mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
67 lines
2.7 KiB
67 lines
2.7 KiB
# Script is based on https://github.com/richzhang/colorization/colorize.py |
|
import numpy as np |
|
import argparse |
|
import cv2 as cv |
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser(description='iColor: deep interactive colorization') |
|
parser.add_argument('--input', help='Path to image or video. Skip to capture frames from camera') |
|
parser.add_argument('--prototxt', help='Path to colorization_deploy_v2.prototxt', default='./models/colorization_release_v2.prototxt') |
|
parser.add_argument('--caffemodel', help='Path to colorization_release_v2.caffemodel', default='./models/colorization_release_v2.caffemodel') |
|
parser.add_argument('--kernel', help='Path to pts_in_hull.npy', default='./resources/pts_in_hull.npy') |
|
|
|
args = parser.parse_args() |
|
return args |
|
|
|
if __name__ == '__main__': |
|
W_in = 224 |
|
H_in = 224 |
|
imshowSize = (640, 480) |
|
|
|
args = parse_args() |
|
|
|
# Select desired model |
|
net = cv.dnn.readNetFromCaffe(args.prototxt, args.caffemodel) |
|
|
|
pts_in_hull = np.load(args.kernel) # load cluster centers |
|
|
|
# populate cluster centers as 1x1 convolution kernel |
|
pts_in_hull = pts_in_hull.transpose().reshape(2, 313, 1, 1) |
|
net.getLayer(long(net.getLayerId('class8_ab'))).blobs = [pts_in_hull.astype(np.float32)] |
|
net.getLayer(long(net.getLayerId('conv8_313_rh'))).blobs = [np.full([1, 313], 2.606, np.float32)] |
|
|
|
if args.input: |
|
cap = cv.VideoCapture(args.input) |
|
else: |
|
cap = cv.VideoCapture(0) |
|
|
|
while cv.waitKey(1) < 0: |
|
hasFrame, frame = cap.read() |
|
if not hasFrame: |
|
cv.waitKey() |
|
break |
|
|
|
img_rgb = (frame[:,:,[2, 1, 0]] * 1.0 / 255).astype(np.float32) |
|
|
|
img_lab = cv.cvtColor(img_rgb, cv.COLOR_RGB2Lab) |
|
img_l = img_lab[:,:,0] # pull out L channel |
|
(H_orig,W_orig) = img_rgb.shape[:2] # original image size |
|
|
|
# resize image to network input size |
|
img_rs = cv.resize(img_rgb, (W_in, H_in)) # resize image to network input size |
|
img_lab_rs = cv.cvtColor(img_rs, cv.COLOR_RGB2Lab) |
|
img_l_rs = img_lab_rs[:,:,0] |
|
img_l_rs -= 50 # subtract 50 for mean-centering |
|
|
|
net.setInput(cv.dnn.blobFromImage(img_l_rs)) |
|
ab_dec = net.forward('class8_ab')[0,:,:,:].transpose((1,2,0)) # this is our result |
|
|
|
(H_out,W_out) = ab_dec.shape[:2] |
|
ab_dec_us = cv.resize(ab_dec, (W_orig, H_orig)) |
|
img_lab_out = np.concatenate((img_l[:,:,np.newaxis],ab_dec_us),axis=2) # concatenate with original image L |
|
img_bgr_out = np.clip(cv.cvtColor(img_lab_out, cv.COLOR_Lab2BGR), 0, 1) |
|
|
|
frame = cv.resize(frame, imshowSize) |
|
cv.imshow('origin', frame) |
|
cv.imshow('gray', cv.cvtColor(frame, cv.COLOR_RGB2GRAY)) |
|
cv.imshow('colorized', cv.resize(img_bgr_out, imshowSize))
|
|
|