mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
100 lines
3.2 KiB
100 lines
3.2 KiB
// This file is part of OpenCV project. |
|
// It is subject to the license terms in the LICENSE file found in the top-level directory |
|
// of this distribution and at http://opencv.org/license.html. |
|
|
|
|
|
#include "test_precomp.hpp" |
|
|
|
namespace opencv_test { namespace { |
|
|
|
TEST(Calib3d_EstimateTranslation3D, test4Points) |
|
{ |
|
Matx13d trans; |
|
cv::randu(trans, Scalar(1), Scalar(3)); |
|
|
|
// setting points that are no in the same line |
|
|
|
Mat fpts(1, 4, CV_32FC3); |
|
Mat tpts(1, 4, CV_32FC3); |
|
|
|
RNG& rng = theRNG(); |
|
fpts.at<Point3f>(0) = Point3f(rng.uniform(1.0f, 2.0f), rng.uniform(1.0f, 2.0f), rng.uniform(5.0f, 6.0f)); |
|
fpts.at<Point3f>(1) = Point3f(rng.uniform(3.0f, 4.0f), rng.uniform(3.0f, 4.0f), rng.uniform(5.0f, 6.0f)); |
|
fpts.at<Point3f>(2) = Point3f(rng.uniform(1.0f, 2.0f), rng.uniform(3.0f, 4.0f), rng.uniform(5.0f, 6.0f)); |
|
fpts.at<Point3f>(3) = Point3f(rng.uniform(3.0f, 4.0f), rng.uniform(1.0f, 2.0f), rng.uniform(5.0f, 6.0f)); |
|
|
|
std::transform(fpts.ptr<Point3f>(), fpts.ptr<Point3f>() + 4, tpts.ptr<Point3f>(), |
|
[&] (const Point3f& p) -> Point3f |
|
{ |
|
return Point3f((float)(p.x + trans(0, 0)), |
|
(float)(p.y + trans(0, 1)), |
|
(float)(p.z + trans(0, 2))); |
|
} |
|
); |
|
|
|
Matx13d trans_est; |
|
vector<uchar> outliers; |
|
int res = estimateTranslation3D(fpts, tpts, trans_est, outliers); |
|
EXPECT_GT(res, 0); |
|
|
|
const double thres = 1e-3; |
|
|
|
EXPECT_LE(cvtest::norm(trans_est, trans, NORM_INF), thres) |
|
<< "aff est: " << trans_est << endl |
|
<< "aff ref: " << trans; |
|
} |
|
|
|
TEST(Calib3d_EstimateTranslation3D, testNPoints) |
|
{ |
|
Matx13d trans; |
|
cv::randu(trans, Scalar(-2), Scalar(2)); |
|
|
|
// setting points that are no in the same line |
|
|
|
const int n = 100; |
|
const int m = 3*n/5; |
|
const Point3f shift_outl = Point3f(15, 15, 15); |
|
const float noise_level = 20.f; |
|
|
|
Mat fpts(1, n, CV_32FC3); |
|
Mat tpts(1, n, CV_32FC3); |
|
|
|
randu(fpts, Scalar::all(0), Scalar::all(100)); |
|
std::transform(fpts.ptr<Point3f>(), fpts.ptr<Point3f>() + n, tpts.ptr<Point3f>(), |
|
[&] (const Point3f& p) -> Point3f |
|
{ |
|
return Point3f((float)(p.x + trans(0, 0)), |
|
(float)(p.y + trans(0, 1)), |
|
(float)(p.z + trans(0, 2))); |
|
} |
|
); |
|
|
|
/* adding noise*/ |
|
std::transform(tpts.ptr<Point3f>() + m, tpts.ptr<Point3f>() + n, tpts.ptr<Point3f>() + m, |
|
[&] (const Point3f& pt) -> Point3f |
|
{ |
|
Point3f p = pt + shift_outl; |
|
RNG& rng = theRNG(); |
|
return Point3f(p.x + noise_level * (float)rng, |
|
p.y + noise_level * (float)rng, |
|
p.z + noise_level * (float)rng); |
|
} |
|
); |
|
|
|
Matx13d trans_est; |
|
vector<uchar> outl; |
|
int res = estimateTranslation3D(fpts, tpts, trans_est, outl); |
|
EXPECT_GT(res, 0); |
|
|
|
const double thres = 1e-4; |
|
EXPECT_LE(cvtest::norm(trans_est, trans, NORM_INF), thres) |
|
<< "aff est: " << trans_est << endl |
|
<< "aff ref: " << trans; |
|
|
|
bool outl_good = std::count(outl.begin(), outl.end(), 1) == m && |
|
m == std::accumulate(outl.begin(), outl.begin() + m, 0); |
|
|
|
EXPECT_TRUE(outl_good); |
|
} |
|
|
|
}} // namespace
|
|
|