image.cols)); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&templ.rows)); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&templ.cols)); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&result.rows)); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&result.cols)); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&image.offset)); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&templ.offset)); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&result.offset)); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&image.step)); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&templ.step)); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&result.step)); |
|
|
|
size_t globalThreads[3] = {result.cols, result.rows, 1}; |
|
size_t localThreads[3] = {16, 16, 1}; |
|
openCLExecuteKernel(clCxt, &match_template, kernelName, globalThreads, localThreads, args, image.oclchannels(), image.depth()); |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// CCORR |
|
void convolve_32F( |
|
const oclMat &, const oclMat &, oclMat &, MatchTemplateBuf &) |
|
{ |
|
CV_Error(-1, "convolve is not fully implemented yet"); |
|
} |
|
|
|
void matchTemplate_CCORR( |
|
const oclMat &image, const oclMat &templ, oclMat &result, MatchTemplateBuf &buf) |
|
{ |
|
result.create(image.rows - templ.rows + 1, image.cols - templ.cols + 1, CV_32F); |
|
if (useNaive(CV_TM_CCORR, image.depth(), templ.size())) |
|
{ |
|
matchTemplateNaive_CCORR(image, templ, result, image.oclchannels()); |
|
return; |
|
} |
|
else |
|
{ |
|
if(image.depth() == CV_8U && templ.depth() == CV_8U) |
|
{ |
|
image.convertTo(buf.imagef, CV_32F); |
|
templ.convertTo(buf.templf, CV_32F); |
|
convolve_32F(buf.imagef, buf.templf, result, buf); |
|
} |
|
else |
|
{ |
|
convolve_32F(image, templ, result, buf); |
|
} |
|
} |
|
} |
|
|
|
void matchTemplate_CCORR_NORMED( |
|
const oclMat &image, const oclMat &templ, oclMat &result, MatchTemplateBuf &buf) |
|
{ |
|
matchTemplate_CCORR(image, templ, result, buf); |
|
buf.image_sums.resize(1); |
|
buf.image_sqsums.resize(1); |
|
|
|
integral(image.reshape(1), buf.image_sums[0], buf.image_sqsums[0]); |
|
|
|
unsigned long long templ_sqsum = (unsigned long long)sqrSum(templ.reshape(1))[0]; |
|
|
|
Context *clCxt = image.clCxt; |
|
string kernelName = "normalizeKernel"; |
|
vector< pair<size_t, const void *> > args; |
|
|
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&buf.image_sqsums[0].data)); |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&result.data)); |
|
args.push_back( make_pair( sizeof(cl_ulong), (void *)&templ_sqsum)); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&result.rows)); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&result.cols)); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&templ.rows)); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&templ.cols)); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&buf.image_sqsums[0].offset)); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&buf.image_sqsums[0].step)); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&result.offset)); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&result.step)); |
|
|
|
size_t globalThreads[3] = {result.cols, result.rows, 1}; |
|
size_t localThreads[3] = {16, 16, 1}; |
|
openCLExecuteKernel(clCxt, &match_template, kernelName, globalThreads, localThreads, args, 1, CV_8U); |
|
} |
|
|
|
void matchTemplateNaive_CCORR( |
|
const oclMat &image, const oclMat &templ, oclMat &result, int) |
|
{ |
|
CV_Assert((image.depth() == CV_8U && templ.depth() == CV_8U ) |
|
|| ((image.depth() == CV_32F && templ.depth() == CV_32F) && result.depth() == CV_32F) |
|
); |
|
CV_Assert(image.oclchannels() == templ.oclchannels() && (image.oclchannels() == 1 || image.oclchannels() == 4) && result.oclchannels() == 1); |
|
CV_Assert(result.rows == image.rows - templ.rows + 1 && result.cols == image.cols - templ.cols + 1); |
|
|
|
Context *clCxt = image.clCxt; |
|
string kernelName = "matchTemplate_Naive_CCORR"; |
|
|
|
vector< pair<size_t, const void *> > args; |
|
|
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&image.data)); |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&templ.data)); |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&result.data)); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&image.rows)); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&image.cols)); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&templ.rows)); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&templ.cols)); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&result.rows)); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&result.cols)); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&image.offset)); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&templ.offset)); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&result.offset)); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&image.step)); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&templ.step)); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&result.step)); |
|
|
|
size_t globalThreads[3] = {result.cols, result.rows, 1}; |
|
size_t localThreads[3] = {16, 16, 1}; |
|
openCLExecuteKernel(clCxt, &match_template, kernelName, globalThreads, localThreads, args, image.oclchannels(), image.depth()); |
|
} |
|
////////////////////////////////////////////////////////////////////// |
|
// CCOFF |
|
void matchTemplate_CCOFF( |
|
const oclMat &image, const oclMat &templ, oclMat &result, MatchTemplateBuf &buf) |
|
{ |
|
CV_Assert(image.depth() == CV_8U && templ.depth() == CV_8U); |
|
|
|
matchTemplate_CCORR(image, templ, result, buf); |
|
|
|
Context *clCxt = image.clCxt; |
|
string kernelName; |
|
|
|
kernelName = "matchTemplate_Prepared_CCOFF"; |
|
size_t globalThreads[3] = {result.cols, result.rows, 1}; |
|
size_t localThreads[3] = {16, 16, 1}; |
|
|
|
vector< pair<size_t, const void *> > args; |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&result.data) ); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&image.rows) ); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&image.cols) ); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&templ.rows) ); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&templ.cols) ); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&result.rows) ); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&result.cols) ); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&result.offset)); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&result.step)); |
|
Vec4f templ_sum = Vec4f::all(0); |
|
// to be continued in the following section |
|
if(image.oclchannels() == 1) |
|
{ |
|
buf.image_sums.resize(1); |
|
integral(image, buf.image_sums[0]); |
|
|
|
templ_sum[0] = (float)sum(templ)[0] / templ.size().area(); |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&buf.image_sums[0].data) ); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&buf.image_sums[0].offset) ); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&buf.image_sums[0].step) ); |
|
args.push_back( make_pair( sizeof(cl_float), (void *)&templ_sum[0]) ); |
|
} |
|
else |
|
{ |
|
|
|
split(image, buf.images); |
|
templ_sum = sum(templ) / templ.size().area(); |
|
buf.image_sums.resize(buf.images.size()); |
|
|
|
|
|
for(int i = 0; i < image.oclchannels(); i ++) |
|
{ |
|
integral(buf.images[i], buf.image_sums[i]); |
|
} |
|
switch(image.oclchannels()) |
|
{ |
|
case 4: |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&buf.image_sums[0].data) ); |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&buf.image_sums[1].data) ); |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&buf.image_sums[2].data) ); |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&buf.image_sums[3].data) ); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&buf.image_sums[0].offset) ); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&buf.image_sums[0].step) ); |
|
args.push_back( make_pair( sizeof(cl_float), (void *)&templ_sum[0]) ); |
|
args.push_back( make_pair( sizeof(cl_float), (void *)&templ_sum[1]) ); |
|
args.push_back( make_pair( sizeof(cl_float), (void *)&templ_sum[2]) ); |
|
args.push_back( make_pair( sizeof(cl_float), (void *)&templ_sum[3]) ); |
|
break; |
|
default: |
|
CV_Error(CV_StsBadArg, "matchTemplate: unsupported number of channels"); |
|
break; |
|
} |
|
} |
|
openCLExecuteKernel(clCxt, &match_template, kernelName, globalThreads, localThreads, args, image.oclchannels(), image.depth()); |
|
} |
|
|
|
void matchTemplate_CCOFF_NORMED( |
|
const oclMat &image, const oclMat &templ, oclMat &result, MatchTemplateBuf &buf) |
|
{ |
|
image.convertTo(buf.imagef, CV_32F); |
|
templ.convertTo(buf.templf, CV_32F); |
|
|
|
matchTemplate_CCORR(buf.imagef, buf.templf, result, buf); |
|
float scale = 1.f / templ.size().area(); |
|
|
|
Context *clCxt = image.clCxt; |
|
string kernelName; |
|
|
|
kernelName = "matchTemplate_Prepared_CCOFF_NORMED"; |
|
size_t globalThreads[3] = {result.cols, result.rows, 1}; |
|
size_t localThreads[3] = {16, 16, 1}; |
|
|
|
vector< pair<size_t, const void *> > args; |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&result.data) ); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&image.rows) ); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&image.cols) ); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&templ.rows) ); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&templ.cols) ); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&result.rows) ); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&result.cols) ); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&result.offset)); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&result.step)); |
|
args.push_back( make_pair( sizeof(cl_float), (void *)&scale) ); |
|
|
|
Vec4f templ_sum = Vec4f::all(0); |
|
Vec4f templ_sqsum = Vec4f::all(0); |
|
// to be continued in the following section |
|
if(image.oclchannels() == 1) |
|
{ |
|
buf.image_sums.resize(1); |
|
buf.image_sqsums.resize(1); |
|
integral(image, buf.image_sums[0], buf.image_sqsums[0]); |
|
|
|
templ_sum[0] = (float)sum(templ)[0]; |
|
|
|
templ_sqsum[0] = sqrSum(templ)[0]; |
|
|
|
templ_sqsum[0] -= scale * templ_sum[0] * templ_sum[0]; |
|
templ_sum[0] *= scale; |
|
|
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&buf.image_sums[0].data) ); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&buf.image_sums[0].offset) ); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&buf.image_sums[0].step) ); |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&buf.image_sqsums[0].data) ); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&buf.image_sqsums[0].offset) ); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&buf.image_sqsums[0].step) ); |
|
args.push_back( make_pair( sizeof(cl_float), (void *)&templ_sum[0]) ); |
|
args.push_back( make_pair( sizeof(cl_float), (void *)&templ_sqsum[0]) ); |
|
} |
|
else |
|
{ |
|
|
|
split(image, buf.images); |
|
templ_sum = sum(templ); |
|
|
|
templ_sqsum = sqrSum(templ); |
|
|
|
templ_sqsum -= scale * templ_sum * templ_sum; |
|
|
|
float templ_sqsum_sum = 0; |
|
for(int i = 0; i < image.oclchannels(); i ++) |
|
{ |
|
templ_sqsum_sum += templ_sqsum[i] - scale * templ_sum[i] * templ_sum[i]; |
|
} |
|
templ_sum *= scale; |
|
buf.image_sums.resize(buf.images.size()); |
|
buf.image_sqsums.resize(buf.images.size()); |
|
|
|
for(int i = 0; i < image.oclchannels(); i ++) |
|
{ |
|
integral(buf.images[i], buf.image_sums[i], buf.image_sqsums[i]); |
|
} |
|
|
|
switch(image.oclchannels()) |
|
{ |
|
case 4: |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&buf.image_sums[0].data) ); |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&buf.image_sums[1].data) ); |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&buf.image_sums[2].data) ); |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&buf.image_sums[3].data) ); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&buf.image_sums[0].offset) ); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&buf.image_sums[0].step) ); |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&buf.image_sqsums[0].data) ); |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&buf.image_sqsums[1].data) ); |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&buf.image_sqsums[2].data) ); |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&buf.image_sqsums[3].data) ); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&buf.image_sqsums[0].offset) ); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&buf.image_sqsums[0].step) ); |
|
args.push_back( make_pair( sizeof(cl_float), (void *)&templ_sum[0]) ); |
|
args.push_back( make_pair( sizeof(cl_float), (void *)&templ_sum[1]) ); |
|
args.push_back( make_pair( sizeof(cl_float), (void *)&templ_sum[2]) ); |
|
args.push_back( make_pair( sizeof(cl_float), (void *)&templ_sum[3]) ); |
|
args.push_back( make_pair( sizeof(cl_float), (void *)&templ_sqsum_sum) ); |
|
break; |
|
default: |
|
CV_Error(CV_StsBadArg, "matchTemplate: unsupported number of channels"); |
|
break; |
|
} |
|
} |
|
openCLExecuteKernel(clCxt, &match_template, kernelName, globalThreads, localThreads, args, image.oclchannels(), image.depth()); |
|
} |
|
void extractFirstChannel_32F(const oclMat &image, oclMat &result) |
|
{ |
|
Context *clCxt = image.clCxt; |
|
string kernelName; |
|
|
|
kernelName = "extractFirstChannel"; |
|
size_t globalThreads[3] = {result.cols, result.rows, 1}; |
|
size_t localThreads[3] = {16, 16, 1}; |
|
|
|
vector< pair<size_t, const void *> > args; |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&image.data) ); |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&result.data) ); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&result.rows) ); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&result.cols) ); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&image.offset)); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&result.offset)); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&image.step)); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&result.step)); |
|
|
|
openCLExecuteKernel(clCxt, &match_template, kernelName, globalThreads, localThreads, args, -1, -1); |
|
} |
|
}/*ocl*/ |
|
} /*cv*/ |
|
|
|
void cv::ocl::matchTemplate(const oclMat &image, const oclMat &templ, oclMat &result, int method) |
|
{ |
|
MatchTemplateBuf buf; |
|
matchTemplate(image, templ, result, method, buf); |
|
} |
|
void cv::ocl::matchTemplate(const oclMat &image, const oclMat &templ, oclMat &result, int method, MatchTemplateBuf &buf) |
|
{ |
|
CV_Assert(image.type() == templ.type()); |
|
CV_Assert(image.cols >= templ.cols && image.rows >= templ.rows); |
|
|
|
typedef void (*Caller)(const oclMat &, const oclMat &, oclMat &, MatchTemplateBuf &); |
|
|
|
const Caller callers[] = |
|
{ |
|
::matchTemplate_SQDIFF, ::matchTemplate_SQDIFF_NORMED, |
|
::matchTemplate_CCORR, ::matchTemplate_CCORR_NORMED, |
|
::matchTemplate_CCOFF, ::matchTemplate_CCOFF_NORMED |
|
}; |
|
|
|
Caller caller = callers[method]; |
|
CV_Assert(caller); |
|
caller(image, templ, result, buf); |
|
}
|
|
|