mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2014 lines
55 KiB
2014 lines
55 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// Intel License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of Intel Corporation may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
#include "precomp.hpp" |
|
#include "_vm.h" |
|
|
|
//#define REAL_ZERO(x) ( (x) < 1e-8 && (x) > -1e-8) |
|
|
|
static CvStatus |
|
icvGetNormalVector3( CvMatrix3 * Matrix, float *v ) |
|
{ |
|
/* return vector v that is any 3-vector perpendicular |
|
to all the row vectors of Matrix */ |
|
|
|
double *solutions = 0; |
|
double M[3 * 3]; |
|
double B[3] = { 0.f, 0.f, 0.f }; |
|
int i, j, res; |
|
|
|
if( Matrix == 0 || v == 0 ) |
|
return CV_NULLPTR_ERR; |
|
|
|
for( i = 0; i < 3; i++ ) |
|
{ |
|
for( j = 0; j < 3; j++ ) |
|
M[i * 3 + j] = (double) (Matrix->m[i][j]); |
|
} /* for */ |
|
|
|
res = icvGaussMxN( M, B, 3, 3, &solutions ); |
|
|
|
if( res == -1 ) |
|
return CV_BADFACTOR_ERR; |
|
|
|
if( res > 0 && solutions ) |
|
{ |
|
v[0] = (float) solutions[0]; |
|
v[1] = (float) solutions[1]; |
|
v[2] = (float) solutions[2]; |
|
res = 0; |
|
} |
|
else |
|
res = 1; |
|
|
|
if( solutions ) |
|
cvFree( &solutions ); |
|
|
|
if( res ) |
|
return CV_BADFACTOR_ERR; |
|
else |
|
return CV_NO_ERR; |
|
|
|
} /* icvgetNormalVector3 */ |
|
|
|
|
|
/*=====================================================================================*/ |
|
|
|
static CvStatus |
|
icvMultMatrixVector3( CvMatrix3 * m, float *src, float *dst ) |
|
{ |
|
if( m == 0 || src == 0 || dst == 0 ) |
|
return CV_NULLPTR_ERR; |
|
|
|
dst[0] = m->m[0][0] * src[0] + m->m[0][1] * src[1] + m->m[0][2] * src[2]; |
|
dst[1] = m->m[1][0] * src[0] + m->m[1][1] * src[1] + m->m[1][2] * src[2]; |
|
dst[2] = m->m[2][0] * src[0] + m->m[2][1] * src[1] + m->m[2][2] * src[2]; |
|
|
|
return CV_NO_ERR; |
|
|
|
} /* icvMultMatrixVector3 */ |
|
|
|
|
|
/*=====================================================================================*/ |
|
|
|
static CvStatus |
|
icvMultMatrixTVector3( CvMatrix3 * m, float *src, float *dst ) |
|
{ |
|
if( m == 0 || src == 0 || dst == 0 ) |
|
return CV_NULLPTR_ERR; |
|
|
|
dst[0] = m->m[0][0] * src[0] + m->m[1][0] * src[1] + m->m[2][0] * src[2]; |
|
dst[1] = m->m[0][1] * src[0] + m->m[1][1] * src[1] + m->m[2][1] * src[2]; |
|
dst[2] = m->m[0][2] * src[0] + m->m[1][2] * src[1] + m->m[2][2] * src[2]; |
|
|
|
return CV_NO_ERR; |
|
|
|
} /* icvMultMatrixTVector3 */ |
|
|
|
/*=====================================================================================*/ |
|
|
|
static CvStatus |
|
icvCrossLines( float *line1, float *line2, float *cross_point ) |
|
{ |
|
float delta; |
|
|
|
if( line1 == 0 && line2 == 0 && cross_point == 0 ) |
|
return CV_NULLPTR_ERR; |
|
|
|
delta = line1[0] * line2[1] - line1[1] * line2[0]; |
|
|
|
if( REAL_ZERO( delta )) |
|
return CV_BADFACTOR_ERR; |
|
|
|
cross_point[0] = (-line1[2] * line2[1] + line1[1] * line2[2]) / delta; |
|
cross_point[1] = (-line1[0] * line2[2] + line1[2] * line2[0]) / delta; |
|
cross_point[2] = 1; |
|
|
|
return CV_NO_ERR; |
|
} /* icvCrossLines */ |
|
|
|
|
|
|
|
/*======================================================================================*/ |
|
|
|
static CvStatus |
|
icvMakeScanlines( CvMatrix3 * matrix, |
|
CvSize imgSize, |
|
int *scanlines_1, int *scanlines_2, int *lens_1, int *lens_2, int *numlines ) |
|
{ |
|
|
|
CvStatus error = icvGetCoefficient( matrix, imgSize, scanlines_2, scanlines_1, numlines ); |
|
|
|
/* Make Length of scanlines */ |
|
if( scanlines_1 == 0 && scanlines_2 == 0 ) |
|
return error; |
|
|
|
icvMakeScanlinesLengths( scanlines_1, *numlines, lens_1 ); |
|
icvMakeScanlinesLengths( scanlines_2, *numlines, lens_2 ); |
|
|
|
return CV_NO_ERR; |
|
} /* icvMakeScanlines */ |
|
|
|
|
|
/*======================================================================================*/ |
|
|
|
CvStatus |
|
icvMakeScanlinesLengths( int *scanlines, int numlines, int *lens ) |
|
{ |
|
int index; |
|
int x1, y1, x2, y2, dx, dy; |
|
int curr; |
|
|
|
curr = 0; |
|
|
|
for( index = 0; index < numlines; index++ ) |
|
{ |
|
|
|
x1 = scanlines[curr++]; |
|
y1 = scanlines[curr++]; |
|
x2 = scanlines[curr++]; |
|
y2 = scanlines[curr++]; |
|
|
|
dx = abs( x1 - x2 ) + 1; |
|
dy = abs( y1 - y2 ) + 1; |
|
|
|
lens[index] = MAX( dx, dy ); |
|
|
|
} |
|
return CV_NO_ERR; |
|
} |
|
|
|
/*======================================================================================*/ |
|
|
|
static CvStatus |
|
icvMakeAlphaScanlines( int *scanlines_1, |
|
int *scanlines_2, |
|
int *scanlines_a, int *lens, int numlines, float alpha ) |
|
{ |
|
int index; |
|
int x1, y1, x2, y2; |
|
int curr; |
|
int dx, dy; |
|
int curr_len; |
|
|
|
curr = 0; |
|
curr_len = 0; |
|
for( index = 0; index < numlines; index++ ) |
|
{ |
|
|
|
x1 = (int) (scanlines_1[curr] * alpha + scanlines_2[curr] * (1.0 - alpha)); |
|
|
|
scanlines_a[curr++] = x1; |
|
|
|
y1 = (int) (scanlines_1[curr] * alpha + scanlines_2[curr] * (1.0 - alpha)); |
|
|
|
scanlines_a[curr++] = y1; |
|
|
|
x2 = (int) (scanlines_1[curr] * alpha + scanlines_2[curr] * (1.0 - alpha)); |
|
|
|
scanlines_a[curr++] = x2; |
|
|
|
y2 = (int) (scanlines_1[curr] * alpha + scanlines_2[curr] * (1.0 - alpha)); |
|
|
|
scanlines_a[curr++] = y2; |
|
|
|
dx = abs( x1 - x2 ) + 1; |
|
dy = abs( y1 - y2 ) + 1; |
|
|
|
lens[curr_len++] = MAX( dx, dy ); |
|
|
|
} |
|
|
|
return CV_NO_ERR; |
|
} |
|
|
|
/*======================================================================================*/ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* //////////////////////////////////////////////////////////////////////////////////// */ |
|
|
|
CvStatus |
|
icvGetCoefficient( CvMatrix3 * matrix, |
|
CvSize imgSize, int *scanlines_1, int *scanlines_2, int *numlines ) |
|
{ |
|
float l_epipole[3]; |
|
float r_epipole[3]; |
|
CvMatrix3 *F; |
|
CvMatrix3 Ft; |
|
CvStatus error; |
|
int i, j; |
|
|
|
F = matrix; |
|
|
|
l_epipole[2] = -1; |
|
r_epipole[2] = -1; |
|
|
|
if( F == 0 ) |
|
{ |
|
error = icvGetCoefficientDefault( matrix, |
|
imgSize, scanlines_1, scanlines_2, numlines ); |
|
return error; |
|
} |
|
|
|
|
|
for( i = 0; i < 3; i++ ) |
|
for( j = 0; j < 3; j++ ) |
|
Ft.m[i][j] = F->m[j][i]; |
|
|
|
|
|
error = icvGetNormalVector3( &Ft, l_epipole ); |
|
if( error == CV_NO_ERR && !REAL_ZERO( l_epipole[2] ) && !REAL_ZERO( l_epipole[2] - 1 )) |
|
{ |
|
|
|
l_epipole[0] /= l_epipole[2]; |
|
l_epipole[1] /= l_epipole[2]; |
|
l_epipole[2] = 1; |
|
} /* if */ |
|
|
|
error = icvGetNormalVector3( F, r_epipole ); |
|
if( error == CV_NO_ERR && !REAL_ZERO( r_epipole[2] ) && !REAL_ZERO( r_epipole[2] - 1 )) |
|
{ |
|
|
|
r_epipole[0] /= r_epipole[2]; |
|
r_epipole[1] /= r_epipole[2]; |
|
r_epipole[2] = 1; |
|
} /* if */ |
|
|
|
if( REAL_ZERO( l_epipole[2] - 1 ) && REAL_ZERO( r_epipole[2] - 1 )) |
|
{ |
|
error = icvGetCoefficientStereo( matrix, |
|
imgSize, |
|
l_epipole, |
|
r_epipole, scanlines_1, scanlines_2, numlines ); |
|
if( error == CV_NO_ERR ) |
|
return CV_NO_ERR; |
|
} |
|
else |
|
{ |
|
if( REAL_ZERO( l_epipole[2] ) && REAL_ZERO( r_epipole[2] )) |
|
{ |
|
error = icvGetCoefficientOrto( matrix, |
|
imgSize, scanlines_1, scanlines_2, numlines ); |
|
if( error == CV_NO_ERR ) |
|
return CV_NO_ERR; |
|
} |
|
} |
|
|
|
|
|
error = icvGetCoefficientDefault( matrix, imgSize, scanlines_1, scanlines_2, numlines ); |
|
|
|
return error; |
|
|
|
} /* icvlGetCoefficient */ |
|
|
|
/*===========================================================================*/ |
|
CvStatus |
|
icvGetCoefficientDefault( CvMatrix3 *, |
|
CvSize imgSize, int *scanlines_1, int *scanlines_2, int *numlines ) |
|
{ |
|
int curr; |
|
int y; |
|
|
|
*numlines = imgSize.height; |
|
|
|
if( scanlines_1 == 0 && scanlines_2 == 0 ) |
|
return CV_NO_ERR; |
|
|
|
curr = 0; |
|
for( y = 0; y < imgSize.height; y++ ) |
|
{ |
|
scanlines_1[curr] = 0; |
|
scanlines_1[curr + 1] = y; |
|
scanlines_1[curr + 2] = imgSize.width - 1; |
|
scanlines_1[curr + 3] = y; |
|
|
|
scanlines_2[curr] = 0; |
|
scanlines_2[curr + 1] = y; |
|
scanlines_2[curr + 2] = imgSize.width - 1; |
|
scanlines_2[curr + 3] = y; |
|
|
|
curr += 4; |
|
} |
|
|
|
return CV_NO_ERR; |
|
|
|
} /* icvlGetCoefficientDefault */ |
|
|
|
/*===========================================================================*/ |
|
CvStatus |
|
icvGetCoefficientOrto( CvMatrix3 * matrix, |
|
CvSize imgSize, int *scanlines_1, int *scanlines_2, int *numlines ) |
|
{ |
|
float l_start_end[4], r_start_end[4]; |
|
double a, b; |
|
CvStatus error; |
|
CvMatrix3 *F; |
|
|
|
F = matrix; |
|
|
|
if( F->m[0][2] * F->m[1][2] < 0 ) |
|
{ /* on left / */ |
|
|
|
if( F->m[2][0] * F->m[2][1] < 0 ) |
|
{ /* on right / */ |
|
error = icvGetStartEnd1( F, imgSize, l_start_end, r_start_end ); |
|
|
|
|
|
} |
|
else |
|
{ /* on right \ */ |
|
error = icvGetStartEnd2( F, imgSize, l_start_end, r_start_end ); |
|
} /* if */ |
|
|
|
} |
|
else |
|
{ /* on left \ */ |
|
|
|
if( F->m[2][0] * F->m[2][1] < 0 ) |
|
{ /* on right / */ |
|
error = icvGetStartEnd3( F, imgSize, l_start_end, r_start_end ); |
|
} |
|
else |
|
{ /* on right \ */ |
|
error = icvGetStartEnd4( F, imgSize, l_start_end, r_start_end ); |
|
} /* if */ |
|
} /* if */ |
|
|
|
if( error != CV_NO_ERR ) |
|
return error; |
|
|
|
a = fabs( l_start_end[0] - l_start_end[2] ); |
|
b = fabs( r_start_end[0] - r_start_end[2] ); |
|
if( a > b ) |
|
{ |
|
|
|
error = icvBuildScanlineLeft( F, |
|
imgSize, |
|
scanlines_1, scanlines_2, l_start_end, numlines ); |
|
|
|
} |
|
else |
|
{ |
|
|
|
error = icvBuildScanlineRight( F, |
|
imgSize, |
|
scanlines_1, scanlines_2, r_start_end, numlines ); |
|
|
|
} /* if */ |
|
|
|
return error; |
|
|
|
} /* icvlGetCoefficientOrto */ |
|
|
|
/*===========================================================================*/ |
|
CvStatus |
|
icvGetStartEnd1( CvMatrix3 * matrix, CvSize imgSize, float *l_start_end, float *r_start_end ) |
|
{ |
|
|
|
CvMatrix3 *F; |
|
int width, height; |
|
float l_diagonal[3]; |
|
float r_diagonal[3]; |
|
float l_point[3]={0,0,0}, r_point[3], epiline[3]={0,0,0}; |
|
CvStatus error = CV_OK; |
|
|
|
F = matrix; |
|
width = imgSize.width - 1; |
|
height = imgSize.height - 1; |
|
|
|
l_diagonal[0] = (float) 1 / width; |
|
l_diagonal[1] = (float) 1 / height; |
|
l_diagonal[2] = -1; |
|
|
|
r_diagonal[0] = (float) 1 / width; |
|
r_diagonal[1] = (float) 1 / height; |
|
r_diagonal[2] = -1; |
|
|
|
r_point[0] = (float) width; |
|
r_point[1] = 0; |
|
r_point[2] = 1; |
|
|
|
icvMultMatrixVector3( F, r_point, epiline ); |
|
error = icvCrossLines( l_diagonal, epiline, l_point ); |
|
|
|
assert( error == CV_NO_ERR ); |
|
|
|
if( l_point[0] >= 0 && l_point[0] <= width ) |
|
{ |
|
|
|
l_start_end[0] = l_point[0]; |
|
l_start_end[1] = l_point[1]; |
|
|
|
r_start_end[0] = r_point[0]; |
|
r_start_end[1] = r_point[1]; |
|
|
|
} |
|
else |
|
{ |
|
|
|
if( l_point[0] < 0 ) |
|
{ |
|
|
|
l_point[0] = 0; |
|
l_point[1] = (float) height; |
|
l_point[2] = 1; |
|
|
|
icvMultMatrixTVector3( F, l_point, epiline ); |
|
error = icvCrossLines( r_diagonal, epiline, r_point ); |
|
assert( error == CV_NO_ERR ); |
|
|
|
if( r_point[0] >= 0 && r_point[0] <= width ) |
|
{ |
|
l_start_end[0] = l_point[0]; |
|
l_start_end[1] = l_point[1]; |
|
|
|
r_start_end[0] = r_point[0]; |
|
r_start_end[1] = r_point[1]; |
|
} |
|
else |
|
return CV_BADFACTOR_ERR; |
|
|
|
} |
|
else |
|
{ /* if( l_point[0] > width ) */ |
|
|
|
l_point[0] = (float) width; |
|
l_point[1] = 0; |
|
l_point[2] = 1; |
|
|
|
icvMultMatrixTVector3( F, l_point, epiline ); |
|
error = icvCrossLines( r_diagonal, epiline, r_point ); |
|
assert( error == CV_NO_ERR ); |
|
|
|
if( r_point[0] >= 0 && r_point[0] <= width ) |
|
{ |
|
|
|
l_start_end[0] = l_point[0]; |
|
l_start_end[1] = l_point[1]; |
|
|
|
r_start_end[0] = r_point[0]; |
|
r_start_end[1] = r_point[1]; |
|
} |
|
else |
|
return CV_BADFACTOR_ERR; |
|
|
|
} /* if */ |
|
} /* if */ |
|
|
|
r_point[0] = 0; |
|
r_point[1] = (float) height; |
|
r_point[2] = 1; |
|
|
|
icvMultMatrixVector3( F, r_point, epiline ); |
|
error = icvCrossLines( l_diagonal, epiline, l_point ); |
|
assert( error == CV_NO_ERR ); |
|
|
|
if( l_point[0] >= 0 && l_point[0] <= width ) |
|
{ |
|
|
|
l_start_end[2] = l_point[0]; |
|
l_start_end[3] = l_point[1]; |
|
|
|
r_start_end[2] = r_point[0]; |
|
r_start_end[3] = r_point[1]; |
|
|
|
} |
|
else |
|
{ |
|
|
|
if( l_point[0] < 0 ) |
|
{ |
|
|
|
l_point[0] = 0; |
|
l_point[1] = (float) height; |
|
l_point[2] = 1; |
|
|
|
icvMultMatrixTVector3( F, l_point, epiline ); |
|
error = icvCrossLines( r_diagonal, epiline, r_point ); |
|
assert( error == CV_NO_ERR ); |
|
|
|
if( r_point[0] >= 0 && r_point[0] <= width ) |
|
{ |
|
|
|
l_start_end[2] = l_point[0]; |
|
l_start_end[3] = l_point[1]; |
|
|
|
r_start_end[2] = r_point[0]; |
|
r_start_end[3] = r_point[1]; |
|
} |
|
else |
|
return CV_BADFACTOR_ERR; |
|
|
|
} |
|
else |
|
{ /* if( l_point[0] > width ) */ |
|
|
|
l_point[0] = (float) width; |
|
l_point[1] = 0; |
|
l_point[2] = 1; |
|
|
|
icvMultMatrixTVector3( F, l_point, epiline ); |
|
error = icvCrossLines( r_diagonal, epiline, r_point ); |
|
assert( error == CV_NO_ERR ); |
|
|
|
if( r_point[0] >= 0 && r_point[0] <= width ) |
|
{ |
|
|
|
l_start_end[2] = l_point[0]; |
|
l_start_end[3] = l_point[1]; |
|
|
|
r_start_end[2] = r_point[0]; |
|
r_start_end[3] = r_point[1]; |
|
} |
|
else |
|
return CV_BADFACTOR_ERR; |
|
} /* if */ |
|
} /* if */ |
|
|
|
return error; |
|
|
|
} /* icvlGetStartEnd1 */ |
|
|
|
/*===========================================================================*/ |
|
CvStatus |
|
icvGetStartEnd2( CvMatrix3 * matrix, CvSize imgSize, float *l_start_end, float *r_start_end ) |
|
{ |
|
|
|
|
|
CvMatrix3 *F; |
|
int width, height; |
|
float l_diagonal[3]; |
|
float r_diagonal[3]; |
|
float l_point[3]={0,0,0}, r_point[3], epiline[3]={0,0,0}; |
|
CvStatus error = CV_OK; |
|
|
|
F = matrix; |
|
|
|
width = imgSize.width - 1; |
|
height = imgSize.height - 1; |
|
|
|
l_diagonal[0] = (float) 1 / width; |
|
l_diagonal[1] = (float) 1 / height; |
|
l_diagonal[2] = -1; |
|
|
|
r_diagonal[0] = (float) height / width; |
|
r_diagonal[1] = -1; |
|
r_diagonal[2] = 0; |
|
|
|
r_point[0] = 0; |
|
r_point[1] = 0; |
|
r_point[2] = 1; |
|
|
|
icvMultMatrixVector3( F, r_point, epiline ); |
|
|
|
error = icvCrossLines( l_diagonal, epiline, l_point ); |
|
|
|
assert( error == CV_NO_ERR ); |
|
|
|
if( l_point[0] >= 0 && l_point[0] <= width ) |
|
{ |
|
|
|
l_start_end[0] = l_point[0]; |
|
l_start_end[1] = l_point[1]; |
|
|
|
r_start_end[0] = r_point[0]; |
|
r_start_end[1] = r_point[1]; |
|
|
|
} |
|
else |
|
{ |
|
|
|
if( l_point[0] < 0 ) |
|
{ |
|
|
|
l_point[0] = 0; |
|
l_point[1] = (float) height; |
|
l_point[2] = 1; |
|
|
|
icvMultMatrixTVector3( F, l_point, epiline ); |
|
error = icvCrossLines( r_diagonal, epiline, r_point ); |
|
|
|
assert( error == CV_NO_ERR ); |
|
|
|
if( r_point[0] >= 0 && r_point[0] <= width ) |
|
{ |
|
|
|
l_start_end[0] = l_point[0]; |
|
l_start_end[1] = l_point[1]; |
|
|
|
r_start_end[0] = r_point[0]; |
|
r_start_end[1] = r_point[1]; |
|
} |
|
else |
|
return CV_BADFACTOR_ERR; |
|
|
|
} |
|
else |
|
{ /* if( l_point[0] > width ) */ |
|
|
|
l_point[0] = (float) width; |
|
l_point[1] = 0; |
|
l_point[2] = 1; |
|
|
|
icvMultMatrixTVector3( F, l_point, epiline ); |
|
error = icvCrossLines( r_diagonal, epiline, r_point ); |
|
assert( error == CV_NO_ERR ); |
|
|
|
if( r_point[0] >= 0 && r_point[0] <= width ) |
|
{ |
|
|
|
l_start_end[0] = l_point[0]; |
|
l_start_end[1] = l_point[1]; |
|
|
|
r_start_end[0] = r_point[0]; |
|
r_start_end[1] = r_point[1]; |
|
} |
|
else |
|
return CV_BADFACTOR_ERR; |
|
} /* if */ |
|
} /* if */ |
|
|
|
r_point[0] = (float) width; |
|
r_point[1] = (float) height; |
|
r_point[2] = 1; |
|
|
|
icvMultMatrixVector3( F, r_point, epiline ); |
|
error = icvCrossLines( l_diagonal, epiline, l_point ); |
|
assert( error == CV_NO_ERR ); |
|
|
|
if( l_point[0] >= 0 && l_point[0] <= width ) |
|
{ |
|
|
|
l_start_end[2] = l_point[0]; |
|
l_start_end[3] = l_point[1]; |
|
|
|
r_start_end[2] = r_point[0]; |
|
r_start_end[3] = r_point[1]; |
|
|
|
} |
|
else |
|
{ |
|
|
|
if( l_point[0] < 0 ) |
|
{ |
|
|
|
l_point[0] = 0; |
|
l_point[1] = (float) height; |
|
l_point[2] = 1; |
|
|
|
icvMultMatrixTVector3( F, l_point, epiline ); |
|
error = icvCrossLines( r_diagonal, epiline, r_point ); |
|
assert( error == CV_NO_ERR ); |
|
|
|
if( r_point[0] >= 0 && r_point[0] <= width ) |
|
{ |
|
|
|
l_start_end[2] = l_point[0]; |
|
l_start_end[3] = l_point[1]; |
|
|
|
r_start_end[2] = r_point[0]; |
|
r_start_end[3] = r_point[1]; |
|
} |
|
else |
|
return CV_BADFACTOR_ERR; |
|
|
|
} |
|
else |
|
{ /* if( l_point[0] > width ) */ |
|
|
|
l_point[0] = (float) width; |
|
l_point[1] = 0; |
|
l_point[2] = 1; |
|
|
|
icvMultMatrixTVector3( F, l_point, epiline ); |
|
error = icvCrossLines( r_diagonal, epiline, r_point ); |
|
assert( error == CV_NO_ERR ); |
|
|
|
if( r_point[0] >= 0 && r_point[0] <= width ) |
|
{ |
|
|
|
l_start_end[2] = l_point[0]; |
|
l_start_end[3] = l_point[1]; |
|
|
|
r_start_end[2] = r_point[0]; |
|
r_start_end[3] = r_point[1]; |
|
} |
|
else |
|
return CV_BADFACTOR_ERR; |
|
} |
|
} /* if */ |
|
|
|
return error; |
|
|
|
} /* icvlGetStartEnd2 */ |
|
|
|
/*===========================================================================*/ |
|
CvStatus |
|
icvGetStartEnd3( CvMatrix3 * matrix, CvSize imgSize, float *l_start_end, float *r_start_end ) |
|
{ |
|
|
|
CvMatrix3 *F; |
|
int width, height; |
|
float l_diagonal[3]; |
|
float r_diagonal[3]; |
|
float l_point[3]={0,0,0}, r_point[3], epiline[3]={0,0,0}; |
|
CvStatus error = CV_OK; |
|
|
|
F = matrix; |
|
|
|
width = imgSize.width - 1; |
|
height = imgSize.height - 1; |
|
|
|
l_diagonal[0] = (float) height / width; |
|
l_diagonal[1] = -1; |
|
l_diagonal[2] = 0; |
|
|
|
r_diagonal[0] = (float) 1 / width; |
|
r_diagonal[1] = (float) 1 / height; |
|
r_diagonal[2] = -1; |
|
|
|
r_point[0] = 0; |
|
r_point[1] = 0; |
|
r_point[2] = 1; |
|
|
|
icvMultMatrixVector3( F, r_point, epiline ); |
|
|
|
error = icvCrossLines( l_diagonal, epiline, l_point ); |
|
|
|
assert( error == CV_NO_ERR ); |
|
|
|
if( l_point[0] >= 0 && l_point[0] <= width ) |
|
{ |
|
|
|
l_start_end[0] = l_point[0]; |
|
l_start_end[1] = l_point[1]; |
|
|
|
r_start_end[0] = r_point[0]; |
|
r_start_end[1] = r_point[1]; |
|
|
|
} |
|
else |
|
{ |
|
|
|
if( l_point[0] < 0 ) |
|
{ |
|
|
|
l_point[0] = 0; |
|
l_point[1] = (float) height; |
|
l_point[2] = 1; |
|
|
|
icvMultMatrixTVector3( F, l_point, epiline ); |
|
error = icvCrossLines( r_diagonal, epiline, r_point ); |
|
assert( error == CV_NO_ERR ); |
|
|
|
if( r_point[0] >= 0 && r_point[0] <= width ) |
|
{ |
|
|
|
l_start_end[0] = l_point[0]; |
|
l_start_end[1] = l_point[1]; |
|
|
|
r_start_end[0] = r_point[0]; |
|
r_start_end[1] = r_point[1]; |
|
} |
|
else |
|
return CV_BADFACTOR_ERR; |
|
|
|
} |
|
else |
|
{ /* if( l_point[0] > width ) */ |
|
|
|
l_point[0] = (float) width; |
|
l_point[1] = 0; |
|
l_point[2] = 1; |
|
|
|
icvMultMatrixTVector3( F, l_point, epiline ); |
|
error = icvCrossLines( r_diagonal, epiline, r_point ); |
|
assert( error == CV_NO_ERR ); |
|
|
|
if( r_point[0] >= 0 && r_point[0] <= width ) |
|
{ |
|
|
|
l_start_end[0] = l_point[0]; |
|
l_start_end[1] = l_point[1]; |
|
|
|
r_start_end[0] = r_point[0]; |
|
r_start_end[1] = r_point[1]; |
|
} |
|
else |
|
return CV_BADFACTOR_ERR; |
|
} /* if */ |
|
} /* if */ |
|
|
|
r_point[0] = (float) width; |
|
r_point[1] = (float) height; |
|
r_point[2] = 1; |
|
|
|
icvMultMatrixVector3( F, r_point, epiline ); |
|
error = icvCrossLines( l_diagonal, epiline, l_point ); |
|
assert( error == CV_NO_ERR ); |
|
|
|
if( l_point[0] >= 0 && l_point[0] <= width ) |
|
{ |
|
|
|
l_start_end[2] = l_point[0]; |
|
l_start_end[3] = l_point[1]; |
|
|
|
r_start_end[2] = r_point[0]; |
|
r_start_end[3] = r_point[1]; |
|
|
|
} |
|
else |
|
{ |
|
|
|
if( l_point[0] < 0 ) |
|
{ |
|
|
|
l_point[0] = 0; |
|
l_point[1] = (float) height; |
|
l_point[2] = 1; |
|
|
|
icvMultMatrixTVector3( F, l_point, epiline ); |
|
|
|
error = icvCrossLines( r_diagonal, epiline, r_point ); |
|
|
|
assert( error == CV_NO_ERR ); |
|
|
|
if( r_point[0] >= 0 && r_point[0] <= width ) |
|
{ |
|
|
|
l_start_end[2] = l_point[0]; |
|
l_start_end[3] = l_point[1]; |
|
|
|
r_start_end[2] = r_point[0]; |
|
r_start_end[3] = r_point[1]; |
|
} |
|
else |
|
return CV_BADFACTOR_ERR; |
|
|
|
} |
|
else |
|
{ /* if( l_point[0] > width ) */ |
|
|
|
l_point[0] = (float) width; |
|
l_point[1] = 0; |
|
l_point[2] = 1; |
|
|
|
icvMultMatrixTVector3( F, l_point, epiline ); |
|
|
|
error = icvCrossLines( r_diagonal, epiline, r_point ); |
|
|
|
assert( error == CV_NO_ERR ); |
|
|
|
if( r_point[0] >= 0 && r_point[0] <= width ) |
|
{ |
|
|
|
l_start_end[2] = l_point[0]; |
|
l_start_end[3] = l_point[1]; |
|
|
|
r_start_end[2] = r_point[0]; |
|
r_start_end[3] = r_point[1]; |
|
} |
|
else |
|
return CV_BADFACTOR_ERR; |
|
} /* if */ |
|
} /* if */ |
|
|
|
return error; |
|
|
|
} /* icvlGetStartEnd3 */ |
|
|
|
/*===========================================================================*/ |
|
CvStatus |
|
icvGetStartEnd4( CvMatrix3 * matrix, CvSize imgSize, float *l_start_end, float *r_start_end ) |
|
{ |
|
CvMatrix3 *F; |
|
int width, height; |
|
float l_diagonal[3]; |
|
float r_diagonal[3]; |
|
float l_point[3], r_point[3], epiline[3]={0,0,0}; |
|
CvStatus error; |
|
|
|
F = matrix; |
|
|
|
width = imgSize.width - 1; |
|
height = imgSize.height - 1; |
|
|
|
l_diagonal[0] = (float) height / width; |
|
l_diagonal[1] = -1; |
|
l_diagonal[2] = 0; |
|
|
|
r_diagonal[0] = (float) height / width; |
|
r_diagonal[1] = -1; |
|
r_diagonal[2] = 0; |
|
|
|
r_point[0] = 0; |
|
r_point[1] = 0; |
|
r_point[2] = 1; |
|
|
|
icvMultMatrixVector3( F, r_point, epiline ); |
|
error = icvCrossLines( l_diagonal, epiline, l_point ); |
|
|
|
if( error != CV_NO_ERR ) |
|
return error; |
|
|
|
if( l_point[0] >= 0 && l_point[0] <= width ) |
|
{ |
|
|
|
l_start_end[0] = l_point[0]; |
|
l_start_end[1] = l_point[1]; |
|
|
|
r_start_end[0] = r_point[0]; |
|
r_start_end[1] = r_point[1]; |
|
|
|
} |
|
else |
|
{ |
|
|
|
if( l_point[0] < 0 ) |
|
{ |
|
|
|
l_point[0] = 0; |
|
l_point[1] = 0; |
|
l_point[2] = 1; |
|
|
|
icvMultMatrixTVector3( F, l_point, epiline ); |
|
error = icvCrossLines( r_diagonal, epiline, r_point ); |
|
assert( error == CV_NO_ERR ); |
|
|
|
if( r_point[0] >= 0 && r_point[0] <= width ) |
|
{ |
|
|
|
l_start_end[0] = l_point[0]; |
|
l_start_end[1] = l_point[1]; |
|
|
|
r_start_end[0] = r_point[0]; |
|
r_start_end[1] = r_point[1]; |
|
} |
|
else |
|
return CV_BADFACTOR_ERR; |
|
|
|
} |
|
else |
|
{ /* if( l_point[0] > width ) */ |
|
|
|
l_point[0] = (float) width; |
|
l_point[1] = (float) height; |
|
l_point[2] = 1; |
|
|
|
icvMultMatrixTVector3( F, l_point, epiline ); |
|
error = icvCrossLines( r_diagonal, epiline, r_point ); |
|
assert( error == CV_NO_ERR ); |
|
|
|
if( r_point[0] >= 0 && r_point[0] <= width ) |
|
{ |
|
|
|
l_start_end[0] = l_point[0]; |
|
l_start_end[1] = l_point[1]; |
|
|
|
r_start_end[0] = r_point[0]; |
|
r_start_end[1] = r_point[1]; |
|
} |
|
else |
|
return CV_BADFACTOR_ERR; |
|
} /* if */ |
|
} /* if */ |
|
|
|
r_point[0] = (float) width; |
|
r_point[1] = (float) height; |
|
r_point[2] = 1; |
|
|
|
icvMultMatrixVector3( F, r_point, epiline ); |
|
error = icvCrossLines( l_diagonal, epiline, l_point ); |
|
assert( error == CV_NO_ERR ); |
|
|
|
if( l_point[0] >= 0 && l_point[0] <= width ) |
|
{ |
|
|
|
l_start_end[2] = l_point[0]; |
|
l_start_end[3] = l_point[1]; |
|
|
|
r_start_end[2] = r_point[0]; |
|
r_start_end[3] = r_point[1]; |
|
|
|
} |
|
else |
|
{ |
|
|
|
if( l_point[0] < 0 ) |
|
{ |
|
|
|
l_point[0] = 0; |
|
l_point[1] = 0; |
|
l_point[2] = 1; |
|
|
|
icvMultMatrixTVector3( F, l_point, epiline ); |
|
error = icvCrossLines( r_diagonal, epiline, r_point ); |
|
assert( error == CV_NO_ERR ); |
|
|
|
if( r_point[0] >= 0 && r_point[0] <= width ) |
|
{ |
|
|
|
l_start_end[2] = l_point[0]; |
|
l_start_end[3] = l_point[1]; |
|
|
|
r_start_end[2] = r_point[0]; |
|
r_start_end[3] = r_point[1]; |
|
} |
|
else |
|
return CV_BADFACTOR_ERR; |
|
|
|
} |
|
else |
|
{ /* if( l_point[0] > width ) */ |
|
|
|
l_point[0] = (float) width; |
|
l_point[1] = (float) height; |
|
l_point[2] = 1; |
|
|
|
icvMultMatrixTVector3( F, l_point, epiline ); |
|
error = icvCrossLines( r_diagonal, epiline, r_point ); |
|
assert( error == CV_NO_ERR ); |
|
|
|
if( r_point[0] >= 0 && r_point[0] <= width ) |
|
{ |
|
|
|
l_start_end[2] = l_point[0]; |
|
l_start_end[3] = l_point[1]; |
|
|
|
r_start_end[2] = r_point[0]; |
|
r_start_end[3] = r_point[1]; |
|
} |
|
else |
|
return CV_BADFACTOR_ERR; |
|
} /* if */ |
|
} /* if */ |
|
|
|
return CV_NO_ERR; |
|
|
|
} /* icvlGetStartEnd4 */ |
|
|
|
/*===========================================================================*/ |
|
CvStatus |
|
icvBuildScanlineLeft( CvMatrix3 * matrix, |
|
CvSize imgSize, |
|
int *scanlines_1, int *scanlines_2, float *l_start_end, int *numlines ) |
|
{ |
|
int prewarp_height; |
|
float l_point[3]; |
|
float r_point[3]; |
|
float height; |
|
float delta_x; |
|
float delta_y; |
|
CvStatus error = CV_OK; |
|
CvMatrix3 *F; |
|
float i; |
|
int offset; |
|
float epiline[3]; |
|
double a, b; |
|
|
|
assert( l_start_end != 0 ); |
|
|
|
a = fabs( l_start_end[2] - l_start_end[0] ); |
|
b = fabs( l_start_end[3] - l_start_end[1] ); |
|
prewarp_height = cvRound( MAX(a, b) ); |
|
|
|
*numlines = prewarp_height; |
|
|
|
if( scanlines_1 == 0 && scanlines_2 == 0 ) |
|
return CV_NO_ERR; |
|
|
|
F = matrix; |
|
|
|
|
|
l_point[2] = 1; |
|
height = (float) prewarp_height; |
|
|
|
delta_x = (l_start_end[2] - l_start_end[0]) / height; |
|
|
|
l_start_end[0] += delta_x; |
|
l_start_end[2] -= delta_x; |
|
|
|
delta_x = (l_start_end[2] - l_start_end[0]) / height; |
|
delta_y = (l_start_end[3] - l_start_end[1]) / height; |
|
|
|
l_start_end[1] += delta_y; |
|
l_start_end[3] -= delta_y; |
|
|
|
delta_y = (l_start_end[3] - l_start_end[1]) / height; |
|
|
|
for( i = 0, offset = 0; i < height; i++, offset += 4 ) |
|
{ |
|
|
|
l_point[0] = l_start_end[0] + i * delta_x; |
|
l_point[1] = l_start_end[1] + i * delta_y; |
|
|
|
icvMultMatrixTVector3( F, l_point, epiline ); |
|
|
|
error = icvGetCrossEpilineFrame( imgSize, epiline, |
|
scanlines_2 + offset, |
|
scanlines_2 + offset + 1, |
|
scanlines_2 + offset + 2, scanlines_2 + offset + 3 ); |
|
|
|
|
|
|
|
assert( error == CV_NO_ERR ); |
|
|
|
r_point[0] = -(float) (*(scanlines_2 + offset)); |
|
r_point[1] = -(float) (*(scanlines_2 + offset + 1)); |
|
r_point[2] = -1; |
|
|
|
icvMultMatrixVector3( F, r_point, epiline ); |
|
|
|
error = icvGetCrossEpilineFrame( imgSize, epiline, |
|
scanlines_1 + offset, |
|
scanlines_1 + offset + 1, |
|
scanlines_1 + offset + 2, scanlines_1 + offset + 3 ); |
|
|
|
assert( error == CV_NO_ERR ); |
|
} /* for */ |
|
|
|
*numlines = prewarp_height; |
|
|
|
return error; |
|
|
|
} /*icvlBuildScanlineLeft */ |
|
|
|
/*===========================================================================*/ |
|
CvStatus |
|
icvBuildScanlineRight( CvMatrix3 * matrix, |
|
CvSize imgSize, |
|
int *scanlines_1, int *scanlines_2, float *r_start_end, int *numlines ) |
|
{ |
|
int prewarp_height; |
|
float l_point[3]; |
|
float r_point[3]; |
|
float height; |
|
float delta_x; |
|
float delta_y; |
|
CvStatus error = CV_OK; |
|
CvMatrix3 *F; |
|
float i; |
|
int offset; |
|
float epiline[3]; |
|
double a, b; |
|
|
|
assert( r_start_end != 0 ); |
|
|
|
a = fabs( r_start_end[2] - r_start_end[0] ); |
|
b = fabs( r_start_end[3] - r_start_end[1] ); |
|
prewarp_height = cvRound( MAX(a, b) ); |
|
|
|
*numlines = prewarp_height; |
|
|
|
if( scanlines_1 == 0 && scanlines_2 == 0 ) |
|
return CV_NO_ERR; |
|
|
|
F = matrix; |
|
|
|
r_point[2] = 1; |
|
height = (float) prewarp_height; |
|
|
|
delta_x = (r_start_end[2] - r_start_end[0]) / height; |
|
|
|
r_start_end[0] += delta_x; |
|
r_start_end[2] -= delta_x; |
|
|
|
delta_x = (r_start_end[2] - r_start_end[0]) / height; |
|
delta_y = (r_start_end[3] - r_start_end[1]) / height; |
|
|
|
r_start_end[1] += delta_y; |
|
r_start_end[3] -= delta_y; |
|
|
|
delta_y = (r_start_end[3] - r_start_end[1]) / height; |
|
|
|
for( i = 0, offset = 0; i < height; i++, offset += 4 ) |
|
{ |
|
|
|
r_point[0] = r_start_end[0] + i * delta_x; |
|
r_point[1] = r_start_end[1] + i * delta_y; |
|
|
|
icvMultMatrixVector3( F, r_point, epiline ); |
|
|
|
error = icvGetCrossEpilineFrame( imgSize, epiline, |
|
scanlines_1 + offset, |
|
scanlines_1 + offset + 1, |
|
scanlines_1 + offset + 2, scanlines_1 + offset + 3 ); |
|
|
|
|
|
assert( error == CV_NO_ERR ); |
|
|
|
l_point[0] = -(float) (*(scanlines_1 + offset)); |
|
l_point[1] = -(float) (*(scanlines_1 + offset + 1)); |
|
|
|
l_point[2] = -1; |
|
|
|
icvMultMatrixTVector3( F, l_point, epiline ); |
|
error = icvGetCrossEpilineFrame( imgSize, epiline, |
|
scanlines_2 + offset, |
|
scanlines_2 + offset + 1, |
|
scanlines_2 + offset + 2, scanlines_2 + offset + 3 ); |
|
|
|
|
|
assert( error == CV_NO_ERR ); |
|
} /* for */ |
|
|
|
*numlines = prewarp_height; |
|
|
|
return error; |
|
|
|
} /*icvlBuildScanlineRight */ |
|
|
|
/*===========================================================================*/ |
|
#define Abs(x) ( (x)<0 ? -(x):(x) ) |
|
#define Sgn(x) ( (x)<0 ? -1:1 ) /* Sgn(0) = 1 ! */ |
|
|
|
static CvStatus |
|
icvBuildScanline( CvSize imgSize, float *epiline, float *kx, float *cx, float *ky, float *cy ) |
|
{ |
|
float point[4][2], d; |
|
int sign[4], i; |
|
|
|
float width, height; |
|
|
|
if( REAL_ZERO( epiline[0] ) && REAL_ZERO( epiline[1] )) |
|
return CV_BADFACTOR_ERR; |
|
|
|
width = (float) imgSize.width - 1; |
|
height = (float) imgSize.height - 1; |
|
|
|
sign[0] = Sgn( epiline[2] ); |
|
sign[1] = Sgn( epiline[0] * width + epiline[2] ); |
|
sign[2] = Sgn( epiline[1] * height + epiline[2] ); |
|
sign[3] = Sgn( epiline[0] * width + epiline[1] * height + epiline[2] ); |
|
|
|
i = 0; |
|
|
|
if( sign[0] * sign[1] < 0 ) |
|
{ |
|
|
|
point[i][0] = -epiline[2] / epiline[0]; |
|
point[i][1] = 0; |
|
i++; |
|
} /* if */ |
|
|
|
if( sign[0] * sign[2] < 0 ) |
|
{ |
|
|
|
point[i][0] = 0; |
|
point[i][1] = -epiline[2] / epiline[1]; |
|
i++; |
|
} /* if */ |
|
|
|
if( sign[1] * sign[3] < 0 ) |
|
{ |
|
|
|
point[i][0] = width; |
|
point[i][1] = -(epiline[0] * width + epiline[2]) / epiline[1]; |
|
i++; |
|
} /* if */ |
|
|
|
if( sign[2] * sign[3] < 0 ) |
|
{ |
|
|
|
point[i][0] = -(epiline[1] * height + epiline[2]) / epiline[0]; |
|
point[i][1] = height; |
|
} /* if */ |
|
|
|
if( sign[0] == sign[1] && sign[0] == sign[2] && sign[0] == sign[3] ) |
|
return CV_BADFACTOR_ERR; |
|
|
|
if( !kx && !ky && !cx && !cy ) |
|
return CV_BADFACTOR_ERR; |
|
|
|
if( kx && ky ) |
|
{ |
|
|
|
*kx = -epiline[1]; |
|
*ky = epiline[0]; |
|
|
|
d = (float) MAX( Abs( *kx ), Abs( *ky )); |
|
|
|
*kx /= d; |
|
*ky /= d; |
|
} /* if */ |
|
|
|
if( cx && cy ) |
|
{ |
|
|
|
if( (point[0][0] - point[1][0]) * epiline[1] + |
|
(point[1][1] - point[0][1]) * epiline[0] > 0 ) |
|
{ |
|
|
|
*cx = point[0][0]; |
|
*cy = point[0][1]; |
|
|
|
} |
|
else |
|
{ |
|
|
|
*cx = point[1][0]; |
|
*cy = point[1][1]; |
|
} /* if */ |
|
} /* if */ |
|
|
|
return CV_NO_ERR; |
|
|
|
} /* icvlBuildScanline */ |
|
|
|
/*===========================================================================*/ |
|
CvStatus |
|
icvGetCoefficientStereo( CvMatrix3 * matrix, |
|
CvSize imgSize, |
|
float *l_epipole, |
|
float *r_epipole, int *scanlines_1, int *scanlines_2, int *numlines ) |
|
{ |
|
int i, j, turn; |
|
float width, height; |
|
float l_angle[2], r_angle[2]; |
|
float l_radius, r_radius; |
|
float r_point[3], l_point[3]; |
|
float l_epiline[3], r_epiline[3], x, y; |
|
float swap; |
|
|
|
float radius1, radius2, radius3, radius4; |
|
|
|
float l_start_end[4], r_start_end[4]; |
|
CvMatrix3 *F; |
|
CvStatus error; |
|
float Region[3][3][4] = { |
|
{{0.f, 0.f, 1.f, 1.f}, {0.f, 1.f, 1.f, 1.f}, {0.f, 1.f, 1.f, 0.f}}, |
|
{{0.f, 0.f, 0.f, 1.f}, {2.f, 2.f, 2.f, 2.f}, {1.f, 1.f, 1.f, 0.f}}, |
|
{{1.f, 0.f, 0.f, 1.f}, {1.f, 0.f, 0.f, 0.f}, {1.f, 1.f, 0.f, 0.f}} |
|
}; |
|
|
|
|
|
width = (float) imgSize.width - 1; |
|
height = (float) imgSize.height - 1; |
|
|
|
F = matrix; |
|
|
|
if( F->m[0][0] * F->m[1][1] - F->m[1][0] * F->m[0][1] > 0 ) |
|
turn = 1; |
|
else |
|
turn = -1; |
|
|
|
if( l_epipole[0] < 0 ) |
|
i = 0; |
|
else if( l_epipole[0] < width ) |
|
i = 1; |
|
else |
|
i = 2; |
|
|
|
if( l_epipole[1] < 0 ) |
|
j = 2; |
|
else if( l_epipole[1] < height ) |
|
j = 1; |
|
else |
|
j = 0; |
|
|
|
l_start_end[0] = Region[j][i][0]; |
|
l_start_end[1] = Region[j][i][1]; |
|
l_start_end[2] = Region[j][i][2]; |
|
l_start_end[3] = Region[j][i][3]; |
|
|
|
if( r_epipole[0] < 0 ) |
|
i = 0; |
|
else if( r_epipole[0] < width ) |
|
i = 1; |
|
else |
|
i = 2; |
|
|
|
if( r_epipole[1] < 0 ) |
|
j = 2; |
|
else if( r_epipole[1] < height ) |
|
j = 1; |
|
else |
|
j = 0; |
|
|
|
r_start_end[0] = Region[j][i][0]; |
|
r_start_end[1] = Region[j][i][1]; |
|
r_start_end[2] = Region[j][i][2]; |
|
r_start_end[3] = Region[j][i][3]; |
|
|
|
radius1 = l_epipole[0] * l_epipole[0] + (l_epipole[1] - height) * (l_epipole[1] - height); |
|
|
|
radius2 = (l_epipole[0] - width) * (l_epipole[0] - width) + |
|
(l_epipole[1] - height) * (l_epipole[1] - height); |
|
|
|
radius3 = l_epipole[0] * l_epipole[0] + l_epipole[1] * l_epipole[1]; |
|
|
|
radius4 = (l_epipole[0] - width) * (l_epipole[0] - width) + l_epipole[1] * l_epipole[1]; |
|
|
|
|
|
l_radius = (float) sqrt( (double)MAX( MAX( radius1, radius2 ), MAX( radius3, radius4 ))); |
|
|
|
radius1 = r_epipole[0] * r_epipole[0] + (r_epipole[1] - height) * (r_epipole[1] - height); |
|
|
|
radius2 = (r_epipole[0] - width) * (r_epipole[0] - width) + |
|
(r_epipole[1] - height) * (r_epipole[1] - height); |
|
|
|
radius3 = r_epipole[0] * r_epipole[0] + r_epipole[1] * r_epipole[1]; |
|
|
|
radius4 = (r_epipole[0] - width) * (r_epipole[0] - width) + r_epipole[1] * r_epipole[1]; |
|
|
|
|
|
r_radius = (float) sqrt( (double)MAX( MAX( radius1, radius2 ), MAX( radius3, radius4 ))); |
|
|
|
if( l_start_end[0] == 2 && r_start_end[0] == 2 ) |
|
{ |
|
if( l_radius > r_radius ) |
|
{ |
|
|
|
l_angle[0] = 0.0f; |
|
l_angle[1] = (float) CV_PI; |
|
|
|
error = icvBuildScanlineLeftStereo( imgSize, |
|
matrix, |
|
l_epipole, |
|
l_angle, |
|
l_radius, scanlines_1, scanlines_2, numlines ); |
|
|
|
return error; |
|
} |
|
else |
|
{ |
|
|
|
r_angle[0] = 0.0f; |
|
r_angle[1] = (float) CV_PI; |
|
|
|
error = icvBuildScanlineRightStereo( imgSize, |
|
matrix, |
|
r_epipole, |
|
r_angle, |
|
r_radius, |
|
scanlines_1, scanlines_2, numlines ); |
|
|
|
return error; |
|
} /* if */ |
|
} |
|
|
|
if( l_start_end[0] == 2 ) |
|
{ |
|
|
|
r_angle[0] = (float) atan2( r_start_end[1] * height - r_epipole[1], |
|
r_start_end[0] * width - r_epipole[0] ); |
|
r_angle[1] = (float) atan2( r_start_end[3] * height - r_epipole[1], |
|
r_start_end[2] * width - r_epipole[0] ); |
|
|
|
if( r_angle[0] > r_angle[1] ) |
|
r_angle[1] += (float) (CV_PI * 2); |
|
|
|
error = icvBuildScanlineRightStereo( imgSize, |
|
matrix, |
|
r_epipole, |
|
r_angle, |
|
r_radius, scanlines_1, scanlines_2, numlines ); |
|
|
|
return error; |
|
} /* if */ |
|
|
|
if( r_start_end[0] == 2 ) |
|
{ |
|
|
|
l_point[0] = l_start_end[0] * width; |
|
l_point[1] = l_start_end[1] * height; |
|
l_point[2] = 1; |
|
|
|
icvMultMatrixTVector3( F, l_point, r_epiline ); |
|
|
|
l_angle[0] = (float) atan2( l_start_end[1] * height - l_epipole[1], |
|
l_start_end[0] * width - l_epipole[0] ); |
|
l_angle[1] = (float) atan2( l_start_end[3] * height - l_epipole[1], |
|
l_start_end[2] * width - l_epipole[0] ); |
|
|
|
if( l_angle[0] > l_angle[1] ) |
|
l_angle[1] += (float) (CV_PI * 2); |
|
|
|
error = icvBuildScanlineLeftStereo( imgSize, |
|
matrix, |
|
l_epipole, |
|
l_angle, |
|
l_radius, scanlines_1, scanlines_2, numlines ); |
|
|
|
return error; |
|
|
|
} /* if */ |
|
|
|
l_start_end[0] *= width; |
|
l_start_end[1] *= height; |
|
l_start_end[2] *= width; |
|
l_start_end[3] *= height; |
|
|
|
r_start_end[0] *= width; |
|
r_start_end[1] *= height; |
|
r_start_end[2] *= width; |
|
r_start_end[3] *= height; |
|
|
|
r_point[0] = r_start_end[0]; |
|
r_point[1] = r_start_end[1]; |
|
r_point[2] = 1; |
|
|
|
icvMultMatrixVector3( F, r_point, l_epiline ); |
|
error = icvBuildScanline( imgSize, l_epiline, 0, &x, 0, &y ); |
|
|
|
if( error == CV_NO_ERR ) |
|
{ |
|
|
|
l_angle[0] = (float) atan2( y - l_epipole[1], x - l_epipole[0] ); |
|
|
|
r_angle[0] = (float) atan2( r_point[1] - r_epipole[1], r_point[0] - r_epipole[0] ); |
|
|
|
} |
|
else |
|
{ |
|
|
|
if( turn == 1 ) |
|
{ |
|
|
|
l_point[0] = l_start_end[0]; |
|
l_point[1] = l_start_end[1]; |
|
|
|
} |
|
else |
|
{ |
|
|
|
l_point[0] = l_start_end[2]; |
|
l_point[1] = l_start_end[3]; |
|
} /* if */ |
|
|
|
l_point[2] = 1; |
|
|
|
icvMultMatrixTVector3( F, l_point, r_epiline ); |
|
error = icvBuildScanline( imgSize, r_epiline, 0, &x, 0, &y ); |
|
|
|
if( error == CV_NO_ERR ) |
|
{ |
|
|
|
r_angle[0] = (float) atan2( y - r_epipole[1], x - r_epipole[0] ); |
|
|
|
l_angle[0] = (float) atan2( l_point[1] - l_epipole[1], l_point[0] - l_epipole[0] ); |
|
|
|
} |
|
else |
|
return CV_BADFACTOR_ERR; |
|
} /* if */ |
|
|
|
r_point[0] = r_start_end[2]; |
|
r_point[1] = r_start_end[3]; |
|
r_point[2] = 1; |
|
|
|
icvMultMatrixVector3( F, r_point, l_epiline ); |
|
error = icvBuildScanline( imgSize, l_epiline, 0, &x, 0, &y ); |
|
|
|
if( error == CV_NO_ERR ) |
|
{ |
|
|
|
l_angle[1] = (float) atan2( y - l_epipole[1], x - l_epipole[0] ); |
|
|
|
r_angle[1] = (float) atan2( r_point[1] - r_epipole[1], r_point[0] - r_epipole[0] ); |
|
|
|
} |
|
else |
|
{ |
|
|
|
if( turn == 1 ) |
|
{ |
|
|
|
l_point[0] = l_start_end[2]; |
|
l_point[1] = l_start_end[3]; |
|
|
|
} |
|
else |
|
{ |
|
|
|
l_point[0] = l_start_end[0]; |
|
l_point[1] = l_start_end[1]; |
|
} /* if */ |
|
|
|
l_point[2] = 1; |
|
|
|
icvMultMatrixTVector3( F, l_point, r_epiline ); |
|
error = icvBuildScanline( imgSize, r_epiline, 0, &x, 0, &y ); |
|
|
|
if( error == CV_NO_ERR ) |
|
{ |
|
|
|
r_angle[1] = (float) atan2( y - r_epipole[1], x - r_epipole[0] ); |
|
|
|
l_angle[1] = (float) atan2( l_point[1] - l_epipole[1], l_point[0] - l_epipole[0] ); |
|
|
|
} |
|
else |
|
return CV_BADFACTOR_ERR; |
|
} /* if */ |
|
|
|
if( l_angle[0] > l_angle[1] ) |
|
{ |
|
|
|
swap = l_angle[0]; |
|
l_angle[0] = l_angle[1]; |
|
l_angle[1] = swap; |
|
} /* if */ |
|
|
|
if( l_angle[1] - l_angle[0] > CV_PI ) |
|
{ |
|
|
|
swap = l_angle[0]; |
|
l_angle[0] = l_angle[1]; |
|
l_angle[1] = swap + (float) (CV_PI * 2); |
|
} /* if */ |
|
|
|
if( r_angle[0] > r_angle[1] ) |
|
{ |
|
|
|
swap = r_angle[0]; |
|
r_angle[0] = r_angle[1]; |
|
r_angle[1] = swap; |
|
} /* if */ |
|
|
|
if( r_angle[1] - r_angle[0] > CV_PI ) |
|
{ |
|
|
|
swap = r_angle[0]; |
|
r_angle[0] = r_angle[1]; |
|
r_angle[1] = swap + (float) (CV_PI * 2); |
|
} /* if */ |
|
|
|
if( l_radius * (l_angle[1] - l_angle[0]) > r_radius * (r_angle[1] - r_angle[0]) ) |
|
error = icvBuildScanlineLeftStereo( imgSize, |
|
matrix, |
|
l_epipole, |
|
l_angle, |
|
l_radius, scanlines_1, scanlines_2, numlines ); |
|
|
|
else |
|
error = icvBuildScanlineRightStereo( imgSize, |
|
matrix, |
|
r_epipole, |
|
r_angle, |
|
r_radius, scanlines_1, scanlines_2, numlines ); |
|
|
|
|
|
return error; |
|
|
|
} /* icvGetCoefficientStereo */ |
|
|
|
/*===========================================================================*/ |
|
CvStatus |
|
icvBuildScanlineLeftStereo( CvSize imgSize, |
|
CvMatrix3 * matrix, |
|
float *l_epipole, |
|
float *l_angle, |
|
float l_radius, int *scanlines_1, int *scanlines_2, int *numlines ) |
|
{ |
|
//int prewarp_width; |
|
int prewarp_height; |
|
float i; |
|
int offset; |
|
float height; |
|
float delta; |
|
float angle; |
|
float l_point[3]; |
|
float l_epiline[3]; |
|
float r_epiline[3]; |
|
CvStatus error = CV_OK; |
|
CvMatrix3 *F; |
|
|
|
|
|
assert( l_angle != 0 && !REAL_ZERO( l_radius )); |
|
|
|
/*prewarp_width = (int) (sqrt( image_width * image_width + |
|
image_height * image_height ) + 1);*/ |
|
|
|
prewarp_height = (int) (l_radius * (l_angle[1] - l_angle[0])); |
|
|
|
*numlines = prewarp_height; |
|
|
|
if( scanlines_1 == 0 && scanlines_2 == 0 ) |
|
return CV_NO_ERR; |
|
|
|
F = matrix; |
|
|
|
l_point[2] = 1; |
|
height = (float) prewarp_height; |
|
|
|
delta = (l_angle[1] - l_angle[0]) / height; |
|
|
|
l_angle[0] += delta; |
|
l_angle[1] -= delta; |
|
|
|
delta = (l_angle[1] - l_angle[0]) / height; |
|
|
|
for( i = 0, offset = 0; i < height; i++, offset += 4 ) |
|
{ |
|
|
|
angle = l_angle[0] + i * delta; |
|
|
|
l_point[0] = l_epipole[0] + l_radius * (float) cos( angle ); |
|
l_point[1] = l_epipole[1] + l_radius * (float) sin( angle ); |
|
|
|
icvMultMatrixTVector3( F, l_point, r_epiline ); |
|
|
|
error = icvGetCrossEpilineFrame( imgSize, r_epiline, |
|
scanlines_2 + offset, |
|
scanlines_2 + offset + 1, |
|
scanlines_2 + offset + 2, scanlines_2 + offset + 3 ); |
|
|
|
|
|
l_epiline[0] = l_point[1] - l_epipole[1]; |
|
l_epiline[1] = l_epipole[0] - l_point[0]; |
|
l_epiline[2] = l_point[0] * l_epipole[1] - l_point[1] * l_epipole[0]; |
|
|
|
if( Sgn( l_epiline[0] * r_epiline[0] + l_epiline[1] * r_epiline[1] ) < 0 ) |
|
{ |
|
|
|
l_epiline[0] = -l_epiline[0]; |
|
l_epiline[1] = -l_epiline[1]; |
|
l_epiline[2] = -l_epiline[2]; |
|
} /* if */ |
|
|
|
error = icvGetCrossEpilineFrame( imgSize, l_epiline, |
|
scanlines_1 + offset, |
|
scanlines_1 + offset + 1, |
|
scanlines_1 + offset + 2, scanlines_1 + offset + 3 ); |
|
|
|
} /* for */ |
|
|
|
*numlines = prewarp_height; |
|
|
|
return error; |
|
|
|
} /* icvlBuildScanlineLeftStereo */ |
|
|
|
/*===========================================================================*/ |
|
CvStatus |
|
icvBuildScanlineRightStereo( CvSize imgSize, |
|
CvMatrix3 * matrix, |
|
float *r_epipole, |
|
float *r_angle, |
|
float r_radius, |
|
int *scanlines_1, int *scanlines_2, int *numlines ) |
|
{ |
|
//int prewarp_width; |
|
int prewarp_height; |
|
float i; |
|
int offset; |
|
float height; |
|
float delta; |
|
float angle; |
|
float r_point[3]; |
|
float l_epiline[3]; |
|
float r_epiline[3]; |
|
CvStatus error = CV_OK; |
|
CvMatrix3 *F; |
|
|
|
assert( r_angle != 0 && !REAL_ZERO( r_radius )); |
|
|
|
/*prewarp_width = (int) (sqrt( image_width * image_width + |
|
image_height * image_height ) + 1);*/ |
|
|
|
prewarp_height = (int) (r_radius * (r_angle[1] - r_angle[0])); |
|
|
|
*numlines = prewarp_height; |
|
|
|
if( scanlines_1 == 0 && scanlines_2 == 0 ) |
|
return CV_NO_ERR; |
|
|
|
F = matrix; |
|
|
|
r_point[2] = 1; |
|
height = (float) prewarp_height; |
|
|
|
delta = (r_angle[1] - r_angle[0]) / height; |
|
|
|
r_angle[0] += delta; |
|
r_angle[1] -= delta; |
|
|
|
delta = (r_angle[1] - r_angle[0]) / height; |
|
|
|
for( i = 0, offset = 0; i < height; i++, offset += 4 ) |
|
{ |
|
|
|
angle = r_angle[0] + i * delta; |
|
|
|
r_point[0] = r_epipole[0] + r_radius * (float) cos( angle ); |
|
r_point[1] = r_epipole[1] + r_radius * (float) sin( angle ); |
|
|
|
icvMultMatrixVector3( F, r_point, l_epiline ); |
|
|
|
error = icvGetCrossEpilineFrame( imgSize, l_epiline, |
|
scanlines_1 + offset, |
|
scanlines_1 + offset + 1, |
|
scanlines_1 + offset + 2, scanlines_1 + offset + 3 ); |
|
|
|
assert( error == CV_NO_ERR ); |
|
|
|
r_epiline[0] = r_point[1] - r_epipole[1]; |
|
r_epiline[1] = r_epipole[0] - r_point[0]; |
|
r_epiline[2] = r_point[0] * r_epipole[1] - r_point[1] * r_epipole[0]; |
|
|
|
if( Sgn( l_epiline[0] * r_epiline[0] + l_epiline[1] * r_epiline[1] ) < 0 ) |
|
{ |
|
|
|
r_epiline[0] = -r_epiline[0]; |
|
r_epiline[1] = -r_epiline[1]; |
|
r_epiline[2] = -r_epiline[2]; |
|
} /* if */ |
|
|
|
error = icvGetCrossEpilineFrame( imgSize, r_epiline, |
|
scanlines_2 + offset, |
|
scanlines_2 + offset + 1, |
|
scanlines_2 + offset + 2, scanlines_2 + offset + 3 ); |
|
|
|
assert( error == CV_NO_ERR ); |
|
} /* for */ |
|
|
|
*numlines = prewarp_height; |
|
|
|
return error; |
|
|
|
} /* icvlBuildScanlineRightStereo */ |
|
|
|
/*===========================================================================*/ |
|
CvStatus |
|
icvGetCrossEpilineFrame( CvSize imgSize, float *epiline, int *x1, int *y1, int *x2, int *y2 ) |
|
{ |
|
int tx, ty; |
|
float point[2][2]; |
|
int sign[4], i; |
|
float width, height; |
|
double tmpvalue; |
|
|
|
if( REAL_ZERO( epiline[0] ) && REAL_ZERO( epiline[1] )) |
|
return CV_BADFACTOR_ERR; |
|
|
|
width = (float) imgSize.width - 1; |
|
height = (float) imgSize.height - 1; |
|
|
|
tmpvalue = epiline[2]; |
|
sign[0] = SIGN( tmpvalue ); |
|
|
|
tmpvalue = epiline[0] * width + epiline[2]; |
|
sign[1] = SIGN( tmpvalue ); |
|
|
|
tmpvalue = epiline[1] * height + epiline[2]; |
|
sign[2] = SIGN( tmpvalue ); |
|
|
|
tmpvalue = epiline[0] * width + epiline[1] * height + epiline[2]; |
|
sign[3] = SIGN( tmpvalue ); |
|
|
|
i = 0; |
|
for( tx = 0; tx < 2; tx++ ) |
|
{ |
|
for( ty = 0; ty < 2; ty++ ) |
|
{ |
|
|
|
if( sign[ty * 2 + tx] == 0 ) |
|
{ |
|
|
|
point[i][0] = width * tx; |
|
point[i][1] = height * ty; |
|
i++; |
|
|
|
} /* if */ |
|
} /* for */ |
|
} /* for */ |
|
|
|
if( sign[0] * sign[1] < 0 ) |
|
{ |
|
point[i][0] = -epiline[2] / epiline[0]; |
|
point[i][1] = 0; |
|
i++; |
|
} /* if */ |
|
|
|
if( sign[0] * sign[2] < 0 ) |
|
{ |
|
point[i][0] = 0; |
|
point[i][1] = -epiline[2] / epiline[1]; |
|
i++; |
|
} /* if */ |
|
|
|
if( sign[1] * sign[3] < 0 ) |
|
{ |
|
point[i][0] = width; |
|
point[i][1] = -(epiline[0] * width + epiline[2]) / epiline[1]; |
|
i++; |
|
} /* if */ |
|
|
|
if( sign[2] * sign[3] < 0 ) |
|
{ |
|
point[i][0] = -(epiline[1] * height + epiline[2]) / epiline[0]; |
|
point[i][1] = height; |
|
} /* if */ |
|
|
|
if( sign[0] == sign[1] && sign[0] == sign[2] && sign[0] == sign[3] ) |
|
return CV_BADFACTOR_ERR; |
|
|
|
if( (point[0][0] - point[1][0]) * epiline[1] + |
|
(point[1][1] - point[0][1]) * epiline[0] > 0 ) |
|
{ |
|
*x1 = (int) point[0][0]; |
|
*y1 = (int) point[0][1]; |
|
*x2 = (int) point[1][0]; |
|
*y2 = (int) point[1][1]; |
|
} |
|
else |
|
{ |
|
*x1 = (int) point[1][0]; |
|
*y1 = (int) point[1][1]; |
|
*x2 = (int) point[0][0]; |
|
*y2 = (int) point[0][1]; |
|
} /* if */ |
|
|
|
return CV_NO_ERR; |
|
} /* icvlGetCrossEpilineFrame */ |
|
|
|
/*=====================================================================================*/ |
|
|
|
CV_IMPL void |
|
cvMakeScanlines( const CvMatrix3* matrix, CvSize imgSize, |
|
int *scanlines_1, int *scanlines_2, |
|
int *lens_1, int *lens_2, int *numlines ) |
|
{ |
|
IPPI_CALL( icvMakeScanlines( (CvMatrix3*)matrix, imgSize, scanlines_1, |
|
scanlines_2, lens_1, lens_2, numlines )); |
|
} |
|
|
|
/*F/////////////////////////////////////////////////////////////////////////////////////// |
|
// Name: cvDeleteMoire |
|
// Purpose: The functions |
|
// Context: |
|
// Parameters: |
|
// |
|
// Notes: |
|
//F*/ |
|
CV_IMPL void |
|
cvMakeAlphaScanlines( int *scanlines_1, |
|
int *scanlines_2, |
|
int *scanlines_a, int *lens, int numlines, float alpha ) |
|
{ |
|
IPPI_CALL( icvMakeAlphaScanlines( scanlines_1, scanlines_2, scanlines_a, |
|
lens, numlines, alpha )); |
|
}
|
|
|