Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

534 lines
18 KiB

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
// 2006-02-17 Roman Stanchak <rstancha@cse.wustl.edu>
// 2006-07-19 Moved most operators to general/cvarr_operators.i for use with other languages
// 2009-01-07 Added numpy array interface, Mark Asbach <asbach@ient.rwth-aachen.de>
/*M//////////////////////////////////////////////////////////////////////////////////////////
// Macros for extending CvMat and IplImage -- primarily for operator overloading
//////////////////////////////////////////////////////////////////////////////////////////M*/
// Macro to define python function of form B = A.f(c)
// where A is a CvArr type, c and B are arbitrary types
%define %wrap_cvGeneric_CvArr(cname, rettype, pyfunc, argtype, cvfunc, newobjcall)
%newobject cname::pyfunc(argtype arg);
%extend cname {
rettype pyfunc(argtype arg){
rettype retarg = newobjcall;
cvfunc;
return retarg;
}
}
%enddef
// Macro to define python function of the form B = A.f(c)
// where A and B are both CvArr of same size and type
%define %wrap_cvArr_binaryop(pyfunc, argtype, cvfunc)
%wrap_cvGeneric_CvArr(CvMat, CvMat *, pyfunc, argtype, cvfunc,
cvCreateMat(self->rows, self->cols, self->type));
%wrap_cvGeneric_CvArr(IplImage, IplImage *, pyfunc, argtype, cvfunc,
cvCreateImage(cvGetSize(self), self->depth, self->nChannels));
%enddef
// Macro to define python function of the form A = A.f(c)
// where f modifies A inplace
// use for +=, etc
%define %wrap_cvGeneric_InPlace(cname, rettype, pyfunc, argtype, cvfunc)
%wrap_cvGeneric_CvArr(cname, rettype, pyfunc, argtype, cvfunc, self);
%enddef
/*M//////////////////////////////////////////////////////////////////////////////////////////
// Macros to map operators to specific OpenCV functions
//////////////////////////////////////////////////////////////////////////////////////////M*/
// map any OpenCV function of form cvFunc(src1, src2, dst)
%define %wrap_cvArith(pyfunc, cvfunc)
%wrap_cvArr_binaryop(pyfunc, CvArr *, cvfunc(self, arg, retarg));
%enddef
// map any OpenCV function of form cvFunc(src1, value, dst)
%define %wrap_cvArithS(pyfunc, cvfuncS)
%wrap_cvArr_binaryop(pyfunc, CvScalar, cvfuncS(self, arg, retarg));
%wrap_cvArr_binaryop(pyfunc, double, cvfuncS(self, cvScalar(arg), retarg));
%enddef
// same as wrap_cvArith
%define %wrap_cvLogic(pyfunc, cvfunc)
%wrap_cvArr_binaryop(pyfunc, CvArr *, cvfunc(self, arg, retarg))
%enddef
// same as wrap_cvArithS
%define %wrap_cvLogicS(pyfunc, cvfuncS)
%wrap_cvArr_binaryop(pyfunc, CvScalar, cvfuncS(self, arg, retarg));
%wrap_cvArr_binaryop(pyfunc, double, cvfuncS(self, cvScalar(arg), retarg));
%enddef
// Macro to map logical operations to cvCmp
%define %wrap_cvCmp(pyfunc, cmp_op)
%wrap_cvGeneric_CvArr(CvMat, CvMat *, pyfunc, CvMat *,
cvCmp(self, arg, retarg, cmp_op),
cvCreateMat(self->rows, self->cols, CV_8U));
%wrap_cvGeneric_CvArr(IplImage, IplImage *, pyfunc, IplImage *,
cvCmp(self, arg, retarg, cmp_op),
cvCreateImage(cvGetSize(self), 8, 1));
%enddef
%define %wrap_cvCmpS(pyfunc, cmp_op)
%wrap_cvGeneric_CvArr(CvMat, CvMat *, pyfunc, double,
cvCmpS(self, arg, retarg, cmp_op),
cvCreateMat(self->rows, self->cols, CV_8U));
%wrap_cvGeneric_CvArr(IplImage, IplImage *, pyfunc, double,
cvCmpS(self, arg, retarg, cmp_op),
cvCreateImage(cvGetSize(self), 8, 1));
%enddef
// special case for cvScale, /, *
%define %wrap_cvScale(pyfunc, scale)
%wrap_cvGeneric_CvArr(CvMat, CvMat *, pyfunc, double,
cvScale(self, retarg, scale),
cvCreateMat(self->rows, self->cols, self->type));
%wrap_cvGeneric_CvArr(IplImage, IplImage *, pyfunc, double,
cvScale(self, retarg, scale),
cvCreateImage(cvGetSize(self), self->depth, self->nChannels));
%enddef
/*M//////////////////////////////////////////////////////////////////////////////////////////
// Actual Operator Declarations
//////////////////////////////////////////////////////////////////////////////////////////M*/
// Arithmetic operators
%wrap_cvArith(__radd__, cvAdd);
// special case for reverse operations
%wrap_cvArr_binaryop(__rsub__, CvArr *, cvSub(arg, self, retarg));
%wrap_cvArr_binaryop(__rdiv__, CvArr *, cvDiv(arg, self, retarg));
%wrap_cvArr_binaryop(__rmul__, CvArr *, cvMul(arg, self, retarg));
%wrap_cvArithS(__radd__, cvAddS);
%wrap_cvArithS(__rsub__, cvSubRS);
%wrap_cvScale(__rmul__, arg);
%wrap_cvLogicS(__ror__, cvOrS)
%wrap_cvLogicS(__rand__, cvAndS)
%wrap_cvLogicS(__rxor__, cvXorS)
%wrap_cvCmpS(__req__, CV_CMP_EQ);
%wrap_cvCmpS(__rgt__, CV_CMP_GT);
%wrap_cvCmpS(__rge__, CV_CMP_GE);
%wrap_cvCmpS(__rlt__, CV_CMP_LT);
%wrap_cvCmpS(__rle__, CV_CMP_LE);
%wrap_cvCmpS(__rne__, CV_CMP_NE);
// special case for scalar-array division
%wrap_cvGeneric_CvArr(CvMat, CvMat *, __rdiv__, double,
cvDiv(NULL, self, retarg, arg),
cvCreateMat(self->rows, self->cols, self->type));
// misc operators for python
%wrap_cvArr_binaryop(__pow__, double, cvPow(self, retarg, arg))
// TODO -- other Python operators listed below and at:
// http://docs.python.org/ref/numeric-types.html
// __abs__ -- cvAbs
// __nonzero__
// __hash__ ??
// __repr__ -- full string representation
// __str__ -- compact representation
// __call__ -- ??
// __len__ -- number of rows? or elements?
// __iter__ -- ??
// __contains__ -- cvCmpS, cvMax ?
// __floordiv__ ??
// __mul__ -- cvGEMM
// __lshift__ -- ??
// __rshift__ -- ??
// __pow__ -- cvPow
// Called to implement the unary arithmetic operations (-, +, abs() and ~).
//__neg__( self)
//__pos__( self)
//__abs__( self)
//__invert__( self)
// Called to implement the built-in functions complex(), int(), long(), and float(). Should return a value of the appropriate type. Can I abuse this to return an array of the correct type??? scipy only allows return of length 1 arrays.
// __complex__( self )
// __int__( self )
// __long__( self )
// __float__( self )
/*M//////////////////////////////////////////////////////////////////////////////////////////
// Slice access and assignment for CvArr types
//////////////////////////////////////////////////////////////////////////////////////////M*/
// TODO: CvMatND
%newobject CvMat::__getitem__(PyObject * object);
%newobject _IplImage::__getitem__(PyObject * object);
%header %{
int checkSliceBounds(const CvRect & rect, int w, int h){
//printf("__setitem__ slice(%d:%d, %d:%d) array(%d,%d)", rect.x, rect.y, rect.x+rect.width, rect.y+rect.height, w, h);
if(rect.width<=0 || rect.height<=0 ||
rect.width>w || rect.height>h ||
rect.x<0 || rect.y<0 ||
rect.x>= w || rect.y >=h){
char errstr[256];
// previous function already set error string
if(rect.width==0 && rect.height==0 && rect.x==0 && rect.y==0) return -1;
sprintf(errstr, "Requested slice [ %d:%d %d:%d ] oversteps array sized [ %d %d ]",
rect.x, rect.y, rect.x+rect.width, rect.y+rect.height, w, h);
PyErr_SetString(PyExc_IndexError, errstr);
//PyErr_SetString(PyExc_ValueError, errstr);
return -1;
}
return 0;
}
%}
// Macro to check bounds of slice and throw error if outside
%define CHECK_SLICE_BOUNDS(rect,w,h,retval)
if(CheckSliceBounds(&rect,w,h)==-1){ return retval; } else{}
%enddef
// slice access and assignment for CvMat
%extend CvMat
{
char * __str__(){
static char str[8];
cvArrPrint( self );
str[0]=0;
return str;
}
// scalar assignment
void __setitem__(PyObject * object, double val){
CvMat tmp;
CvRect subrect = PySlice_to_CvRect( self, object );
CHECK_SLICE_BOUNDS( subrect, self->cols, self->rows, );
cvGetSubRect(self, &tmp, subrect);
cvSet(&tmp, cvScalarAll(val));
}
void __setitem__(PyObject * object, CvPoint val){
CvMat tmp;
CvRect subrect = PySlice_to_CvRect( self, object );
CHECK_SLICE_BOUNDS( subrect, self->cols, self->rows, );
cvGetSubRect(self, &tmp, subrect);
cvSet(&tmp, cvScalar(val.x, val.y));
}
void __setitem__(PyObject * object, CvPoint2D32f val){
CvMat tmp;
CvRect subrect = PySlice_to_CvRect( self, object );
cvGetSubRect(self, &tmp, subrect);
CHECK_SLICE_BOUNDS( subrect, self->cols, self->rows, );
cvSet(&tmp, cvScalar(val.x, val.y));
}
void __setitem__(PyObject * object, CvScalar val){
CvMat tmp;
CvRect subrect = PySlice_to_CvRect( self, object );
cvGetSubRect(self, &tmp, subrect);
CHECK_SLICE_BOUNDS( subrect, self->cols, self->rows, );
cvSet(&tmp, val);
}
// array slice assignment
void __setitem__(PyObject * object, CvArr * arr){
CvMat tmp, src_stub, *src;
CvRect subrect = PySlice_to_CvRect( self, object );
CHECK_SLICE_BOUNDS( subrect, self->cols, self->rows, );
cvGetSubRect(self, &tmp, subrect);
// Reshape source array to fit destination
// This will be used a lot for small arrays b/c
// PyObject_to_CvArr tries to compress a 2-D python
// array with 1-4 columns into a multichannel vector
src=cvReshape(arr, &src_stub, CV_MAT_CN(tmp.type), tmp.rows);
cvConvert(src, &tmp);
}
// slice access
PyObject * __getitem__(PyObject * object){
CvMat * mat;
CvRect subrect = PySlice_to_CvRect( self, object );
CHECK_SLICE_BOUNDS( subrect, self->cols, self->rows, NULL );
if(subrect.width==1 && subrect.height==1){
CvScalar * s;
int type = cvGetElemType( self );
if(CV_MAT_CN(type) > 1){
s = new CvScalar;
*s = cvGet2D( self, subrect.y, subrect.x );
return SWIG_NewPointerObj( s, $descriptor(CvScalar *), 1 );
}
switch(CV_MAT_DEPTH(type)){
case CV_8U:
return PyLong_FromUnsignedLong( CV_MAT_ELEM(*self, uchar, subrect.y, subrect.x ) );
case CV_8S:
return PyLong_FromLong( CV_MAT_ELEM(*self, char, subrect.y, subrect.x ) );
case CV_16U:
return PyLong_FromUnsignedLong( CV_MAT_ELEM(*self, ushort, subrect.y, subrect.x ) );
case CV_16S:
return PyLong_FromLong( CV_MAT_ELEM(*self, short, subrect.y, subrect.x ) );
case CV_32S:
return PyLong_FromLong( CV_MAT_ELEM(*self, int, subrect.y, subrect.x ) );
case CV_32F:
return PyFloat_FromDouble( CV_MAT_ELEM(*self, float, subrect.y, subrect.x) );
case CV_64F:
return PyFloat_FromDouble( CV_MAT_ELEM(*self, double, subrect.y, subrect.x) );
}
}
mat = (CvMat *) cvAlloc(sizeof(CvMat));
cvGetSubRect(self, mat, subrect);
// cvGetSubRect doesn't do this since it assumes mat lives on the stack
mat->hdr_refcount = self->hdr_refcount;
mat->refcount = self->refcount;
cvIncRefData(mat);
return SWIG_NewPointerObj( mat, $descriptor(CvMat *), 1 );
}
// ~ operator -- swig doesn't generate this from the C++ equivalent
CvMat * __invert__(){
CvMat * res = cvCreateMat(self->rows, self->cols, self->type);
cvNot( self, res );
return res;
}
%pythoncode %{
def __iter__(self):
"""
generator function iterating through rows in matrix or elements in vector
"""
if self.rows==1:
return self.colrange()
return self.rowrange()
def rowrange(self):
"""
generator function iterating along rows in matrix
"""
for i in range(self.rows):
yield self[i]
def colrange(self):
"""
generator function iterating along columns in matrix
"""
for i in range(self.cols):
yield self[:,i]
# if arg is None, python still calls our operator overloads
# but we want
# if mat != None
# if mat == None
# to do the right thing -- so redefine __ne__ and __eq__
def __eq__(self, arg):
"""
__eq__(self, None)
__eq__(self, CvArr src)
__eq__(self, double val)
"""
if not arg:
return False
return _cv.CvMat___eq__(self, arg)
def __ne__(self, arg):
"""
__ne__(self, None)
__ne__(self, CvArr src)
__ne__(self, double val)
"""
if not arg:
return True
return _cv.CvMat___ne__(self, arg)
def __get_array_interface__ (self):
"""Compose numpy array interface
Via the numpy array interface, OpenCV data structures can be directly passed to numpy
methods without copying / converting. This tremendously speeds up mixing code from
OpenCV and numpy.
See: http://numpy.scipy.org/array_interface.shtml
@author Mark Asbach <asbach@ient.rwth-aachen.de>
@date 2009-01-07
"""
if self.depth == IPL_DEPTH_8U:
typestr = '|u1'
bytes_per_pixel = 1
elif self.depth == IPL_DEPTH_8S:
typestr = '|i1'
bytes_per_pixel = 1
elif self.depth == IPL_DEPTH_16U:
typestr = '|u2'
bytes_per_pixel = 2
elif self.depth == IPL_DEPTH_16S:
typestr = '|i2'
bytes_per_pixel = 2
elif self.depth == IPL_DEPTH_32S:
typestr = '|i4'
bytes_per_pixel = 4
elif self.depth == IPL_DEPTH_32F:
typestr = '|f4'
bytes_per_pixel = 4
elif self.depth == IPL_DEPTH_64F:
typestr = '|f8'
bytes_per_pixel = 8
else:
raise TypeError("unknown resp. unhandled OpenCV image/matrix format")
if self.nChannels == 1:
# monochrome image, matrix with a single channel
return {'shape': (self.height, self.width),
'typestr': typestr,
'version': 3,
'data': (int (self.data.ptr), False),
'strides': (int (self.widthStep), int (bytes_per_pixel))}
else:
# color image, image with alpha, matrix with multiple channels
return {'shape': (self.height, self.width, self.nChannels),
'typestr': typestr,
'version': 3,
'data': (int (self.data.ptr), False),
'strides': (int (self.widthStep), int (self.nChannels * bytes_per_pixel), int (bytes_per_pixel))}
__array_interface__ = property (__get_array_interface__, doc = "numpy array interface description")
%}
} //extend CvMat
// slice access and assignment for IplImage
%extend _IplImage
{
char * __str__(){
static char str[8];
cvArrPrint( self );
str[0]=0;
return str;
}
// scalar assignment
void __setitem__(PyObject * object, double val){
CvMat tmp;
CvRect subrect = PySlice_to_CvRect( self, object );
cvGetSubRect(self, &tmp, subrect);
cvSet(&tmp, cvScalarAll(val));
}
void __setitem__(PyObject * object, CvPoint val){
CvMat tmp;
CvRect subrect = PySlice_to_CvRect( self, object );
cvGetSubRect(self, &tmp, subrect);
cvSet(&tmp, cvScalar(val.x, val.y));
}
void __setitem__(PyObject * object, CvPoint2D32f val){
CvMat tmp;
CvRect subrect = PySlice_to_CvRect( self, object );
cvGetSubRect(self, &tmp, subrect);
cvSet(&tmp, cvScalar(val.x, val.y));
}
void __setitem__(PyObject * object, CvScalar val){
CvMat tmp;
CvRect subrect = PySlice_to_CvRect( self, object );
cvGetSubRect(self, &tmp, subrect);
cvSet(&tmp, val);
}
// array slice assignment
void __setitem__(PyObject * object, CvArr * arr){
CvMat tmp;
CvRect subrect = PySlice_to_CvRect( self, object );
cvGetSubRect(self, &tmp, subrect);
cvConvert(arr, &tmp);
}
// slice access
PyObject * __getitem__(PyObject * object){
CvMat mat;
IplImage * im;
CvRect subrect = PySlice_to_CvRect( self, object );
// return scalar if single element
if(subrect.width==1 && subrect.height==1){
CvScalar * s;
int type = cvGetElemType( self );
if(CV_MAT_CN(type) > 1){
s = new CvScalar;
*s = cvGet2D( self, subrect.y, subrect.x );
return SWIG_NewPointerObj( s, $descriptor(CvScalar *), 1 );
}
switch(CV_MAT_DEPTH(type)){
case CV_8U:
return PyLong_FromUnsignedLong( CV_IMAGE_ELEM(self, uchar, subrect.y, subrect.x ) );
case CV_8S:
return PyLong_FromLong( CV_IMAGE_ELEM(self, char, subrect.y, subrect.x ) );
case CV_16U:
return PyLong_FromUnsignedLong( CV_IMAGE_ELEM(self, ushort, subrect.y, subrect.x ) );
case CV_16S:
return PyLong_FromLong( CV_IMAGE_ELEM(self, short, subrect.y, subrect.x ) );
case CV_32S:
return PyLong_FromLong( CV_IMAGE_ELEM(self, int, subrect.y, subrect.x ) );
case CV_32F:
return PyFloat_FromDouble( CV_IMAGE_ELEM(self, float, subrect.y, subrect.x) );
case CV_64F:
return PyFloat_FromDouble( CV_IMAGE_ELEM(self, double, subrect.y, subrect.x) );
}
}
// otherwise return array
im = (IplImage *) cvAlloc(sizeof(IplImage));
cvGetSubRect(self, &mat, subrect);
im = cvGetImage(&mat, im);
return SWIG_NewPointerObj( im, $descriptor(_IplImage *), 1 );
}
}