mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
984 lines
50 KiB
984 lines
50 KiB
#!/usr/bin/env python |
|
from __future__ import print_function |
|
|
|
import sys |
|
import ctypes |
|
from functools import partial |
|
from collections import namedtuple |
|
import sys |
|
|
|
if sys.version_info[0] < 3: |
|
from collections import Sequence |
|
else: |
|
from collections.abc import Sequence |
|
|
|
import numpy as np |
|
import cv2 as cv |
|
|
|
from tests_common import NewOpenCVTests, unittest |
|
|
|
|
|
def is_numeric(dtype): |
|
return np.issubdtype(dtype, np.integer) or np.issubdtype(dtype, np.floating) |
|
|
|
|
|
def get_limits(dtype): |
|
if not is_numeric(dtype): |
|
return None, None |
|
|
|
if np.issubdtype(dtype, np.integer): |
|
info = np.iinfo(dtype) |
|
else: |
|
info = np.finfo(dtype) |
|
return info.min, info.max |
|
|
|
|
|
def get_conversion_error_msg(value, expected, actual): |
|
return 'Conversion "{}" of type "{}" failed\nExpected: "{}" vs Actual "{}"'.format( |
|
value, type(value).__name__, expected, actual |
|
) |
|
|
|
|
|
def get_no_exception_msg(value): |
|
return 'Exception is not risen for {} of type {}'.format(value, type(value).__name__) |
|
|
|
|
|
def rpad(src, dst_size, pad_value=0): |
|
"""Extend `src` up to `dst_size` with given value. |
|
|
|
Args: |
|
src (np.ndarray | tuple | list): 1d array like object to pad. |
|
dst_size (_type_): Desired `src` size after padding. |
|
pad_value (int, optional): Padding value. Defaults to 0. |
|
|
|
Returns: |
|
np.ndarray: 1d array with len == `dst_size`. |
|
""" |
|
src = np.asarray(src) |
|
if len(src.shape) != 1: |
|
raise ValueError("Only 1d arrays are supported") |
|
|
|
# Considering the meaning, it is desirable to use np.pad(). |
|
# However, the old numpy doesn't include the following fixes and cannot work as expected. |
|
# So an alternative fix that combines np.append() and np.fill() is used. |
|
# https://docs.scipy.org/doc/numpy-1.13.0/release.html#support-for-returning-arrays-of-arbitrary-dimensions-in-apply-along-axis |
|
|
|
return np.append(src, np.full( dst_size - len(src), pad_value, dtype=src.dtype) ) |
|
|
|
def get_ocv_arithm_op_table(apply_saturation=False): |
|
def saturate(func): |
|
def wrapped_func(x, y): |
|
dst_dtype = x.dtype |
|
if apply_saturation: |
|
if np.issubdtype(x.dtype, np.integer): |
|
x = x.astype(np.int64) |
|
# Apply padding or truncation for array-like `y` inputs |
|
if not isinstance(y, (float, int)): |
|
if len(y) > x.shape[-1]: |
|
y = y[:x.shape[-1]] |
|
else: |
|
y = rpad(y, x.shape[-1], pad_value=0) |
|
|
|
dst = func(x, y) |
|
if apply_saturation: |
|
min_val, max_val = get_limits(dst_dtype) |
|
dst = np.clip(dst, min_val, max_val) |
|
return dst.astype(dst_dtype) |
|
return wrapped_func |
|
|
|
@saturate |
|
def subtract(x, y): |
|
return x - y |
|
|
|
@saturate |
|
def add(x, y): |
|
return x + y |
|
|
|
@saturate |
|
def divide(x, y): |
|
if not isinstance(y, (int, float)): |
|
dst_dtype = np.result_type(x, y) |
|
y = np.array(y).astype(dst_dtype) |
|
_, max_value = get_limits(dst_dtype) |
|
y[y == 0] = max_value |
|
|
|
# to compatible between python2 and python3, it calicurates with float. |
|
# python2: int / int = int |
|
# python3: int / int = float |
|
dst = 1.0 * x / y |
|
|
|
if np.issubdtype(x.dtype, np.integer): |
|
dst = np.rint(dst) |
|
return dst |
|
|
|
@saturate |
|
def multiply(x, y): |
|
return x * y |
|
|
|
@saturate |
|
def absdiff(x, y): |
|
res = np.abs(x - y) |
|
return res |
|
|
|
return { |
|
cv.subtract: subtract, |
|
cv.add: add, |
|
cv.multiply: multiply, |
|
cv.divide: divide, |
|
cv.absdiff: absdiff |
|
} |
|
|
|
|
|
class Bindings(NewOpenCVTests): |
|
|
|
def test_inheritance(self): |
|
bm = cv.StereoBM_create() |
|
bm.getPreFilterCap() # from StereoBM |
|
bm.getBlockSize() # from SteroMatcher |
|
|
|
boost = cv.ml.Boost_create() |
|
boost.getBoostType() # from ml::Boost |
|
boost.getMaxDepth() # from ml::DTrees |
|
boost.isClassifier() # from ml::StatModel |
|
|
|
def test_raiseGeneralException(self): |
|
with self.assertRaises((cv.error,), |
|
msg='C++ exception is not propagated to Python in the right way') as cm: |
|
cv.utils.testRaiseGeneralException() |
|
self.assertEqual(str(cm.exception), 'exception text') |
|
|
|
def test_redirectError(self): |
|
try: |
|
cv.imshow("", None) # This causes an assert |
|
self.assertEqual("Dead code", 0) |
|
except cv.error as _e: |
|
pass |
|
|
|
handler_called = [False] |
|
|
|
def test_error_handler(status, func_name, err_msg, file_name, line): |
|
handler_called[0] = True |
|
|
|
cv.redirectError(test_error_handler) |
|
try: |
|
cv.imshow("", None) # This causes an assert |
|
self.assertEqual("Dead code", 0) |
|
except cv.error as _e: |
|
self.assertEqual(handler_called[0], True) |
|
pass |
|
|
|
cv.redirectError(None) |
|
try: |
|
cv.imshow("", None) # This causes an assert |
|
self.assertEqual("Dead code", 0) |
|
except cv.error as _e: |
|
pass |
|
|
|
def test_overload_resolution_can_choose_correct_overload(self): |
|
val = 123 |
|
point = (51, 165) |
|
self.assertEqual(cv.utils.testOverloadResolution(val, point), |
|
'overload (int={}, point=(x={}, y={}))'.format(val, *point), |
|
"Can't select first overload if all arguments are provided as positional") |
|
|
|
self.assertEqual(cv.utils.testOverloadResolution(val, point=point), |
|
'overload (int={}, point=(x={}, y={}))'.format(val, *point), |
|
"Can't select first overload if one of the arguments are provided as keyword") |
|
|
|
self.assertEqual(cv.utils.testOverloadResolution(val), |
|
'overload (int={}, point=(x=42, y=24))'.format(val), |
|
"Can't select first overload if one of the arguments has default value") |
|
|
|
rect = (1, 5, 10, 23) |
|
self.assertEqual(cv.utils.testOverloadResolution(rect), |
|
'overload (rect=(x={}, y={}, w={}, h={}))'.format(*rect), |
|
"Can't select second overload if all arguments are provided") |
|
|
|
def test_overload_resolution_fails(self): |
|
def test_overload_resolution(msg, *args, **kwargs): |
|
no_exception_msg = 'Overload resolution failed without any exception for: "{}"'.format(msg) |
|
wrong_exception_msg = 'Overload resolution failed with wrong exception type for: "{}"'.format(msg) |
|
with self.assertRaises((cv.error, Exception), msg=no_exception_msg) as cm: |
|
res = cv.utils.testOverloadResolution(*args, **kwargs) |
|
self.fail("Unexpected result for {}: '{}'".format(msg, res)) |
|
self.assertEqual(type(cm.exception), cv.error, wrong_exception_msg) |
|
|
|
test_overload_resolution('wrong second arg type (keyword arg)', 5, point=(1, 2, 3)) |
|
test_overload_resolution('wrong second arg type', 5, 2) |
|
test_overload_resolution('wrong first arg', 3.4, (12, 21)) |
|
test_overload_resolution('wrong first arg, no second arg', 4.5) |
|
test_overload_resolution('wrong args number for first overload', 3, (12, 21), 123) |
|
test_overload_resolution('wrong args number for second overload', (3, 12, 12, 1), (12, 21)) |
|
# One of the common problems |
|
test_overload_resolution('rect with float coordinates', (4.5, 4, 2, 1)) |
|
test_overload_resolution('rect with wrong number of coordinates', (4, 4, 1)) |
|
|
|
def test_properties_with_reserved_keywords_names_are_transformed(self): |
|
obj = cv.utils.ClassWithKeywordProperties(except_arg=23) |
|
self.assertTrue(hasattr(obj, "lambda_"), |
|
msg="Class doesn't have RW property with converted name") |
|
try: |
|
obj.lambda_ = 32 |
|
except Exception as e: |
|
self.fail("Failed to set value to RW property. Error: {}".format(e)) |
|
|
|
self.assertTrue(hasattr(obj, "except_"), |
|
msg="Class doesn't have readonly property with converted name") |
|
self.assertEqual(obj.except_, 23, |
|
msg="Can't access readonly property value") |
|
with self.assertRaises(AttributeError): |
|
obj.except_ = 32 |
|
|
|
def test_maketype(self): |
|
data = { |
|
cv.CV_8UC3: [cv.CV_8U, 3, cv.CV_8UC], |
|
cv.CV_16SC1: [cv.CV_16S, 1, cv.CV_16SC], |
|
cv.CV_32FC4: [cv.CV_32F, 4, cv.CV_32FC], |
|
cv.CV_64FC2: [cv.CV_64F, 2, cv.CV_64FC], |
|
cv.CV_8SC4: [cv.CV_8S, 4, cv.CV_8SC], |
|
cv.CV_16UC2: [cv.CV_16U, 2, cv.CV_16UC], |
|
cv.CV_32SC1: [cv.CV_32S, 1, cv.CV_32SC], |
|
cv.CV_16FC3: [cv.CV_16F, 3, cv.CV_16FC], |
|
} |
|
for ref, (depth, channels, func) in data.items(): |
|
self.assertEqual(ref, cv.CV_MAKETYPE(depth, channels)) |
|
self.assertEqual(ref, func(channels)) |
|
|
|
|
|
class Arguments(NewOpenCVTests): |
|
|
|
def _try_to_convert(self, conversion, value): |
|
try: |
|
result = conversion(value).lower() |
|
except Exception as e: |
|
self.fail( |
|
'{} "{}" is risen for conversion {} of type {}'.format( |
|
type(e).__name__, e, value, type(value).__name__ |
|
) |
|
) |
|
else: |
|
return result |
|
|
|
def test_InputArray(self): |
|
res1 = cv.utils.dumpInputArray(None) |
|
# self.assertEqual(res1, "InputArray: noArray()") # not supported |
|
self.assertEqual(res1, "InputArray: empty()=true kind=0x00010000 flags=0x01010000 total(-1)=0 dims(-1)=0 size(-1)=0x0 type(-1)=CV_8UC1") |
|
res2_1 = cv.utils.dumpInputArray((1, 2)) |
|
self.assertEqual(res2_1, "InputArray: empty()=false kind=0x00010000 flags=0x01010000 total(-1)=2 dims(-1)=2 size(-1)=1x2 type(-1)=CV_64FC1") |
|
res2_2 = cv.utils.dumpInputArray(1.5) # Scalar(1.5, 1.5, 1.5, 1.5) |
|
self.assertEqual(res2_2, "InputArray: empty()=false kind=0x00010000 flags=0x01010000 total(-1)=4 dims(-1)=2 size(-1)=1x4 type(-1)=CV_64FC1") |
|
a = np.array([[1, 2], [3, 4], [5, 6]]) |
|
res3 = cv.utils.dumpInputArray(a) # 32SC1 |
|
self.assertEqual(res3, "InputArray: empty()=false kind=0x00010000 flags=0x01010000 total(-1)=6 dims(-1)=2 size(-1)=2x3 type(-1)=CV_32SC1") |
|
a = np.array([[[1, 2], [3, 4], [5, 6]]], dtype='f') |
|
res4 = cv.utils.dumpInputArray(a) # 32FC2 |
|
self.assertEqual(res4, "InputArray: empty()=false kind=0x00010000 flags=0x01010000 total(-1)=3 dims(-1)=2 size(-1)=3x1 type(-1)=CV_32FC2") |
|
a = np.array([[[1, 2]], [[3, 4]], [[5, 6]]], dtype=float) |
|
res5 = cv.utils.dumpInputArray(a) # 64FC2 |
|
self.assertEqual(res5, "InputArray: empty()=false kind=0x00010000 flags=0x01010000 total(-1)=3 dims(-1)=2 size(-1)=1x3 type(-1)=CV_64FC2") |
|
a = np.zeros((2,3,4), dtype='f') |
|
res6 = cv.utils.dumpInputArray(a) |
|
self.assertEqual(res6, "InputArray: empty()=false kind=0x00010000 flags=0x01010000 total(-1)=6 dims(-1)=2 size(-1)=3x2 type(-1)=CV_32FC4") |
|
a = np.zeros((2,3,4,5), dtype='f') |
|
res7 = cv.utils.dumpInputArray(a) |
|
self.assertEqual(res7, "InputArray: empty()=false kind=0x00010000 flags=0x01010000 total(-1)=120 dims(-1)=4 size(-1)=[2 3 4 5] type(-1)=CV_32FC1") |
|
|
|
def test_InputArrayOfArrays(self): |
|
res1 = cv.utils.dumpInputArrayOfArrays(None) |
|
# self.assertEqual(res1, "InputArray: noArray()") # not supported |
|
self.assertEqual(res1, "InputArrayOfArrays: empty()=true kind=0x00050000 flags=0x01050000 total(-1)=0 dims(-1)=1 size(-1)=0x0") |
|
res2_1 = cv.utils.dumpInputArrayOfArrays((1, 2)) # { Scalar:all(1), Scalar::all(2) } |
|
self.assertEqual(res2_1, "InputArrayOfArrays: empty()=false kind=0x00050000 flags=0x01050000 total(-1)=2 dims(-1)=1 size(-1)=2x1 type(0)=CV_64FC1 dims(0)=2 size(0)=1x4") |
|
res2_2 = cv.utils.dumpInputArrayOfArrays([1.5]) |
|
self.assertEqual(res2_2, "InputArrayOfArrays: empty()=false kind=0x00050000 flags=0x01050000 total(-1)=1 dims(-1)=1 size(-1)=1x1 type(0)=CV_64FC1 dims(0)=2 size(0)=1x4") |
|
a = np.array([[1, 2], [3, 4], [5, 6]]) |
|
b = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) |
|
res3 = cv.utils.dumpInputArrayOfArrays([a, b]) |
|
self.assertEqual(res3, "InputArrayOfArrays: empty()=false kind=0x00050000 flags=0x01050000 total(-1)=2 dims(-1)=1 size(-1)=2x1 type(0)=CV_32SC1 dims(0)=2 size(0)=2x3") |
|
c = np.array([[[1, 2], [3, 4], [5, 6]]], dtype='f') |
|
res4 = cv.utils.dumpInputArrayOfArrays([c, a, b]) |
|
self.assertEqual(res4, "InputArrayOfArrays: empty()=false kind=0x00050000 flags=0x01050000 total(-1)=3 dims(-1)=1 size(-1)=3x1 type(0)=CV_32FC2 dims(0)=2 size(0)=3x1") |
|
a = np.zeros((2,3,4), dtype='f') |
|
res5 = cv.utils.dumpInputArrayOfArrays([a, b]) |
|
self.assertEqual(res5, "InputArrayOfArrays: empty()=false kind=0x00050000 flags=0x01050000 total(-1)=2 dims(-1)=1 size(-1)=2x1 type(0)=CV_32FC4 dims(0)=2 size(0)=3x2") |
|
# TODO: fix conversion error |
|
#a = np.zeros((2,3,4,5), dtype='f') |
|
#res6 = cv.utils.dumpInputArray([a, b]) |
|
#self.assertEqual(res6, "InputArrayOfArrays: empty()=false kind=0x00050000 flags=0x01050000 total(-1)=2 dims(-1)=1 size(-1)=2x1 type(0)=CV_32FC1 dims(0)=4 size(0)=[2 3 4 5]") |
|
|
|
def test_unsupported_numpy_data_types_string_description(self): |
|
for dtype in (object, str, np.complex128): |
|
test_array = np.zeros((4, 4, 3), dtype=dtype) |
|
msg = ".*type = {} is not supported".format(test_array.dtype) |
|
if sys.version_info[0] < 3: |
|
self.assertRaisesRegexp( |
|
Exception, msg, cv.utils.dumpInputArray, test_array |
|
) |
|
else: |
|
self.assertRaisesRegex( |
|
Exception, msg, cv.utils.dumpInputArray, test_array |
|
) |
|
|
|
def test_numpy_writeable_flag_is_preserved(self): |
|
array = np.zeros((10, 10, 1), dtype=np.uint8) |
|
array.setflags(write=False) |
|
with self.assertRaises(Exception): |
|
cv.rectangle(array, (0, 0), (5, 5), (255), 2) |
|
|
|
def test_20968(self): |
|
pixel = np.uint8([[[40, 50, 200]]]) |
|
_ = cv.cvtColor(pixel, cv.COLOR_RGB2BGR) # should not raise exception |
|
|
|
def test_parse_to_bool_convertible(self): |
|
try_to_convert = partial(self._try_to_convert, cv.utils.dumpBool) |
|
for convertible_true in (True, 1, 64, np.int8(123), np.int16(11), np.int32(2), |
|
np.int64(1), np.bool_(12)): |
|
actual = try_to_convert(convertible_true) |
|
self.assertEqual('bool: true', actual, |
|
msg=get_conversion_error_msg(convertible_true, 'bool: true', actual)) |
|
|
|
for convertible_false in (False, 0, np.uint8(0), np.bool_(0), np.int_(0)): |
|
actual = try_to_convert(convertible_false) |
|
self.assertEqual('bool: false', actual, |
|
msg=get_conversion_error_msg(convertible_false, 'bool: false', actual)) |
|
|
|
def test_parse_to_bool_not_convertible(self): |
|
for not_convertible in (1.2, np.float32(2.3), 's', 'str', (1, 2), [1, 2], complex(1, 1), |
|
complex(imag=2), complex(1.1), np.array([1, 0], dtype=bool)): |
|
with self.assertRaises((TypeError, OverflowError), |
|
msg=get_no_exception_msg(not_convertible)): |
|
_ = cv.utils.dumpBool(not_convertible) |
|
|
|
def test_parse_to_bool_convertible_extra(self): |
|
try_to_convert = partial(self._try_to_convert, cv.utils.dumpBool) |
|
_, max_size_t = get_limits(ctypes.c_size_t) |
|
for convertible_true in (-1, max_size_t): |
|
actual = try_to_convert(convertible_true) |
|
self.assertEqual('bool: true', actual, |
|
msg=get_conversion_error_msg(convertible_true, 'bool: true', actual)) |
|
|
|
def test_parse_to_bool_not_convertible_extra(self): |
|
for not_convertible in (np.array([False]), np.array([True])): |
|
with self.assertRaises((TypeError, OverflowError), |
|
msg=get_no_exception_msg(not_convertible)): |
|
_ = cv.utils.dumpBool(not_convertible) |
|
|
|
def test_parse_to_int_convertible(self): |
|
try_to_convert = partial(self._try_to_convert, cv.utils.dumpInt) |
|
min_int, max_int = get_limits(ctypes.c_int) |
|
for convertible in (-10, -1, 2, int(43.2), np.uint8(15), np.int8(33), np.int16(-13), |
|
np.int32(4), np.int64(345), (23), min_int, max_int, np.int_(33)): |
|
expected = 'int: {0:d}'.format(convertible) |
|
actual = try_to_convert(convertible) |
|
self.assertEqual(expected, actual, |
|
msg=get_conversion_error_msg(convertible, expected, actual)) |
|
|
|
def test_parse_to_int_not_convertible(self): |
|
min_int, max_int = get_limits(ctypes.c_int) |
|
for not_convertible in (1.2, float(3), np.float32(4), np.double(45), 's', 'str', |
|
np.array([1, 2]), (1,), [1, 2], min_int - 1, max_int + 1, |
|
complex(1, 1), complex(imag=2), complex(1.1)): |
|
with self.assertRaises((TypeError, OverflowError, ValueError), |
|
msg=get_no_exception_msg(not_convertible)): |
|
_ = cv.utils.dumpInt(not_convertible) |
|
|
|
def test_parse_to_int_not_convertible_extra(self): |
|
for not_convertible in (np.bool_(True), True, False, np.float32(2.3), |
|
np.array([3, ], dtype=int), np.array([-2, ], dtype=np.int32), |
|
np.array([11, ], dtype=np.uint8)): |
|
with self.assertRaises((TypeError, OverflowError), |
|
msg=get_no_exception_msg(not_convertible)): |
|
_ = cv.utils.dumpInt(not_convertible) |
|
|
|
def test_parse_to_int64_convertible(self): |
|
try_to_convert = partial(self._try_to_convert, cv.utils.dumpInt64) |
|
min_int64, max_int64 = get_limits(ctypes.c_longlong) |
|
for convertible in (-10, -1, 2, int(43.2), np.uint8(15), np.int8(33), np.int16(-13), |
|
np.int32(4), np.int64(345), (23), min_int64, max_int64, np.int_(33)): |
|
expected = 'int64: {0:d}'.format(convertible) |
|
actual = try_to_convert(convertible) |
|
self.assertEqual(expected, actual, |
|
msg=get_conversion_error_msg(convertible, expected, actual)) |
|
|
|
def test_parse_to_int64_not_convertible(self): |
|
min_int64, max_int64 = get_limits(ctypes.c_longlong) |
|
for not_convertible in (1.2, np.float32(4), float(3), np.double(45), 's', 'str', |
|
np.array([1, 2]), (1,), [1, 2], min_int64 - 1, max_int64 + 1, |
|
complex(1, 1), complex(imag=2), complex(1.1), np.bool_(True), |
|
True, False, np.float32(2.3), np.array([3, ], dtype=int), |
|
np.array([-2, ], dtype=np.int32), np.array([11, ], dtype=np.uint8)): |
|
with self.assertRaises((TypeError, OverflowError, ValueError), |
|
msg=get_no_exception_msg(not_convertible)): |
|
_ = cv.utils.dumpInt64(not_convertible) |
|
|
|
def test_parse_to_size_t_convertible(self): |
|
try_to_convert = partial(self._try_to_convert, cv.utils.dumpSizeT) |
|
_, max_uint = get_limits(ctypes.c_uint) |
|
for convertible in (2, max_uint, (12), np.uint8(34), np.int8(12), np.int16(23), |
|
np.int32(123), np.int64(344), np.uint64(3), np.uint16(2), np.uint32(5), |
|
np.uint(44)): |
|
expected = 'size_t: {0:d}'.format(convertible).lower() |
|
actual = try_to_convert(convertible) |
|
self.assertEqual(expected, actual, |
|
msg=get_conversion_error_msg(convertible, expected, actual)) |
|
|
|
def test_parse_to_size_t_not_convertible(self): |
|
min_long, _ = get_limits(ctypes.c_long) |
|
for not_convertible in (1.2, True, False, np.bool_(True), np.float32(4), float(3), |
|
np.double(45), 's', 'str', np.array([1, 2]), (1,), [1, 2], |
|
np.float64(6), complex(1, 1), complex(imag=2), complex(1.1), |
|
-1, min_long, np.int8(-35)): |
|
with self.assertRaises((TypeError, OverflowError), |
|
msg=get_no_exception_msg(not_convertible)): |
|
_ = cv.utils.dumpSizeT(not_convertible) |
|
|
|
def test_parse_to_size_t_convertible_extra(self): |
|
try_to_convert = partial(self._try_to_convert, cv.utils.dumpSizeT) |
|
_, max_size_t = get_limits(ctypes.c_size_t) |
|
for convertible in (max_size_t,): |
|
expected = 'size_t: {0:d}'.format(convertible).lower() |
|
actual = try_to_convert(convertible) |
|
self.assertEqual(expected, actual, |
|
msg=get_conversion_error_msg(convertible, expected, actual)) |
|
|
|
def test_parse_to_size_t_not_convertible_extra(self): |
|
for not_convertible in (np.bool_(True), True, False, np.array([123, ], dtype=np.uint8),): |
|
with self.assertRaises((TypeError, OverflowError), |
|
msg=get_no_exception_msg(not_convertible)): |
|
_ = cv.utils.dumpSizeT(not_convertible) |
|
|
|
def test_parse_to_float_convertible(self): |
|
try_to_convert = partial(self._try_to_convert, cv.utils.dumpFloat) |
|
min_float, max_float = get_limits(ctypes.c_float) |
|
for convertible in (2, -13, 1.24, np.float32(32.45), float(32), np.double(12.23), |
|
np.float32(-12.3), np.float64(3.22), np.float_(-1.5), min_float, |
|
max_float, np.inf, -np.inf, float('Inf'), -float('Inf'), |
|
np.double(np.inf), np.double(-np.inf), np.double(float('Inf')), |
|
np.double(-float('Inf'))): |
|
expected = 'Float: {0:.2f}'.format(convertible).lower() |
|
actual = try_to_convert(convertible) |
|
self.assertEqual(expected, actual, |
|
msg=get_conversion_error_msg(convertible, expected, actual)) |
|
|
|
# Workaround for Windows NaN tests due to Visual C runtime |
|
# special floating point values (indefinite NaN) |
|
for nan in (float('NaN'), np.nan, np.float32(np.nan), np.double(np.nan), |
|
np.double(float('NaN'))): |
|
actual = try_to_convert(nan) |
|
self.assertIn('nan', actual, msg="Can't convert nan of type {} to float. " |
|
"Actual: {}".format(type(nan).__name__, actual)) |
|
|
|
min_double, max_double = get_limits(ctypes.c_double) |
|
for inf in (min_float * 10, max_float * 10, min_double, max_double): |
|
expected = 'float: {}inf'.format('-' if inf < 0 else '') |
|
actual = try_to_convert(inf) |
|
self.assertEqual(expected, actual, |
|
msg=get_conversion_error_msg(inf, expected, actual)) |
|
|
|
def test_parse_to_float_not_convertible(self): |
|
for not_convertible in ('s', 'str', (12,), [1, 2], np.array([1, 2], dtype=float), |
|
np.array([1, 2], dtype=np.double), complex(1, 1), complex(imag=2), |
|
complex(1.1)): |
|
with self.assertRaises((TypeError), msg=get_no_exception_msg(not_convertible)): |
|
_ = cv.utils.dumpFloat(not_convertible) |
|
|
|
def test_parse_to_float_not_convertible_extra(self): |
|
for not_convertible in (np.bool_(False), True, False, np.array([123, ], dtype=int), |
|
np.array([1., ]), np.array([False]), |
|
np.array([True])): |
|
with self.assertRaises((TypeError, OverflowError), |
|
msg=get_no_exception_msg(not_convertible)): |
|
_ = cv.utils.dumpFloat(not_convertible) |
|
|
|
def test_parse_to_double_convertible(self): |
|
try_to_convert = partial(self._try_to_convert, cv.utils.dumpDouble) |
|
min_float, max_float = get_limits(ctypes.c_float) |
|
min_double, max_double = get_limits(ctypes.c_double) |
|
for convertible in (2, -13, 1.24, np.float32(32.45), float(2), np.double(12.23), |
|
np.float32(-12.3), np.float64(3.22), np.float_(-1.5), min_float, |
|
max_float, min_double, max_double, np.inf, -np.inf, float('Inf'), |
|
-float('Inf'), np.double(np.inf), np.double(-np.inf), |
|
np.double(float('Inf')), np.double(-float('Inf'))): |
|
expected = 'Double: {0:.2f}'.format(convertible).lower() |
|
actual = try_to_convert(convertible) |
|
self.assertEqual(expected, actual, |
|
msg=get_conversion_error_msg(convertible, expected, actual)) |
|
|
|
# Workaround for Windows NaN tests due to Visual C runtime |
|
# special floating point values (indefinite NaN) |
|
for nan in (float('NaN'), np.nan, np.double(np.nan), |
|
np.double(float('NaN'))): |
|
actual = try_to_convert(nan) |
|
self.assertIn('nan', actual, msg="Can't convert nan of type {} to double. " |
|
"Actual: {}".format(type(nan).__name__, actual)) |
|
|
|
def test_parse_to_double_not_convertible(self): |
|
for not_convertible in ('s', 'str', (12,), [1, 2], np.array([1, 2], dtype=np.float32), |
|
np.array([1, 2], dtype=np.double), complex(1, 1), complex(imag=2), |
|
complex(1.1)): |
|
with self.assertRaises((TypeError), msg=get_no_exception_msg(not_convertible)): |
|
_ = cv.utils.dumpDouble(not_convertible) |
|
|
|
def test_parse_to_double_not_convertible_extra(self): |
|
for not_convertible in (np.bool_(False), True, False, np.array([123, ], dtype=int), |
|
np.array([1., ]), np.array([False]), |
|
np.array([12.4], dtype=np.double), np.array([True])): |
|
with self.assertRaises((TypeError, OverflowError), |
|
msg=get_no_exception_msg(not_convertible)): |
|
_ = cv.utils.dumpDouble(not_convertible) |
|
|
|
def test_parse_to_cstring_convertible(self): |
|
try_to_convert = partial(self._try_to_convert, cv.utils.dumpCString) |
|
for convertible in ('', 's', 'str', str(123), ('char'), np.str_('test2')): |
|
expected = 'string: ' + convertible |
|
actual = try_to_convert(convertible) |
|
self.assertEqual(expected, actual, |
|
msg=get_conversion_error_msg(convertible, expected, actual)) |
|
|
|
def test_parse_to_cstring_not_convertible(self): |
|
for not_convertible in ((12,), ('t', 'e', 's', 't'), np.array(['123', ]), |
|
np.array(['t', 'e', 's', 't']), 1, -1.4, True, False, None): |
|
with self.assertRaises((TypeError), msg=get_no_exception_msg(not_convertible)): |
|
_ = cv.utils.dumpCString(not_convertible) |
|
|
|
def test_parse_to_string_convertible(self): |
|
try_to_convert = partial(self._try_to_convert, cv.utils.dumpString) |
|
for convertible in (None, '', 's', 'str', str(123), np.str_('test2')): |
|
expected = 'string: ' + (convertible if convertible else '') |
|
actual = try_to_convert(convertible) |
|
self.assertEqual(expected, actual, |
|
msg=get_conversion_error_msg(convertible, expected, actual)) |
|
|
|
def test_parse_to_string_not_convertible(self): |
|
for not_convertible in ((12,), ('t', 'e', 's', 't'), np.array(['123', ]), |
|
np.array(['t', 'e', 's', 't']), 1, True, False): |
|
with self.assertRaises((TypeError), msg=get_no_exception_msg(not_convertible)): |
|
_ = cv.utils.dumpString(not_convertible) |
|
|
|
def test_parse_to_rect_convertible(self): |
|
Rect = namedtuple('Rect', ('x', 'y', 'w', 'h')) |
|
try_to_convert = partial(self._try_to_convert, cv.utils.dumpRect) |
|
for convertible in ((1, 2, 4, 5), [5, 3, 10, 20], np.array([10, 20, 23, 10]), |
|
Rect(10, 30, 40, 55), tuple(np.array([40, 20, 24, 20])), |
|
list(np.array([20, 40, 30, 35]))): |
|
expected = 'rect: (x={}, y={}, w={}, h={})'.format(*convertible) |
|
actual = try_to_convert(convertible) |
|
self.assertEqual(expected, actual, |
|
msg=get_conversion_error_msg(convertible, expected, actual)) |
|
|
|
def test_parse_to_rect_not_convertible(self): |
|
for not_convertible in (np.empty(shape=(4, 1)), (), [], np.array([]), (12, ), |
|
[3, 4, 5, 10, 123], {1: 2, 3:4, 5:10, 6:30}, |
|
'1234', np.array([1, 2, 3, 4], dtype=np.float32), |
|
np.array([[1, 2], [3, 4], [5, 6], [6, 8]]), (1, 2, 5, 1.5)): |
|
with self.assertRaises((TypeError), msg=get_no_exception_msg(not_convertible)): |
|
_ = cv.utils.dumpRect(not_convertible) |
|
|
|
def test_parse_to_rotated_rect_convertible(self): |
|
RotatedRect = namedtuple('RotatedRect', ('center', 'size', 'angle')) |
|
try_to_convert = partial(self._try_to_convert, cv.utils.dumpRotatedRect) |
|
for convertible in (((2.5, 2.5), (10., 20.), 12.5), [[1.5, 10.5], (12.5, 51.5), 10], |
|
RotatedRect((10, 40), np.array([10.5, 20.5]), 5), |
|
np.array([[10, 6], [50, 50], 5.5], dtype=object)): |
|
center, size, angle = convertible |
|
expected = 'rotated_rect: (c_x={:.6f}, c_y={:.6f}, w={:.6f},' \ |
|
' h={:.6f}, a={:.6f})'.format(center[0], center[1], |
|
size[0], size[1], angle) |
|
actual = try_to_convert(convertible) |
|
self.assertEqual(expected, actual, |
|
msg=get_conversion_error_msg(convertible, expected, actual)) |
|
|
|
|
|
def test_wrap_rotated_rect(self): |
|
center = (34.5, 52.) |
|
size = (565.0, 140.0) |
|
angle = -177.5 |
|
rect1 = cv.RotatedRect(center, size, angle) |
|
self.assertEqual(rect1.center, center) |
|
self.assertEqual(rect1.size, size) |
|
self.assertEqual(rect1.angle, angle) |
|
|
|
pts = [[ 319.7845, -5.6109037], |
|
[ 313.6778, 134.25586], |
|
[-250.78448, 109.6109], |
|
[-244.6778, -30.25586]] |
|
self.assertLess(np.max(np.abs(rect1.points() - pts)), 1e-4) |
|
|
|
rect2 = cv.RotatedRect(pts[0], pts[1], pts[2]) |
|
_, inter_pts = cv.rotatedRectangleIntersection(rect1, rect2) |
|
self.assertLess(np.max(np.abs(inter_pts.reshape(-1, 2) - pts)), 1e-4) |
|
|
|
|
|
def test_parse_to_rotated_rect_not_convertible(self): |
|
for not_convertible in ([], (), np.array([]), (123, (45, 34), 1), {1: 2, 3: 4}, 123, |
|
np.array([[123, 123, 14], [1, 3], 56], dtype=object), '123'): |
|
with self.assertRaises((TypeError), msg=get_no_exception_msg(not_convertible)): |
|
_ = cv.utils.dumpRotatedRect(not_convertible) |
|
|
|
def test_parse_to_term_criteria_convertible(self): |
|
TermCriteria = namedtuple('TermCriteria', ('type', 'max_count', 'epsilon')) |
|
try_to_convert = partial(self._try_to_convert, cv.utils.dumpTermCriteria) |
|
for convertible in ((1, 10, 1e-3), [2, 30, 1e-1], np.array([10, 20, 0.5], dtype=object), |
|
TermCriteria(0, 5, 0.1)): |
|
expected = 'term_criteria: (type={}, max_count={}, epsilon={:.6f}'.format(*convertible) |
|
actual = try_to_convert(convertible) |
|
self.assertEqual(expected, actual, |
|
msg=get_conversion_error_msg(convertible, expected, actual)) |
|
|
|
def test_parse_to_term_criteria_not_convertible(self): |
|
for not_convertible in ([], (), np.array([]), [1, 4], (10,), (1.5, 34, 0.1), |
|
{1: 5, 3: 5, 10: 10}, '145'): |
|
with self.assertRaises((TypeError), msg=get_no_exception_msg(not_convertible)): |
|
_ = cv.utils.dumpTermCriteria(not_convertible) |
|
|
|
def test_parse_to_range_convertible_to_all(self): |
|
try_to_convert = partial(self._try_to_convert, cv.utils.dumpRange) |
|
for convertible in ((), [], np.array([])): |
|
expected = 'range: all' |
|
actual = try_to_convert(convertible) |
|
self.assertEqual(expected, actual, |
|
msg=get_conversion_error_msg(convertible, expected, actual)) |
|
|
|
def test_parse_to_range_convertible(self): |
|
Range = namedtuple('Range', ('start', 'end')) |
|
try_to_convert = partial(self._try_to_convert, cv.utils.dumpRange) |
|
for convertible in ((10, 20), [-1, 3], np.array([10, 24]), Range(-4, 6)): |
|
expected = 'range: (s={}, e={})'.format(*convertible) |
|
actual = try_to_convert(convertible) |
|
self.assertEqual(expected, actual, |
|
msg=get_conversion_error_msg(convertible, expected, actual)) |
|
|
|
def test_parse_to_range_not_convertible(self): |
|
for not_convertible in ((1, ), [40, ], np.array([1, 4, 6]), {'a': 1, 'b': 40}, |
|
(1.5, 13.5), [3, 6.7], np.array([6.3, 2.1]), '14, 4'): |
|
with self.assertRaises((TypeError), msg=get_no_exception_msg(not_convertible)): |
|
_ = cv.utils.dumpRange(not_convertible) |
|
|
|
def test_reserved_keywords_are_transformed(self): |
|
default_lambda_value = 2 |
|
default_from_value = 3 |
|
format_str = "arg={}, lambda={}, from={}" |
|
self.assertEqual( |
|
cv.utils.testReservedKeywordConversion(20), format_str.format(20, default_lambda_value, default_from_value) |
|
) |
|
self.assertEqual( |
|
cv.utils.testReservedKeywordConversion(10, lambda_=10), format_str.format(10, 10, default_from_value) |
|
) |
|
self.assertEqual( |
|
cv.utils.testReservedKeywordConversion(10, from_=10), format_str.format(10, default_lambda_value, 10) |
|
) |
|
self.assertEqual( |
|
cv.utils.testReservedKeywordConversion(20, lambda_=-4, from_=12), format_str.format(20, -4, 12) |
|
) |
|
|
|
def test_parse_vector_int_convertible(self): |
|
np.random.seed(123098765) |
|
try_to_convert = partial(self._try_to_convert, cv.utils.dumpVectorOfInt) |
|
arr = np.random.randint(-20, 20, 40).astype(np.int32).reshape(10, 2, 2) |
|
int_min, int_max = get_limits(ctypes.c_int) |
|
for convertible in ((int_min, 1, 2, 3, int_max), [40, 50], tuple(), |
|
np.array([int_min, -10, 24, int_max], dtype=np.int32), |
|
np.array([10, 230, 12], dtype=np.uint8), arr[:, 0, 1],): |
|
expected = "[" + ", ".join(map(str, convertible)) + "]" |
|
actual = try_to_convert(convertible) |
|
self.assertEqual(expected, actual, |
|
msg=get_conversion_error_msg(convertible, expected, actual)) |
|
|
|
def test_parse_vector_int_not_convertible(self): |
|
np.random.seed(123098765) |
|
arr = np.random.randint(-20, 20, 40).astype(np.float32).reshape(10, 2, 2) |
|
int_min, int_max = get_limits(ctypes.c_int) |
|
test_dict = {1: 2, 3: 10, 10: 20} |
|
for not_convertible in ((int_min, 1, 2.5, 3, int_max), [True, 50], 'test', test_dict, |
|
reversed([1, 2, 3]), |
|
np.array([int_min, -10, 24, [1, 2]], dtype=object), |
|
np.array([[1, 2], [3, 4]]), arr[:, 0, 1],): |
|
with self.assertRaises(TypeError, msg=get_no_exception_msg(not_convertible)): |
|
_ = cv.utils.dumpVectorOfInt(not_convertible) |
|
|
|
def test_parse_vector_double_convertible(self): |
|
np.random.seed(1230965) |
|
try_to_convert = partial(self._try_to_convert, cv.utils.dumpVectorOfDouble) |
|
arr = np.random.randint(-20, 20, 40).astype(np.int32).reshape(10, 2, 2) |
|
for convertible in ((1, 2.12, 3.5), [40, 50], tuple(), |
|
np.array([-10, 24], dtype=np.int32), |
|
np.array([-12.5, 1.4], dtype=np.double), |
|
np.array([10, 230, 12], dtype=np.float32), arr[:, 0, 1], ): |
|
expected = "[" + ", ".join(map(lambda v: "{:.2f}".format(v), convertible)) + "]" |
|
actual = try_to_convert(convertible) |
|
self.assertEqual(expected, actual, |
|
msg=get_conversion_error_msg(convertible, expected, actual)) |
|
|
|
def test_parse_vector_double_not_convertible(self): |
|
test_dict = {1: 2, 3: 10, 10: 20} |
|
for not_convertible in (('t', 'e', 's', 't'), [True, 50.55], 'test', test_dict, |
|
np.array([-10.1, 24.5, [1, 2]], dtype=object), |
|
np.array([[1, 2], [3, 4]]),): |
|
with self.assertRaises(TypeError, msg=get_no_exception_msg(not_convertible)): |
|
_ = cv.utils.dumpVectorOfDouble(not_convertible) |
|
|
|
def test_parse_vector_rect_convertible(self): |
|
np.random.seed(1238765) |
|
try_to_convert = partial(self._try_to_convert, cv.utils.dumpVectorOfRect) |
|
arr_of_rect_int32 = np.random.randint(5, 20, 4 * 3).astype(np.int32).reshape(3, 4) |
|
arr_of_rect_cast = np.random.randint(10, 40, 4 * 5).astype(np.uint8).reshape(5, 4) |
|
for convertible in (((1, 2, 3, 4), (10, -20, 30, 10)), arr_of_rect_int32, arr_of_rect_cast, |
|
arr_of_rect_int32.astype(np.int8), [[5, 3, 1, 4]], |
|
((np.int8(4), np.uint8(10), int(32), np.int16(55)),)): |
|
expected = "[" + ", ".join(map(lambda v: "[x={}, y={}, w={}, h={}]".format(*v), convertible)) + "]" |
|
actual = try_to_convert(convertible) |
|
self.assertEqual(expected, actual, |
|
msg=get_conversion_error_msg(convertible, expected, actual)) |
|
|
|
def test_parse_vector_rect_not_convertible(self): |
|
np.random.seed(1238765) |
|
arr = np.random.randint(5, 20, 4 * 3).astype(np.float32).reshape(3, 4) |
|
for not_convertible in (((1, 2, 3, 4), (10.5, -20, 30.1, 10)), arr, |
|
[[5, 3, 1, 4], []], |
|
((float(4), np.uint8(10), int(32), np.int16(55)),)): |
|
with self.assertRaises(TypeError, msg=get_no_exception_msg(not_convertible)): |
|
_ = cv.utils.dumpVectorOfRect(not_convertible) |
|
|
|
def test_vector_general_return(self): |
|
expected_number_of_mats = 5 |
|
expected_shape = (10, 10, 3) |
|
expected_type = np.uint8 |
|
mats = cv.utils.generateVectorOfMat(5, 10, 10, cv.CV_8UC3) |
|
self.assertTrue(isinstance(mats, tuple), |
|
"Vector of Mats objects should be returned as tuple. Got: {}".format(type(mats))) |
|
self.assertEqual(len(mats), expected_number_of_mats, "Returned array has wrong length") |
|
for mat in mats: |
|
self.assertEqual(mat.shape, expected_shape, "Returned Mat has wrong shape") |
|
self.assertEqual(mat.dtype, expected_type, "Returned Mat has wrong elements type") |
|
empty_mats = cv.utils.generateVectorOfMat(0, 10, 10, cv.CV_32FC1) |
|
self.assertTrue(isinstance(empty_mats, tuple), |
|
"Empty vector should be returned as empty tuple. Got: {}".format(type(mats))) |
|
self.assertEqual(len(empty_mats), 0, "Vector of size 0 should be returned as tuple of length 0") |
|
|
|
def test_vector_fast_return(self): |
|
expected_shape = (5, 4) |
|
rects = cv.utils.generateVectorOfRect(expected_shape[0]) |
|
self.assertTrue(isinstance(rects, np.ndarray), |
|
"Vector of rectangles should be returned as numpy array. Got: {}".format(type(rects))) |
|
self.assertEqual(rects.dtype, np.int32, "Vector of rectangles has wrong elements type") |
|
self.assertEqual(rects.shape, expected_shape, "Vector of rectangles has wrong shape") |
|
empty_rects = cv.utils.generateVectorOfRect(0) |
|
self.assertTrue(isinstance(empty_rects, tuple), |
|
"Empty vector should be returned as empty tuple. Got: {}".format(type(empty_rects))) |
|
self.assertEqual(len(empty_rects), 0, "Vector of size 0 should be returned as tuple of length 0") |
|
|
|
expected_shape = (10,) |
|
ints = cv.utils.generateVectorOfInt(expected_shape[0]) |
|
self.assertTrue(isinstance(ints, np.ndarray), |
|
"Vector of integers should be returned as numpy array. Got: {}".format(type(ints))) |
|
self.assertEqual(ints.dtype, np.int32, "Vector of integers has wrong elements type") |
|
self.assertEqual(ints.shape, expected_shape, "Vector of integers has wrong shape.") |
|
|
|
def test_result_rotated_rect_issue_20930(self): |
|
rr = cv.utils.testRotatedRect(10, 20, 100, 200, 45) |
|
self.assertTrue(isinstance(rr, tuple), msg=type(rr)) |
|
self.assertEqual(len(rr), 3) |
|
|
|
rrv = cv.utils.testRotatedRectVector(10, 20, 100, 200, 45) |
|
self.assertTrue(isinstance(rrv, tuple), msg=type(rrv)) |
|
self.assertEqual(len(rrv), 10) |
|
|
|
rr = rrv[0] |
|
self.assertTrue(isinstance(rr, tuple), msg=type(rrv)) |
|
self.assertEqual(len(rr), 3) |
|
|
|
def test_nested_function_availability(self): |
|
self.assertTrue(hasattr(cv.utils, "nested"), |
|
msg="Module is not generated for nested namespace") |
|
self.assertTrue(hasattr(cv.utils.nested, "testEchoBooleanFunction"), |
|
msg="Function in nested module is not available") |
|
|
|
if sys.version_info[0] < 3: |
|
# Nested submodule is managed only by the global submodules dictionary |
|
# and parent native module |
|
expected_ref_count = 2 |
|
else: |
|
# Nested submodule is managed by the global submodules dictionary, |
|
# parent native module and Python part of the submodule |
|
expected_ref_count = 3 |
|
|
|
# `getrefcount` temporary increases reference counter by 1 |
|
actual_ref_count = sys.getrefcount(cv.utils.nested) - 1 |
|
|
|
self.assertEqual(actual_ref_count, expected_ref_count, |
|
msg="Nested submodule reference counter has wrong value\n" |
|
"Expected: {}. Actual: {}".format(expected_ref_count, actual_ref_count)) |
|
for flag in (True, False): |
|
self.assertEqual(flag, cv.utils.nested.testEchoBooleanFunction(flag), |
|
msg="Function in nested module returns wrong result") |
|
|
|
def test_class_from_submodule_has_global_alias(self): |
|
self.assertTrue(hasattr(cv.ml, "Boost"), |
|
msg="Class is not registered in the submodule") |
|
self.assertTrue(hasattr(cv, "ml_Boost"), |
|
msg="Class from submodule doesn't have alias in the " |
|
"global module") |
|
self.assertEqual(cv.ml.Boost, cv.ml_Boost, |
|
msg="Classes from submodules and global module don't refer " |
|
"to the same type") |
|
|
|
def test_inner_class_has_global_alias(self): |
|
self.assertTrue(hasattr(cv.SimpleBlobDetector, "Params"), |
|
msg="Class is not registered as inner class") |
|
self.assertTrue(hasattr(cv, "SimpleBlobDetector_Params"), |
|
msg="Inner class doesn't have alias in the global module") |
|
self.assertEqual(cv.SimpleBlobDetector.Params, cv.SimpleBlobDetector_Params, |
|
msg="Inner class and class in global module don't refer " |
|
"to the same type") |
|
|
|
def test_export_class_with_different_name(self): |
|
self.assertTrue(hasattr(cv.utils.nested, "ExportClassName"), |
|
msg="Class with export alias is not registered in the submodule") |
|
self.assertTrue(hasattr(cv, "utils_nested_ExportClassName"), |
|
msg="Class with export alias doesn't have alias in the " |
|
"global module") |
|
self.assertEqual(cv.utils.nested.ExportClassName.originalName(), "OriginalClassName") |
|
|
|
instance = cv.utils.nested.ExportClassName.create() |
|
self.assertTrue(isinstance(instance, cv.utils.nested.ExportClassName), |
|
msg="Factory function returns wrong class instance: {}".format(type(instance))) |
|
self.assertTrue(hasattr(cv.utils.nested, "ExportClassName_create"), |
|
msg="Factory function should have alias in the same module as the class") |
|
# self.assertFalse(hasattr(cv.utils.nested, "OriginalClassName_create"), |
|
# msg="Factory function should not be registered with original class name, "\ |
|
# "when class has different export name") |
|
|
|
def test_export_inner_class_of_class_exported_with_different_name(self): |
|
if not hasattr(cv.utils.nested, "ExportClassName"): |
|
raise unittest.SkipTest( |
|
"Outer class with export alias is not registered in the submodule") |
|
|
|
self.assertTrue(hasattr(cv.utils.nested.ExportClassName, "Params"), |
|
msg="Inner class with export alias is not registered in " |
|
"the outer class") |
|
self.assertTrue(hasattr(cv, "utils_nested_ExportClassName_Params"), |
|
msg="Inner class with export alias is not registered in " |
|
"global module") |
|
params = cv.utils.nested.ExportClassName.Params() |
|
params.int_value = 45 |
|
params.float_value = 4.5 |
|
|
|
instance = cv.utils.nested.ExportClassName.create(params) |
|
self.assertTrue(isinstance(instance, cv.utils.nested.ExportClassName), |
|
msg="Factory function returns wrong class instance: {}".format(type(instance))) |
|
self.assertEqual( |
|
params.int_value, instance.getIntParam(), |
|
msg="Class initialized with wrong integer parameter. Expected: {}. Actual: {}".format( |
|
params.int_value, instance.getIntParam() |
|
) |
|
) |
|
self.assertEqual( |
|
params.float_value, instance.getFloatParam(), |
|
msg="Class initialized with wrong integer parameter. Expected: {}. Actual: {}".format( |
|
params.float_value, instance.getFloatParam() |
|
) |
|
) |
|
|
|
def test_named_arguments_without_parameters(self): |
|
src = np.ones((5, 5, 3), dtype=np.uint8) |
|
arguments_dump, src_copy = cv.utils.copyMatAndDumpNamedArguments(src) |
|
np.testing.assert_equal(src, src_copy) |
|
self.assertEqual(arguments_dump, 'lambda=-1, sigma=0.0') |
|
|
|
def test_named_arguments_without_output_argument(self): |
|
src = np.zeros((2, 2, 3), dtype=np.uint8) |
|
arguments_dump, src_copy = cv.utils.copyMatAndDumpNamedArguments( |
|
src, lambda_=15, sigma=3.5 |
|
) |
|
np.testing.assert_equal(src, src_copy) |
|
self.assertEqual(arguments_dump, 'lambda=15, sigma=3.5') |
|
|
|
def test_named_arguments_with_output_argument(self): |
|
src = np.zeros((3, 3, 3), dtype=np.uint8) |
|
dst = np.ones_like(src) |
|
arguments_dump, src_copy = cv.utils.copyMatAndDumpNamedArguments( |
|
src, dst, lambda_=25, sigma=5.5 |
|
) |
|
np.testing.assert_equal(src, src_copy) |
|
np.testing.assert_equal(dst, src_copy) |
|
self.assertEqual(arguments_dump, 'lambda=25, sigma=5.5') |
|
|
|
def test_arithm_op_without_saturation(self): |
|
np.random.seed(4231568) |
|
src = np.random.randint(20, 40, 8 * 4 * 3).astype(np.uint8).reshape(8, 4, 3) |
|
operations = get_ocv_arithm_op_table(apply_saturation=False) |
|
for ocv_op, numpy_op in operations.items(): |
|
for val in (2, 4, (5, ), (6, 4), (2., 4., 1.), |
|
np.uint8([1, 2, 2]), np.float64([5, 2, 6, 3]),): |
|
dst = ocv_op(src, val) |
|
expected = numpy_op(src, val) |
|
# Temporarily allows a difference of 1 for arm64 workaround. |
|
self.assertLess(np.max(np.abs(dst - expected)), 2, |
|
msg="Operation '{}' is failed for {}".format(ocv_op.__name__, val ) ) |
|
|
|
def test_arithm_op_with_saturation(self): |
|
np.random.seed(4231568) |
|
src = np.random.randint(20, 40, 4 * 8 * 4).astype(np.uint8).reshape(4, 8, 4) |
|
operations = get_ocv_arithm_op_table(apply_saturation=True) |
|
|
|
for ocv_op, numpy_op in operations.items(): |
|
for val in (10, 4, (40, ), (15, 12), (25., 41., 15.), |
|
np.uint8([1, 2, 20]), np.float64([50, 21, 64, 30]),): |
|
dst = ocv_op(src, val) |
|
expected = numpy_op(src, val) |
|
# Temporarily allows a difference of 1 for arm64 workaround. |
|
self.assertLess(np.max(np.abs(dst - expected)), 2, |
|
msg="Saturated Operation '{}' is failed for {}".format(ocv_op.__name__, val ) ) |
|
|
|
class CanUsePurePythonModuleFunction(NewOpenCVTests): |
|
def test_can_get_ocv_version(self): |
|
import sys |
|
if sys.version_info[0] < 3: |
|
raise unittest.SkipTest('Python 2.x is not supported') |
|
|
|
self.assertEqual(cv.misc.get_ocv_version(), cv.__version__, |
|
"Can't get package version using Python misc module") |
|
|
|
def test_native_method_can_be_patched(self): |
|
import sys |
|
|
|
if sys.version_info[0] < 3: |
|
raise unittest.SkipTest('Python 2.x is not supported') |
|
|
|
res = cv.utils.testOverwriteNativeMethod(10) |
|
self.assertTrue(isinstance(res, Sequence), |
|
msg="Overwritten method should return sequence. " |
|
"Got: {} of type {}".format(res, type(res))) |
|
self.assertSequenceEqual(res, (11, 10), |
|
msg="Failed to overwrite native method") |
|
res = cv.utils._native.testOverwriteNativeMethod(123) |
|
self.assertEqual(res, 123, msg="Failed to call native method implementation") |
|
|
|
def test_default_matx_argument(self): |
|
res = cv.utils.dumpVec2i() |
|
self.assertEqual(res, "Vec2i(42, 24)", |
|
msg="Default argument is not properly handled") |
|
res = cv.utils.dumpVec2i((12, 21)) |
|
self.assertEqual(res, "Vec2i(12, 21)") |
|
|
|
|
|
class SamplesFindFile(NewOpenCVTests): |
|
|
|
def test_ExistedFile(self): |
|
res = cv.samples.findFile('lena.jpg', False) |
|
self.assertNotEqual(res, '') |
|
|
|
def test_MissingFile(self): |
|
res = cv.samples.findFile('non_existed.file', False) |
|
self.assertEqual(res, '') |
|
|
|
def test_MissingFileException(self): |
|
try: |
|
_res = cv.samples.findFile('non_existed.file', True) |
|
self.assertEqual("Dead code", 0) |
|
except cv.error as _e: |
|
pass |
|
|
|
|
|
if __name__ == '__main__': |
|
NewOpenCVTests.bootstrap()
|
|
|