mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
133 lines
3.1 KiB
133 lines
3.1 KiB
// This file is part of OpenCV project. |
|
// It is subject to the license terms in the LICENSE file found in the top-level directory |
|
// of this distribution and at http://opencv.org/license.html. |
|
|
|
// Copyright (C) 2016, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
|
|
/* |
|
Test for Tensorflow models loading |
|
*/ |
|
|
|
#include "test_precomp.hpp" |
|
#include "npy_blob.hpp" |
|
|
|
namespace cvtest |
|
{ |
|
|
|
using namespace cv; |
|
using namespace cv::dnn; |
|
|
|
template<typename TString> |
|
static std::string _tf(TString filename) |
|
{ |
|
return (getOpenCVExtraDir() + "/dnn/") + filename; |
|
} |
|
|
|
TEST(Test_TensorFlow, read_inception) |
|
{ |
|
Net net; |
|
{ |
|
const string model = findDataFile("dnn/tensorflow_inception_graph.pb", false); |
|
Ptr<Importer> importer = createTensorflowImporter(model); |
|
ASSERT_TRUE(importer != NULL); |
|
importer->populateNet(net); |
|
} |
|
|
|
Mat sample = imread(_tf("grace_hopper_227.png")); |
|
ASSERT_TRUE(!sample.empty()); |
|
Mat input; |
|
resize(sample, input, Size(224, 224)); |
|
input -= 128; // mean sub |
|
|
|
Mat inputBlob = blobFromImage(input); |
|
|
|
net.setInput(inputBlob, "input"); |
|
Mat out = net.forward("softmax2"); |
|
|
|
std::cout << out.dims << std::endl; |
|
} |
|
|
|
TEST(Test_TensorFlow, inception_accuracy) |
|
{ |
|
Net net; |
|
{ |
|
const string model = findDataFile("dnn/tensorflow_inception_graph.pb", false); |
|
Ptr<Importer> importer = createTensorflowImporter(model); |
|
ASSERT_TRUE(importer != NULL); |
|
importer->populateNet(net); |
|
} |
|
|
|
Mat sample = imread(_tf("grace_hopper_227.png")); |
|
ASSERT_TRUE(!sample.empty()); |
|
resize(sample, sample, Size(224, 224)); |
|
Mat inputBlob = blobFromImage(sample); |
|
|
|
net.setInput(inputBlob, "input"); |
|
Mat out = net.forward("softmax2"); |
|
|
|
Mat ref = blobFromNPY(_tf("tf_inception_prob.npy")); |
|
|
|
normAssert(ref, out); |
|
} |
|
|
|
static std::string path(const std::string& file) |
|
{ |
|
return findDataFile("dnn/tensorflow/" + file, false); |
|
} |
|
|
|
static void runTensorFlowNet(const std::string& prefix) |
|
{ |
|
std::string netPath = path(prefix + "_net.pb"); |
|
std::string inpPath = path(prefix + "_in.npy"); |
|
std::string outPath = path(prefix + "_out.npy"); |
|
|
|
Net net = readNetFromTensorflow(netPath); |
|
|
|
cv::Mat input = blobFromNPY(inpPath); |
|
cv::Mat target = blobFromNPY(outPath); |
|
|
|
net.setInput(input); |
|
cv::Mat output = net.forward(); |
|
normAssert(target, output); |
|
} |
|
|
|
TEST(Test_TensorFlow, single_conv) |
|
{ |
|
runTensorFlowNet("single_conv"); |
|
} |
|
|
|
TEST(Test_TensorFlow, padding) |
|
{ |
|
runTensorFlowNet("padding_same"); |
|
runTensorFlowNet("padding_valid"); |
|
} |
|
|
|
TEST(Test_TensorFlow, eltwise_add_mul) |
|
{ |
|
runTensorFlowNet("eltwise_add_mul"); |
|
} |
|
|
|
TEST(Test_TensorFlow, pad_and_concat) |
|
{ |
|
runTensorFlowNet("pad_and_concat"); |
|
} |
|
|
|
TEST(Test_TensorFlow, fused_batch_norm) |
|
{ |
|
runTensorFlowNet("fused_batch_norm"); |
|
} |
|
|
|
TEST(Test_TensorFlow, pooling) |
|
{ |
|
runTensorFlowNet("max_pool_even"); |
|
runTensorFlowNet("max_pool_odd_valid"); |
|
runTensorFlowNet("max_pool_odd_same"); |
|
} |
|
|
|
TEST(Test_TensorFlow, deconvolution) |
|
{ |
|
runTensorFlowNet("deconvolution"); |
|
} |
|
|
|
}
|
|
|