mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
465 lines
16 KiB
465 lines
16 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the OpenCV Foundation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
#include "precomp.hpp" |
|
|
|
#if 0 |
|
#define dprintf(x) printf x |
|
#define print_matrix(x) print(x) |
|
#else |
|
#define dprintf(x) |
|
#define print_matrix(x) |
|
#endif |
|
|
|
/* |
|
|
|
****Error Message******************************************************************************************************************** |
|
|
|
Downhill Simplex method in OpenCV dev 3.0.0 getting this error: |
|
|
|
OpenCV Error: Assertion failed (dims <= 2 && data && (unsigned)i0 < (unsigned)(s ize.p[0] * size.p[1]) |
|
&& elemSize() == (((((DataType<_Tp>::type) & ((512 - 1) << 3)) >> 3) + 1) << ((((sizeof(size_t)/4+1)16384|0x3a50) |
|
>> ((DataType<_Tp>::typ e) & ((1 << 3) - 1))2) & 3))) in Mat::at, |
|
file C:\builds\master_PackSlave-w in32-vc12-shared\opencv\modules\core\include\opencv2/core/mat.inl.hpp, line 893 |
|
|
|
****Problem and Possible Fix********************************************************************************************************* |
|
|
|
DownhillSolverImpl::innerDownhillSimplex something looks broken here: |
|
Mat_<double> coord_sum(1,ndim,0.0),buf(1,ndim,0.0),y(1,ndim,0.0); |
|
fcount = 0; |
|
for(i=0;i<ndim+1;++i) |
|
{ |
|
y(i) = f->calc(p[i]); |
|
} |
|
|
|
y has only ndim elements, while the loop goes over ndim+1 |
|
|
|
Edited the following for possible fix: |
|
|
|
Replaced y(1,ndim,0.0) ------> y(1,ndim+1,0.0) |
|
|
|
*********************************************************************************************************************************** |
|
|
|
The code below was used in tesing the source code. |
|
Created by @SareeAlnaghy |
|
|
|
#include <iostream> |
|
#include <cstdlib> |
|
#include <cmath> |
|
#include <algorithm> |
|
#include <opencv2\optim\optim.hpp> |
|
|
|
using namespace std; |
|
using namespace cv; |
|
|
|
void test(Ptr<optim::DownhillSolver> MinProblemSolver, Ptr<optim::MinProblemSolver::Function> ptr_F, Mat &P, Mat &step) |
|
{ |
|
try{ |
|
|
|
MinProblemSolver->setFunction(ptr_F); |
|
MinProblemSolver->setInitStep(step); |
|
double res = MinProblemSolver->minimize(P); |
|
|
|
cout << "res " << res << endl; |
|
} |
|
catch (exception e) |
|
{ |
|
cerr << "Error:: " << e.what() << endl; |
|
} |
|
} |
|
|
|
int main() |
|
{ |
|
|
|
class DistanceToLines :public optim::MinProblemSolver::Function { |
|
public: |
|
double calc(const double* x)const{ |
|
|
|
return x[0] * x[0] + x[1] * x[1]; |
|
|
|
} |
|
}; |
|
|
|
Mat P = (Mat_<double>(1, 2) << 1.0, 1.0); |
|
Mat step = (Mat_<double>(2, 1) << -0.5, 0.5); |
|
|
|
Ptr<optim::MinProblemSolver::Function> ptr_F(new DistanceToLines()); |
|
Ptr<optim::DownhillSolver> MinProblemSolver = optim::createDownhillSolver(); |
|
|
|
test(MinProblemSolver, ptr_F, P, step); |
|
|
|
system("pause"); |
|
return 0; |
|
} |
|
|
|
****Suggestion for improving Simplex implementation*************************************************************************************** |
|
|
|
Currently the downhilll simplex method outputs the function value that is minimized. It should also return the coordinate points where the |
|
function is minimized. This is very useful in many applications such as using back projection methods to find a point of intersection of |
|
multiple lines in three dimensions as not all lines intersect in three dimensions. |
|
|
|
*/ |
|
|
|
namespace cv |
|
{ |
|
|
|
class DownhillSolverImpl CV_FINAL : public DownhillSolver |
|
{ |
|
public: |
|
DownhillSolverImpl() |
|
{ |
|
_Function=Ptr<Function>(); |
|
_step=Mat_<double>(); |
|
} |
|
|
|
void getInitStep(OutputArray step) const CV_OVERRIDE { _step.copyTo(step); } |
|
void setInitStep(InputArray step) CV_OVERRIDE |
|
{ |
|
// set dimensionality and make a deep copy of step |
|
Mat m = step.getMat(); |
|
dprintf(("m.cols=%d\nm.rows=%d\n", m.cols, m.rows)); |
|
if( m.rows == 1 ) |
|
m.copyTo(_step); |
|
else |
|
transpose(m, _step); |
|
} |
|
|
|
Ptr<MinProblemSolver::Function> getFunction() const CV_OVERRIDE { return _Function; } |
|
|
|
void setFunction(const Ptr<Function>& f) CV_OVERRIDE { _Function=f; } |
|
|
|
TermCriteria getTermCriteria() const CV_OVERRIDE { return _termcrit; } |
|
|
|
void setTermCriteria( const TermCriteria& termcrit ) CV_OVERRIDE |
|
{ |
|
CV_Assert( termcrit.type == (TermCriteria::MAX_ITER + TermCriteria::EPS) && |
|
termcrit.epsilon > 0 && |
|
termcrit.maxCount > 0 ); |
|
_termcrit=termcrit; |
|
} |
|
|
|
double minimize( InputOutputArray x_ ) CV_OVERRIDE |
|
{ |
|
dprintf(("hi from minimize\n")); |
|
CV_Assert( !_Function.empty() ); |
|
CV_Assert( std::min(_step.cols, _step.rows) == 1 && |
|
std::max(_step.cols, _step.rows) >= 2 && |
|
_step.type() == CV_64FC1 ); |
|
dprintf(("termcrit:\n\ttype: %d\n\tmaxCount: %d\n\tEPS: %g\n",_termcrit.type,_termcrit.maxCount,_termcrit.epsilon)); |
|
dprintf(("step\n")); |
|
print_matrix(_step); |
|
|
|
Mat x = x_.getMat(), simplex; |
|
|
|
createInitialSimplex(x, simplex, _step); |
|
int count = 0; |
|
double res = innerDownhillSimplex(simplex,_termcrit.epsilon, _termcrit.epsilon, |
|
count, _termcrit.maxCount); |
|
dprintf(("%d iterations done\n",count)); |
|
|
|
if( !x.empty() ) |
|
{ |
|
Mat simplex_0m(x.rows, x.cols, CV_64F, simplex.ptr<double>()); |
|
simplex_0m.convertTo(x, x.type()); |
|
} |
|
else |
|
{ |
|
int x_type = x_.fixedType() ? x_.type() : CV_64F; |
|
simplex.row(0).convertTo(x_, x_type); |
|
} |
|
return res; |
|
} |
|
protected: |
|
Ptr<MinProblemSolver::Function> _Function; |
|
TermCriteria _termcrit; |
|
Mat _step; |
|
|
|
inline void updateCoordSum(const Mat& p, Mat& coord_sum) |
|
{ |
|
int i, j, m = p.rows, n = p.cols; |
|
double* coord_sum_ = coord_sum.ptr<double>(); |
|
CV_Assert( coord_sum.cols == n && coord_sum.rows == 1 ); |
|
|
|
for( j = 0; j < n; j++ ) |
|
coord_sum_[j] = 0.; |
|
|
|
for( i = 0; i < m; i++ ) |
|
{ |
|
const double* p_i = p.ptr<double>(i); |
|
for( j = 0; j < n; j++ ) |
|
coord_sum_[j] += p_i[j]; |
|
} |
|
|
|
dprintf(("\nupdated coord sum:\n")); |
|
print_matrix(coord_sum); |
|
|
|
} |
|
|
|
inline void createInitialSimplex( const Mat& x0, Mat& simplex, Mat& step ) |
|
{ |
|
int i, j, ndim = step.cols; |
|
CV_Assert( _Function->getDims() == ndim ); |
|
Mat x = x0; |
|
if( x0.empty() ) |
|
x = Mat::zeros(1, ndim, CV_64F); |
|
CV_Assert( (x.cols == 1 && x.rows == ndim) || (x.cols == ndim && x.rows == 1) ); |
|
CV_Assert( x.type() == CV_32F || x.type() == CV_64F ); |
|
|
|
simplex.create(ndim + 1, ndim, CV_64F); |
|
Mat simplex_0m(x.rows, x.cols, CV_64F, simplex.ptr<double>()); |
|
|
|
x.convertTo(simplex_0m, CV_64F); |
|
double* simplex_0 = simplex.ptr<double>(); |
|
const double* step_ = step.ptr<double>(); |
|
for( i = 1; i <= ndim; i++ ) |
|
{ |
|
double* simplex_i = simplex.ptr<double>(i); |
|
for( j = 0; j < ndim; j++ ) |
|
simplex_i[j] = simplex_0[j]; |
|
simplex_i[i-1] += 0.5*step_[i-1]; |
|
} |
|
for( j = 0; j < ndim; j++ ) |
|
simplex_0[j] -= 0.5*step_[j]; |
|
|
|
dprintf(("\nthis is simplex\n")); |
|
print_matrix(simplex); |
|
} |
|
|
|
/* |
|
Performs the actual minimization of MinProblemSolver::Function f (after the initialization was done) |
|
|
|
The matrix p[ndim+1][1..ndim] represents ndim+1 vertices that |
|
form a simplex - each row is an ndim vector. |
|
On output, fcount gives the number of function evaluations taken. |
|
*/ |
|
double innerDownhillSimplex( Mat& p, double MinRange, double MinError, int& fcount, int nmax ) |
|
{ |
|
int i, j, ndim = p.cols; |
|
Mat coord_sum(1, ndim, CV_64F), buf(1, ndim, CV_64F), y(1, ndim+1, CV_64F); |
|
double* y_ = y.ptr<double>(); |
|
|
|
fcount = ndim+1; |
|
for( i = 0; i <= ndim; i++ ) |
|
y_[i] = calc_f(p.ptr<double>(i)); |
|
|
|
updateCoordSum(p, coord_sum); |
|
|
|
for (;;) |
|
{ |
|
// find highest (worst), next-to-worst, and lowest |
|
// (best) points by going through all of them. |
|
int ilo = 0, ihi, inhi; |
|
if( y_[0] > y_[1] ) |
|
{ |
|
ihi = 0; inhi = 1; |
|
} |
|
else |
|
{ |
|
ihi = 1; inhi = 0; |
|
} |
|
for( i = 0; i <= ndim; i++ ) |
|
{ |
|
double yval = y_[i]; |
|
if (yval <= y_[ilo]) |
|
ilo = i; |
|
if (yval > y_[ihi]) |
|
{ |
|
inhi = ihi; |
|
ihi = i; |
|
} |
|
else if (yval > y_[inhi] && i != ihi) |
|
inhi = i; |
|
} |
|
CV_Assert( ihi != inhi ); |
|
if( ilo == inhi || ilo == ihi ) |
|
{ |
|
for( i = 0; i <= ndim; i++ ) |
|
{ |
|
double yval = y_[i]; |
|
if( yval == y_[ilo] && i != ihi && i != inhi ) |
|
{ |
|
ilo = i; |
|
break; |
|
} |
|
} |
|
} |
|
dprintf(("\nthis is y on iteration %d:\n",fcount)); |
|
print_matrix(y); |
|
|
|
// check stop criterion |
|
double error = fabs(y_[ihi] - y_[ilo]); |
|
double range = 0; |
|
for( j = 0; j < ndim; j++ ) |
|
{ |
|
double minval, maxval; |
|
minval = maxval = p.at<double>(0, j); |
|
for( i = 1; i <= ndim; i++ ) |
|
{ |
|
double pval = p.at<double>(i, j); |
|
minval = std::min(minval, pval); |
|
maxval = std::max(maxval, pval); |
|
} |
|
range = std::max(range, fabs(maxval - minval)); |
|
} |
|
|
|
if( range <= MinRange || error <= MinError || fcount >= nmax ) |
|
{ |
|
// Put best point and value in first slot. |
|
std::swap(y_[0], y_[ilo]); |
|
for( j = 0; j < ndim; j++ ) |
|
{ |
|
std::swap(p.at<double>(0, j), p.at<double>(ilo, j)); |
|
} |
|
break; |
|
} |
|
|
|
double y_lo = y_[ilo], y_nhi = y_[inhi], y_hi = y_[ihi]; |
|
// Begin a new iteration. First, reflect the worst point about the centroid of others |
|
double alpha = -1.0; |
|
double y_alpha = tryNewPoint(p, coord_sum, ihi, alpha, buf, fcount); |
|
|
|
dprintf(("\ny_lo=%g, y_nhi=%g, y_hi=%g, y_alpha=%g, p_alpha:\n", y_lo, y_nhi, y_hi, y_alpha)); |
|
print_matrix(buf); |
|
|
|
if( y_alpha < y_nhi ) |
|
{ |
|
if( y_alpha < y_lo ) |
|
{ |
|
// If that's better than the best point, go twice as far in that direction |
|
double beta = -2.0; |
|
double y_beta = tryNewPoint(p, coord_sum, ihi, beta, buf, fcount); |
|
dprintf(("\ny_beta=%g, p_beta:\n", y_beta)); |
|
print_matrix(buf); |
|
if( y_beta < y_alpha ) |
|
{ |
|
alpha = beta; |
|
y_alpha = y_beta; |
|
} |
|
} |
|
replacePoint(p, coord_sum, y, ihi, alpha, y_alpha); |
|
} |
|
else |
|
{ |
|
// The new point is worse than the second-highest, |
|
// do not go so far in that direction |
|
double gamma = 0.5; |
|
double y_gamma = tryNewPoint(p, coord_sum, ihi, gamma, buf, fcount); |
|
dprintf(("\ny_gamma=%g, p_gamma:\n", y_gamma)); |
|
print_matrix(buf); |
|
if( y_gamma < y_hi ) |
|
replacePoint(p, coord_sum, y, ihi, gamma, y_gamma); |
|
else |
|
{ |
|
// Can't seem to improve things. |
|
// Contract the simplex to good point |
|
// in hope to find a simplex landscape. |
|
for( i = 0; i <= ndim; i++ ) |
|
{ |
|
if (i != ilo) |
|
{ |
|
for( j = 0; j < ndim; j++ ) |
|
p.at<double>(i, j) = 0.5*(p.at<double>(i, j) + p.at<double>(ilo, j)); |
|
y_[i] = calc_f(p.ptr<double>(i)); |
|
} |
|
} |
|
fcount += ndim; |
|
updateCoordSum(p, coord_sum); |
|
} |
|
} |
|
dprintf(("\nthis is simplex on iteration %d\n",fcount)); |
|
print_matrix(p); |
|
} |
|
return y_[0]; |
|
} |
|
|
|
inline double calc_f(const double* ptr) |
|
{ |
|
double res = _Function->calc(ptr); |
|
CV_Assert( !cvIsNaN(res) && !cvIsInf(res) ); |
|
return res; |
|
} |
|
|
|
double tryNewPoint( Mat& p, Mat& coord_sum, int ihi, double alpha_, Mat& ptry, int& fcount ) |
|
{ |
|
int j, ndim = p.cols; |
|
|
|
double alpha = (1.0 - alpha_)/ndim; |
|
double beta = alpha - alpha_; |
|
double* p_ihi = p.ptr<double>(ihi); |
|
double* ptry_ = ptry.ptr<double>(); |
|
double* coord_sum_ = coord_sum.ptr<double>(); |
|
|
|
for( j = 0; j < ndim; j++ ) |
|
ptry_[j] = coord_sum_[j]*alpha - p_ihi[j]*beta; |
|
|
|
fcount++; |
|
return calc_f(ptry_); |
|
} |
|
|
|
void replacePoint( Mat& p, Mat& coord_sum, Mat& y, int ihi, double alpha_, double ytry ) |
|
{ |
|
int j, ndim = p.cols; |
|
|
|
double alpha = (1.0 - alpha_)/ndim; |
|
double beta = alpha - alpha_; |
|
double* p_ihi = p.ptr<double>(ihi); |
|
double* coord_sum_ = coord_sum.ptr<double>(); |
|
|
|
for( j = 0; j < ndim; j++ ) |
|
p_ihi[j] = coord_sum_[j]*alpha - p_ihi[j]*beta; |
|
y.at<double>(ihi) = ytry; |
|
updateCoordSum(p, coord_sum); |
|
} |
|
}; |
|
|
|
|
|
// both minRange & minError are specified by termcrit.epsilon; |
|
// In addition, user may specify the number of iterations that the algorithm does. |
|
Ptr<DownhillSolver> DownhillSolver::create( const Ptr<MinProblemSolver::Function>& f, |
|
InputArray initStep, TermCriteria termcrit ) |
|
{ |
|
Ptr<DownhillSolver> DS = makePtr<DownhillSolverImpl>(); |
|
DS->setFunction(f); |
|
DS->setInitStep(initStep); |
|
DS->setTermCriteria(termcrit); |
|
return DS; |
|
} |
|
|
|
}
|
|
|