mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
215 lines
8.1 KiB
215 lines
8.1 KiB
/* |
|
* Author: Samyak Datta (datta[dot]samyak[at]gmail.com) |
|
* |
|
* A program to detect facial feature points using |
|
* Haarcascade classifiers for face, eyes, nose and mouth |
|
* |
|
*/ |
|
|
|
#include "opencv2/objdetect.hpp" |
|
#include "opencv2/highgui.hpp" |
|
#include "opencv2/imgproc.hpp" |
|
|
|
#include <iostream> |
|
#include <cstdio> |
|
#include <vector> |
|
#include <algorithm> |
|
|
|
using namespace std; |
|
using namespace cv; |
|
|
|
// Functions for facial feature detection |
|
static void help(); |
|
static void detectFaces(Mat&, vector<Rect_<int> >&, string); |
|
static void detectEyes(Mat&, vector<Rect_<int> >&, string); |
|
static void detectNose(Mat&, vector<Rect_<int> >&, string); |
|
static void detectMouth(Mat&, vector<Rect_<int> >&, string); |
|
static void detectFacialFeaures(Mat&, const vector<Rect_<int> >, string, string, string); |
|
|
|
string input_image_path; |
|
string face_cascade_path, eye_cascade_path, nose_cascade_path, mouth_cascade_path; |
|
|
|
int main(int argc, char** argv) |
|
{ |
|
cv::CommandLineParser parser(argc, argv, |
|
"{eyes||}{nose||}{mouth||}{help h||}{@image||}{@facexml||}"); |
|
if (parser.has("help")) |
|
{ |
|
help(); |
|
return 0; |
|
} |
|
input_image_path = parser.get<string>("@image"); |
|
face_cascade_path = parser.get<string>("@facexml"); |
|
eye_cascade_path = parser.has("eyes") ? parser.get<string>("eyes") : ""; |
|
nose_cascade_path = parser.has("nose") ? parser.get<string>("nose") : ""; |
|
mouth_cascade_path = parser.has("mouth") ? parser.get<string>("mouth") : ""; |
|
if (input_image_path.empty() || face_cascade_path.empty()) |
|
{ |
|
cout << "IMAGE or FACE_CASCADE are not specified"; |
|
return 1; |
|
} |
|
// Load image and cascade classifier files |
|
Mat image; |
|
image = imread(samples::findFile(input_image_path)); |
|
|
|
// Detect faces and facial features |
|
vector<Rect_<int> > faces; |
|
detectFaces(image, faces, face_cascade_path); |
|
detectFacialFeaures(image, faces, eye_cascade_path, nose_cascade_path, mouth_cascade_path); |
|
|
|
imshow("Result", image); |
|
|
|
waitKey(0); |
|
return 0; |
|
} |
|
|
|
static void help() |
|
{ |
|
cout << "\nThis file demonstrates facial feature points detection using Haarcascade classifiers.\n" |
|
"The program detects a face and eyes, nose and mouth inside the face." |
|
"The code has been tested on the Japanese Female Facial Expression (JAFFE) database and found" |
|
"to give reasonably accurate results. \n"; |
|
|
|
cout << "\nUSAGE: ./cpp-example-facial_features [IMAGE] [FACE_CASCADE] [OPTIONS]\n" |
|
"IMAGE\n\tPath to the image of a face taken as input.\n" |
|
"FACE_CASCSDE\n\t Path to a haarcascade classifier for face detection.\n" |
|
"OPTIONS: \nThere are 3 options available which are described in detail. There must be a " |
|
"space between the option and it's argument (All three options accept arguments).\n" |
|
"\t-eyes=<eyes_cascade> : Specify the haarcascade classifier for eye detection.\n" |
|
"\t-nose=<nose_cascade> : Specify the haarcascade classifier for nose detection.\n" |
|
"\t-mouth=<mouth-cascade> : Specify the haarcascade classifier for mouth detection.\n"; |
|
|
|
|
|
cout << "EXAMPLE:\n" |
|
"(1) ./cpp-example-facial_features image.jpg face.xml -eyes=eyes.xml -mouth=mouth.xml\n" |
|
"\tThis will detect the face, eyes and mouth in image.jpg.\n" |
|
"(2) ./cpp-example-facial_features image.jpg face.xml -nose=nose.xml\n" |
|
"\tThis will detect the face and nose in image.jpg.\n" |
|
"(3) ./cpp-example-facial_features image.jpg face.xml\n" |
|
"\tThis will detect only the face in image.jpg.\n"; |
|
|
|
cout << " \n\nThe classifiers for face and eyes can be downloaded from : " |
|
" \nhttps://github.com/opencv/opencv/tree/3.4/data/haarcascades"; |
|
|
|
cout << "\n\nThe classifiers for nose and mouth can be downloaded from : " |
|
" \nhttps://github.com/opencv/opencv_contrib/tree/3.4/modules/face/data/cascades\n"; |
|
} |
|
|
|
static void detectFaces(Mat& img, vector<Rect_<int> >& faces, string cascade_path) |
|
{ |
|
CascadeClassifier face_cascade; |
|
face_cascade.load(samples::findFile(cascade_path)); |
|
|
|
if (!face_cascade.empty()) |
|
face_cascade.detectMultiScale(img, faces, 1.15, 3, 0|CASCADE_SCALE_IMAGE, Size(30, 30)); |
|
return; |
|
} |
|
|
|
static void detectFacialFeaures(Mat& img, const vector<Rect_<int> > faces, string eye_cascade, |
|
string nose_cascade, string mouth_cascade) |
|
{ |
|
for(unsigned int i = 0; i < faces.size(); ++i) |
|
{ |
|
// Mark the bounding box enclosing the face |
|
Rect face = faces[i]; |
|
rectangle(img, Point(face.x, face.y), Point(face.x+face.width, face.y+face.height), |
|
Scalar(255, 0, 0), 1, 4); |
|
|
|
// Eyes, nose and mouth will be detected inside the face (region of interest) |
|
Mat ROI = img(Rect(face.x, face.y, face.width, face.height)); |
|
|
|
// Check if all features (eyes, nose and mouth) are being detected |
|
bool is_full_detection = false; |
|
if( (!eye_cascade.empty()) && (!nose_cascade.empty()) && (!mouth_cascade.empty()) ) |
|
is_full_detection = true; |
|
|
|
// Detect eyes if classifier provided by the user |
|
if(!eye_cascade.empty()) |
|
{ |
|
vector<Rect_<int> > eyes; |
|
detectEyes(ROI, eyes, eye_cascade); |
|
|
|
// Mark points corresponding to the centre of the eyes |
|
for(unsigned int j = 0; j < eyes.size(); ++j) |
|
{ |
|
Rect e = eyes[j]; |
|
circle(ROI, Point(e.x+e.width/2, e.y+e.height/2), 3, Scalar(0, 255, 0), -1, 8); |
|
/* rectangle(ROI, Point(e.x, e.y), Point(e.x+e.width, e.y+e.height), |
|
Scalar(0, 255, 0), 1, 4); */ |
|
} |
|
} |
|
|
|
// Detect nose if classifier provided by the user |
|
double nose_center_height = 0.0; |
|
if(!nose_cascade.empty()) |
|
{ |
|
vector<Rect_<int> > nose; |
|
detectNose(ROI, nose, nose_cascade); |
|
|
|
// Mark points corresponding to the centre (tip) of the nose |
|
for(unsigned int j = 0; j < nose.size(); ++j) |
|
{ |
|
Rect n = nose[j]; |
|
circle(ROI, Point(n.x+n.width/2, n.y+n.height/2), 3, Scalar(0, 255, 0), -1, 8); |
|
nose_center_height = (n.y + n.height/2); |
|
} |
|
} |
|
|
|
// Detect mouth if classifier provided by the user |
|
double mouth_center_height = 0.0; |
|
if(!mouth_cascade.empty()) |
|
{ |
|
vector<Rect_<int> > mouth; |
|
detectMouth(ROI, mouth, mouth_cascade); |
|
|
|
for(unsigned int j = 0; j < mouth.size(); ++j) |
|
{ |
|
Rect m = mouth[j]; |
|
mouth_center_height = (m.y + m.height/2); |
|
|
|
// The mouth should lie below the nose |
|
if( (is_full_detection) && (mouth_center_height > nose_center_height) ) |
|
{ |
|
rectangle(ROI, Point(m.x, m.y), Point(m.x+m.width, m.y+m.height), Scalar(0, 255, 0), 1, 4); |
|
} |
|
else if( (is_full_detection) && (mouth_center_height <= nose_center_height) ) |
|
continue; |
|
else |
|
rectangle(ROI, Point(m.x, m.y), Point(m.x+m.width, m.y+m.height), Scalar(0, 255, 0), 1, 4); |
|
} |
|
} |
|
|
|
} |
|
|
|
return; |
|
} |
|
|
|
static void detectEyes(Mat& img, vector<Rect_<int> >& eyes, string cascade_path) |
|
{ |
|
CascadeClassifier eyes_cascade; |
|
eyes_cascade.load(samples::findFile(cascade_path, !cascade_path.empty())); |
|
|
|
if (!eyes_cascade.empty()) |
|
eyes_cascade.detectMultiScale(img, eyes, 1.20, 5, 0|CASCADE_SCALE_IMAGE, Size(30, 30)); |
|
return; |
|
} |
|
|
|
static void detectNose(Mat& img, vector<Rect_<int> >& nose, string cascade_path) |
|
{ |
|
CascadeClassifier nose_cascade; |
|
nose_cascade.load(samples::findFile(cascade_path, !cascade_path.empty())); |
|
|
|
if (!nose_cascade.empty()) |
|
nose_cascade.detectMultiScale(img, nose, 1.20, 5, 0|CASCADE_SCALE_IMAGE, Size(30, 30)); |
|
return; |
|
} |
|
|
|
static void detectMouth(Mat& img, vector<Rect_<int> >& mouth, string cascade_path) |
|
{ |
|
CascadeClassifier mouth_cascade; |
|
mouth_cascade.load(samples::findFile(cascade_path, !cascade_path.empty())); |
|
|
|
if (!mouth_cascade.empty()) |
|
mouth_cascade.detectMultiScale(img, mouth, 1.20, 5, 0|CASCADE_SCALE_IMAGE, Size(30, 30)); |
|
return; |
|
}
|
|
|