mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
3442 lines
82 KiB
3442 lines
82 KiB
/////////////////////////////////////////////////////////////////////////// |
|
// |
|
// Copyright (c) 2002, Industrial Light & Magic, a division of Lucas |
|
// Digital Ltd. LLC |
|
// |
|
// All rights reserved. |
|
// |
|
// Redistribution and use in source and binary forms, with or without |
|
// modification, are permitted provided that the following conditions are |
|
// met: |
|
// * Redistributions of source code must retain the above copyright |
|
// notice, this list of conditions and the following disclaimer. |
|
// * Redistributions in binary form must reproduce the above |
|
// copyright notice, this list of conditions and the following disclaimer |
|
// in the documentation and/or other materials provided with the |
|
// distribution. |
|
// * Neither the name of Industrial Light & Magic nor the names of |
|
// its contributors may be used to endorse or promote products derived |
|
// from this software without specific prior written permission. |
|
// |
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
// |
|
/////////////////////////////////////////////////////////////////////////// |
|
|
|
|
|
|
|
#ifndef INCLUDED_IMATHMATRIX_H |
|
#define INCLUDED_IMATHMATRIX_H |
|
|
|
//---------------------------------------------------------------- |
|
// |
|
// 2D (3x3) and 3D (4x4) transformation matrix templates. |
|
// |
|
//---------------------------------------------------------------- |
|
|
|
#include "ImathPlatform.h" |
|
#include "ImathFun.h" |
|
#include "ImathExc.h" |
|
#include "ImathVec.h" |
|
#include "ImathShear.h" |
|
|
|
#include <cstring> |
|
#include <iostream> |
|
#include <iomanip> |
|
#include <string.h> |
|
|
|
#if (defined _WIN32 || defined _WIN64) && defined _MSC_VER |
|
// suppress exception specification warnings |
|
#pragma warning(disable:4290) |
|
#endif |
|
|
|
|
|
namespace Imath { |
|
|
|
enum Uninitialized {UNINITIALIZED}; |
|
|
|
|
|
template <class T> class Matrix33 |
|
{ |
|
public: |
|
|
|
//------------------- |
|
// Access to elements |
|
//------------------- |
|
|
|
T x[3][3]; |
|
|
|
T * operator [] (int i); |
|
const T * operator [] (int i) const; |
|
|
|
|
|
//------------- |
|
// Constructors |
|
//------------- |
|
|
|
Matrix33 (Uninitialized) {} |
|
|
|
Matrix33 (); |
|
// 1 0 0 |
|
// 0 1 0 |
|
// 0 0 1 |
|
|
|
Matrix33 (T a); |
|
// a a a |
|
// a a a |
|
// a a a |
|
|
|
Matrix33 (const T a[3][3]); |
|
// a[0][0] a[0][1] a[0][2] |
|
// a[1][0] a[1][1] a[1][2] |
|
// a[2][0] a[2][1] a[2][2] |
|
|
|
Matrix33 (T a, T b, T c, T d, T e, T f, T g, T h, T i); |
|
|
|
// a b c |
|
// d e f |
|
// g h i |
|
|
|
|
|
//-------------------------------- |
|
// Copy constructor and assignment |
|
//-------------------------------- |
|
|
|
Matrix33 (const Matrix33 &v); |
|
template <class S> explicit Matrix33 (const Matrix33<S> &v); |
|
|
|
const Matrix33 & operator = (const Matrix33 &v); |
|
const Matrix33 & operator = (T a); |
|
|
|
|
|
//---------------------- |
|
// Compatibility with Sb |
|
//---------------------- |
|
|
|
T * getValue (); |
|
const T * getValue () const; |
|
|
|
template <class S> |
|
void getValue (Matrix33<S> &v) const; |
|
template <class S> |
|
Matrix33 & setValue (const Matrix33<S> &v); |
|
|
|
template <class S> |
|
Matrix33 & setTheMatrix (const Matrix33<S> &v); |
|
|
|
|
|
//--------- |
|
// Identity |
|
//--------- |
|
|
|
void makeIdentity(); |
|
|
|
|
|
//--------- |
|
// Equality |
|
//--------- |
|
|
|
bool operator == (const Matrix33 &v) const; |
|
bool operator != (const Matrix33 &v) const; |
|
|
|
//----------------------------------------------------------------------- |
|
// Compare two matrices and test if they are "approximately equal": |
|
// |
|
// equalWithAbsError (m, e) |
|
// |
|
// Returns true if the coefficients of this and m are the same with |
|
// an absolute error of no more than e, i.e., for all i, j |
|
// |
|
// abs (this[i][j] - m[i][j]) <= e |
|
// |
|
// equalWithRelError (m, e) |
|
// |
|
// Returns true if the coefficients of this and m are the same with |
|
// a relative error of no more than e, i.e., for all i, j |
|
// |
|
// abs (this[i] - v[i][j]) <= e * abs (this[i][j]) |
|
//----------------------------------------------------------------------- |
|
|
|
bool equalWithAbsError (const Matrix33<T> &v, T e) const; |
|
bool equalWithRelError (const Matrix33<T> &v, T e) const; |
|
|
|
|
|
//------------------------ |
|
// Component-wise addition |
|
//------------------------ |
|
|
|
const Matrix33 & operator += (const Matrix33 &v); |
|
const Matrix33 & operator += (T a); |
|
Matrix33 operator + (const Matrix33 &v) const; |
|
|
|
|
|
//--------------------------- |
|
// Component-wise subtraction |
|
//--------------------------- |
|
|
|
const Matrix33 & operator -= (const Matrix33 &v); |
|
const Matrix33 & operator -= (T a); |
|
Matrix33 operator - (const Matrix33 &v) const; |
|
|
|
|
|
//------------------------------------ |
|
// Component-wise multiplication by -1 |
|
//------------------------------------ |
|
|
|
Matrix33 operator - () const; |
|
const Matrix33 & negate (); |
|
|
|
|
|
//------------------------------ |
|
// Component-wise multiplication |
|
//------------------------------ |
|
|
|
const Matrix33 & operator *= (T a); |
|
Matrix33 operator * (T a) const; |
|
|
|
|
|
//----------------------------------- |
|
// Matrix-times-matrix multiplication |
|
//----------------------------------- |
|
|
|
const Matrix33 & operator *= (const Matrix33 &v); |
|
Matrix33 operator * (const Matrix33 &v) const; |
|
|
|
|
|
//----------------------------------------------------------------- |
|
// Vector-times-matrix multiplication; see also the "operator *" |
|
// functions defined below. |
|
// |
|
// m.multVecMatrix(src,dst) implements a homogeneous transformation |
|
// by computing Vec3 (src.x, src.y, 1) * m and dividing by the |
|
// result's third element. |
|
// |
|
// m.multDirMatrix(src,dst) multiplies src by the upper left 2x2 |
|
// submatrix, ignoring the rest of matrix m. |
|
//----------------------------------------------------------------- |
|
|
|
template <class S> |
|
void multVecMatrix(const Vec2<S> &src, Vec2<S> &dst) const; |
|
|
|
template <class S> |
|
void multDirMatrix(const Vec2<S> &src, Vec2<S> &dst) const; |
|
|
|
|
|
//------------------------ |
|
// Component-wise division |
|
//------------------------ |
|
|
|
const Matrix33 & operator /= (T a); |
|
Matrix33 operator / (T a) const; |
|
|
|
|
|
//------------------ |
|
// Transposed matrix |
|
//------------------ |
|
|
|
const Matrix33 & transpose (); |
|
Matrix33 transposed () const; |
|
|
|
|
|
//------------------------------------------------------------ |
|
// Inverse matrix: If singExc is false, inverting a singular |
|
// matrix produces an identity matrix. If singExc is true, |
|
// inverting a singular matrix throws a SingMatrixExc. |
|
// |
|
// inverse() and invert() invert matrices using determinants; |
|
// gjInverse() and gjInvert() use the Gauss-Jordan method. |
|
// |
|
// inverse() and invert() are significantly faster than |
|
// gjInverse() and gjInvert(), but the results may be slightly |
|
// less accurate. |
|
// |
|
//------------------------------------------------------------ |
|
|
|
const Matrix33 & invert (bool singExc = false) |
|
throw (Iex::MathExc); |
|
|
|
Matrix33<T> inverse (bool singExc = false) const |
|
throw (Iex::MathExc); |
|
|
|
const Matrix33 & gjInvert (bool singExc = false) |
|
throw (Iex::MathExc); |
|
|
|
Matrix33<T> gjInverse (bool singExc = false) const |
|
throw (Iex::MathExc); |
|
|
|
|
|
//------------------------------------------------ |
|
// Calculate the matrix minor of the (r,c) element |
|
//------------------------------------------------ |
|
|
|
T minorOf (const int r, const int c) const; |
|
|
|
//--------------------------------------------------- |
|
// Build a minor using the specified rows and columns |
|
//--------------------------------------------------- |
|
|
|
T fastMinor (const int r0, const int r1, |
|
const int c0, const int c1) const; |
|
|
|
//------------ |
|
// Determinant |
|
//------------ |
|
|
|
T determinant() const; |
|
|
|
//----------------------------------------- |
|
// Set matrix to rotation by r (in radians) |
|
//----------------------------------------- |
|
|
|
template <class S> |
|
const Matrix33 & setRotation (S r); |
|
|
|
|
|
//----------------------------- |
|
// Rotate the given matrix by r |
|
//----------------------------- |
|
|
|
template <class S> |
|
const Matrix33 & rotate (S r); |
|
|
|
|
|
//-------------------------------------------- |
|
// Set matrix to scale by given uniform factor |
|
//-------------------------------------------- |
|
|
|
const Matrix33 & setScale (T s); |
|
|
|
|
|
//------------------------------------ |
|
// Set matrix to scale by given vector |
|
//------------------------------------ |
|
|
|
template <class S> |
|
const Matrix33 & setScale (const Vec2<S> &s); |
|
|
|
|
|
//---------------------- |
|
// Scale the matrix by s |
|
//---------------------- |
|
|
|
template <class S> |
|
const Matrix33 & scale (const Vec2<S> &s); |
|
|
|
|
|
//------------------------------------------ |
|
// Set matrix to translation by given vector |
|
//------------------------------------------ |
|
|
|
template <class S> |
|
const Matrix33 & setTranslation (const Vec2<S> &t); |
|
|
|
|
|
//----------------------------- |
|
// Return translation component |
|
//----------------------------- |
|
|
|
Vec2<T> translation () const; |
|
|
|
|
|
//-------------------------- |
|
// Translate the matrix by t |
|
//-------------------------- |
|
|
|
template <class S> |
|
const Matrix33 & translate (const Vec2<S> &t); |
|
|
|
|
|
//----------------------------------------------------------- |
|
// Set matrix to shear x for each y coord. by given factor xy |
|
//----------------------------------------------------------- |
|
|
|
template <class S> |
|
const Matrix33 & setShear (const S &h); |
|
|
|
|
|
//------------------------------------------------------------- |
|
// Set matrix to shear x for each y coord. by given factor h[0] |
|
// and to shear y for each x coord. by given factor h[1] |
|
//------------------------------------------------------------- |
|
|
|
template <class S> |
|
const Matrix33 & setShear (const Vec2<S> &h); |
|
|
|
|
|
//----------------------------------------------------------- |
|
// Shear the matrix in x for each y coord. by given factor xy |
|
//----------------------------------------------------------- |
|
|
|
template <class S> |
|
const Matrix33 & shear (const S &xy); |
|
|
|
|
|
//----------------------------------------------------------- |
|
// Shear the matrix in x for each y coord. by given factor xy |
|
// and shear y for each x coord. by given factor yx |
|
//----------------------------------------------------------- |
|
|
|
template <class S> |
|
const Matrix33 & shear (const Vec2<S> &h); |
|
|
|
|
|
//-------------------------------------------------------- |
|
// Number of the row and column dimensions, since |
|
// Matrix33 is a square matrix. |
|
//-------------------------------------------------------- |
|
|
|
static unsigned int dimensions() {return 3;} |
|
|
|
|
|
//------------------------------------------------- |
|
// Limitations of type T (see also class limits<T>) |
|
//------------------------------------------------- |
|
|
|
static T baseTypeMin() {return limits<T>::min();} |
|
static T baseTypeMax() {return limits<T>::max();} |
|
static T baseTypeSmallest() {return limits<T>::smallest();} |
|
static T baseTypeEpsilon() {return limits<T>::epsilon();} |
|
|
|
typedef T BaseType; |
|
typedef Vec3<T> BaseVecType; |
|
|
|
private: |
|
|
|
template <typename R, typename S> |
|
struct isSameType |
|
{ |
|
enum {value = 0}; |
|
}; |
|
|
|
template <typename R> |
|
struct isSameType<R, R> |
|
{ |
|
enum {value = 1}; |
|
}; |
|
}; |
|
|
|
|
|
template <class T> class Matrix44 |
|
{ |
|
public: |
|
|
|
//------------------- |
|
// Access to elements |
|
//------------------- |
|
|
|
T x[4][4]; |
|
|
|
T * operator [] (int i); |
|
const T * operator [] (int i) const; |
|
|
|
|
|
//------------- |
|
// Constructors |
|
//------------- |
|
|
|
Matrix44 (Uninitialized) {} |
|
|
|
Matrix44 (); |
|
// 1 0 0 0 |
|
// 0 1 0 0 |
|
// 0 0 1 0 |
|
// 0 0 0 1 |
|
|
|
Matrix44 (T a); |
|
// a a a a |
|
// a a a a |
|
// a a a a |
|
// a a a a |
|
|
|
Matrix44 (const T a[4][4]) ; |
|
// a[0][0] a[0][1] a[0][2] a[0][3] |
|
// a[1][0] a[1][1] a[1][2] a[1][3] |
|
// a[2][0] a[2][1] a[2][2] a[2][3] |
|
// a[3][0] a[3][1] a[3][2] a[3][3] |
|
|
|
Matrix44 (T a, T b, T c, T d, T e, T f, T g, T h, |
|
T i, T j, T k, T l, T m, T n, T o, T p); |
|
|
|
// a b c d |
|
// e f g h |
|
// i j k l |
|
// m n o p |
|
|
|
Matrix44 (Matrix33<T> r, Vec3<T> t); |
|
// r r r 0 |
|
// r r r 0 |
|
// r r r 0 |
|
// t t t 1 |
|
|
|
|
|
//-------------------------------- |
|
// Copy constructor and assignment |
|
//-------------------------------- |
|
|
|
Matrix44 (const Matrix44 &v); |
|
template <class S> explicit Matrix44 (const Matrix44<S> &v); |
|
|
|
const Matrix44 & operator = (const Matrix44 &v); |
|
const Matrix44 & operator = (T a); |
|
|
|
|
|
//---------------------- |
|
// Compatibility with Sb |
|
//---------------------- |
|
|
|
T * getValue (); |
|
const T * getValue () const; |
|
|
|
template <class S> |
|
void getValue (Matrix44<S> &v) const; |
|
template <class S> |
|
Matrix44 & setValue (const Matrix44<S> &v); |
|
|
|
template <class S> |
|
Matrix44 & setTheMatrix (const Matrix44<S> &v); |
|
|
|
//--------- |
|
// Identity |
|
//--------- |
|
|
|
void makeIdentity(); |
|
|
|
|
|
//--------- |
|
// Equality |
|
//--------- |
|
|
|
bool operator == (const Matrix44 &v) const; |
|
bool operator != (const Matrix44 &v) const; |
|
|
|
//----------------------------------------------------------------------- |
|
// Compare two matrices and test if they are "approximately equal": |
|
// |
|
// equalWithAbsError (m, e) |
|
// |
|
// Returns true if the coefficients of this and m are the same with |
|
// an absolute error of no more than e, i.e., for all i, j |
|
// |
|
// abs (this[i][j] - m[i][j]) <= e |
|
// |
|
// equalWithRelError (m, e) |
|
// |
|
// Returns true if the coefficients of this and m are the same with |
|
// a relative error of no more than e, i.e., for all i, j |
|
// |
|
// abs (this[i] - v[i][j]) <= e * abs (this[i][j]) |
|
//----------------------------------------------------------------------- |
|
|
|
bool equalWithAbsError (const Matrix44<T> &v, T e) const; |
|
bool equalWithRelError (const Matrix44<T> &v, T e) const; |
|
|
|
|
|
//------------------------ |
|
// Component-wise addition |
|
//------------------------ |
|
|
|
const Matrix44 & operator += (const Matrix44 &v); |
|
const Matrix44 & operator += (T a); |
|
Matrix44 operator + (const Matrix44 &v) const; |
|
|
|
|
|
//--------------------------- |
|
// Component-wise subtraction |
|
//--------------------------- |
|
|
|
const Matrix44 & operator -= (const Matrix44 &v); |
|
const Matrix44 & operator -= (T a); |
|
Matrix44 operator - (const Matrix44 &v) const; |
|
|
|
|
|
//------------------------------------ |
|
// Component-wise multiplication by -1 |
|
//------------------------------------ |
|
|
|
Matrix44 operator - () const; |
|
const Matrix44 & negate (); |
|
|
|
|
|
//------------------------------ |
|
// Component-wise multiplication |
|
//------------------------------ |
|
|
|
const Matrix44 & operator *= (T a); |
|
Matrix44 operator * (T a) const; |
|
|
|
|
|
//----------------------------------- |
|
// Matrix-times-matrix multiplication |
|
//----------------------------------- |
|
|
|
const Matrix44 & operator *= (const Matrix44 &v); |
|
Matrix44 operator * (const Matrix44 &v) const; |
|
|
|
static void multiply (const Matrix44 &a, // assumes that |
|
const Matrix44 &b, // &a != &c and |
|
Matrix44 &c); // &b != &c. |
|
|
|
|
|
//----------------------------------------------------------------- |
|
// Vector-times-matrix multiplication; see also the "operator *" |
|
// functions defined below. |
|
// |
|
// m.multVecMatrix(src,dst) implements a homogeneous transformation |
|
// by computing Vec4 (src.x, src.y, src.z, 1) * m and dividing by |
|
// the result's third element. |
|
// |
|
// m.multDirMatrix(src,dst) multiplies src by the upper left 3x3 |
|
// submatrix, ignoring the rest of matrix m. |
|
//----------------------------------------------------------------- |
|
|
|
template <class S> |
|
void multVecMatrix(const Vec3<S> &src, Vec3<S> &dst) const; |
|
|
|
template <class S> |
|
void multDirMatrix(const Vec3<S> &src, Vec3<S> &dst) const; |
|
|
|
|
|
//------------------------ |
|
// Component-wise division |
|
//------------------------ |
|
|
|
const Matrix44 & operator /= (T a); |
|
Matrix44 operator / (T a) const; |
|
|
|
|
|
//------------------ |
|
// Transposed matrix |
|
//------------------ |
|
|
|
const Matrix44 & transpose (); |
|
Matrix44 transposed () const; |
|
|
|
|
|
//------------------------------------------------------------ |
|
// Inverse matrix: If singExc is false, inverting a singular |
|
// matrix produces an identity matrix. If singExc is true, |
|
// inverting a singular matrix throws a SingMatrixExc. |
|
// |
|
// inverse() and invert() invert matrices using determinants; |
|
// gjInverse() and gjInvert() use the Gauss-Jordan method. |
|
// |
|
// inverse() and invert() are significantly faster than |
|
// gjInverse() and gjInvert(), but the results may be slightly |
|
// less accurate. |
|
// |
|
//------------------------------------------------------------ |
|
|
|
const Matrix44 & invert (bool singExc = false) |
|
throw (Iex::MathExc); |
|
|
|
Matrix44<T> inverse (bool singExc = false) const |
|
throw (Iex::MathExc); |
|
|
|
const Matrix44 & gjInvert (bool singExc = false) |
|
throw (Iex::MathExc); |
|
|
|
Matrix44<T> gjInverse (bool singExc = false) const |
|
throw (Iex::MathExc); |
|
|
|
|
|
//------------------------------------------------ |
|
// Calculate the matrix minor of the (r,c) element |
|
//------------------------------------------------ |
|
|
|
T minorOf (const int r, const int c) const; |
|
|
|
//--------------------------------------------------- |
|
// Build a minor using the specified rows and columns |
|
//--------------------------------------------------- |
|
|
|
T fastMinor (const int r0, const int r1, const int r2, |
|
const int c0, const int c1, const int c2) const; |
|
|
|
//------------ |
|
// Determinant |
|
//------------ |
|
|
|
T determinant() const; |
|
|
|
//-------------------------------------------------------- |
|
// Set matrix to rotation by XYZ euler angles (in radians) |
|
//-------------------------------------------------------- |
|
|
|
template <class S> |
|
const Matrix44 & setEulerAngles (const Vec3<S>& r); |
|
|
|
|
|
//-------------------------------------------------------- |
|
// Set matrix to rotation around given axis by given angle |
|
//-------------------------------------------------------- |
|
|
|
template <class S> |
|
const Matrix44 & setAxisAngle (const Vec3<S>& ax, S ang); |
|
|
|
|
|
//------------------------------------------- |
|
// Rotate the matrix by XYZ euler angles in r |
|
//------------------------------------------- |
|
|
|
template <class S> |
|
const Matrix44 & rotate (const Vec3<S> &r); |
|
|
|
|
|
//-------------------------------------------- |
|
// Set matrix to scale by given uniform factor |
|
//-------------------------------------------- |
|
|
|
const Matrix44 & setScale (T s); |
|
|
|
|
|
//------------------------------------ |
|
// Set matrix to scale by given vector |
|
//------------------------------------ |
|
|
|
template <class S> |
|
const Matrix44 & setScale (const Vec3<S> &s); |
|
|
|
|
|
//---------------------- |
|
// Scale the matrix by s |
|
//---------------------- |
|
|
|
template <class S> |
|
const Matrix44 & scale (const Vec3<S> &s); |
|
|
|
|
|
//------------------------------------------ |
|
// Set matrix to translation by given vector |
|
//------------------------------------------ |
|
|
|
template <class S> |
|
const Matrix44 & setTranslation (const Vec3<S> &t); |
|
|
|
|
|
//----------------------------- |
|
// Return translation component |
|
//----------------------------- |
|
|
|
const Vec3<T> translation () const; |
|
|
|
|
|
//-------------------------- |
|
// Translate the matrix by t |
|
//-------------------------- |
|
|
|
template <class S> |
|
const Matrix44 & translate (const Vec3<S> &t); |
|
|
|
|
|
//------------------------------------------------------------- |
|
// Set matrix to shear by given vector h. The resulting matrix |
|
// will shear x for each y coord. by a factor of h[0] ; |
|
// will shear x for each z coord. by a factor of h[1] ; |
|
// will shear y for each z coord. by a factor of h[2] . |
|
//------------------------------------------------------------- |
|
|
|
template <class S> |
|
const Matrix44 & setShear (const Vec3<S> &h); |
|
|
|
|
|
//------------------------------------------------------------ |
|
// Set matrix to shear by given factors. The resulting matrix |
|
// will shear x for each y coord. by a factor of h.xy ; |
|
// will shear x for each z coord. by a factor of h.xz ; |
|
// will shear y for each z coord. by a factor of h.yz ; |
|
// will shear y for each x coord. by a factor of h.yx ; |
|
// will shear z for each x coord. by a factor of h.zx ; |
|
// will shear z for each y coord. by a factor of h.zy . |
|
//------------------------------------------------------------ |
|
|
|
template <class S> |
|
const Matrix44 & setShear (const Shear6<S> &h); |
|
|
|
|
|
//-------------------------------------------------------- |
|
// Shear the matrix by given vector. The composed matrix |
|
// will be <shear> * <this>, where the shear matrix ... |
|
// will shear x for each y coord. by a factor of h[0] ; |
|
// will shear x for each z coord. by a factor of h[1] ; |
|
// will shear y for each z coord. by a factor of h[2] . |
|
//-------------------------------------------------------- |
|
|
|
template <class S> |
|
const Matrix44 & shear (const Vec3<S> &h); |
|
|
|
//-------------------------------------------------------- |
|
// Number of the row and column dimensions, since |
|
// Matrix44 is a square matrix. |
|
//-------------------------------------------------------- |
|
|
|
static unsigned int dimensions() {return 4;} |
|
|
|
|
|
//------------------------------------------------------------ |
|
// Shear the matrix by the given factors. The composed matrix |
|
// will be <shear> * <this>, where the shear matrix ... |
|
// will shear x for each y coord. by a factor of h.xy ; |
|
// will shear x for each z coord. by a factor of h.xz ; |
|
// will shear y for each z coord. by a factor of h.yz ; |
|
// will shear y for each x coord. by a factor of h.yx ; |
|
// will shear z for each x coord. by a factor of h.zx ; |
|
// will shear z for each y coord. by a factor of h.zy . |
|
//------------------------------------------------------------ |
|
|
|
template <class S> |
|
const Matrix44 & shear (const Shear6<S> &h); |
|
|
|
|
|
//------------------------------------------------- |
|
// Limitations of type T (see also class limits<T>) |
|
//------------------------------------------------- |
|
|
|
static T baseTypeMin() {return limits<T>::min();} |
|
static T baseTypeMax() {return limits<T>::max();} |
|
static T baseTypeSmallest() {return limits<T>::smallest();} |
|
static T baseTypeEpsilon() {return limits<T>::epsilon();} |
|
|
|
typedef T BaseType; |
|
typedef Vec4<T> BaseVecType; |
|
|
|
private: |
|
|
|
template <typename R, typename S> |
|
struct isSameType |
|
{ |
|
enum {value = 0}; |
|
}; |
|
|
|
template <typename R> |
|
struct isSameType<R, R> |
|
{ |
|
enum {value = 1}; |
|
}; |
|
}; |
|
|
|
|
|
//-------------- |
|
// Stream output |
|
//-------------- |
|
|
|
template <class T> |
|
std::ostream & operator << (std::ostream & s, const Matrix33<T> &m); |
|
|
|
template <class T> |
|
std::ostream & operator << (std::ostream & s, const Matrix44<T> &m); |
|
|
|
|
|
//--------------------------------------------- |
|
// Vector-times-matrix multiplication operators |
|
//--------------------------------------------- |
|
|
|
template <class S, class T> |
|
const Vec2<S> & operator *= (Vec2<S> &v, const Matrix33<T> &m); |
|
|
|
template <class S, class T> |
|
Vec2<S> operator * (const Vec2<S> &v, const Matrix33<T> &m); |
|
|
|
template <class S, class T> |
|
const Vec3<S> & operator *= (Vec3<S> &v, const Matrix33<T> &m); |
|
|
|
template <class S, class T> |
|
Vec3<S> operator * (const Vec3<S> &v, const Matrix33<T> &m); |
|
|
|
template <class S, class T> |
|
const Vec3<S> & operator *= (Vec3<S> &v, const Matrix44<T> &m); |
|
|
|
template <class S, class T> |
|
Vec3<S> operator * (const Vec3<S> &v, const Matrix44<T> &m); |
|
|
|
template <class S, class T> |
|
const Vec4<S> & operator *= (Vec4<S> &v, const Matrix44<T> &m); |
|
|
|
template <class S, class T> |
|
Vec4<S> operator * (const Vec4<S> &v, const Matrix44<T> &m); |
|
|
|
//------------------------- |
|
// Typedefs for convenience |
|
//------------------------- |
|
|
|
typedef Matrix33 <float> M33f; |
|
typedef Matrix33 <double> M33d; |
|
typedef Matrix44 <float> M44f; |
|
typedef Matrix44 <double> M44d; |
|
|
|
|
|
//--------------------------- |
|
// Implementation of Matrix33 |
|
//--------------------------- |
|
|
|
template <class T> |
|
inline T * |
|
Matrix33<T>::operator [] (int i) |
|
{ |
|
return x[i]; |
|
} |
|
|
|
template <class T> |
|
inline const T * |
|
Matrix33<T>::operator [] (int i) const |
|
{ |
|
return x[i]; |
|
} |
|
|
|
template <class T> |
|
inline |
|
Matrix33<T>::Matrix33 () |
|
{ |
|
memset (x, 0, sizeof (x)); |
|
x[0][0] = 1; |
|
x[1][1] = 1; |
|
x[2][2] = 1; |
|
} |
|
|
|
template <class T> |
|
inline |
|
Matrix33<T>::Matrix33 (T a) |
|
{ |
|
x[0][0] = a; |
|
x[0][1] = a; |
|
x[0][2] = a; |
|
x[1][0] = a; |
|
x[1][1] = a; |
|
x[1][2] = a; |
|
x[2][0] = a; |
|
x[2][1] = a; |
|
x[2][2] = a; |
|
} |
|
|
|
template <class T> |
|
inline |
|
Matrix33<T>::Matrix33 (const T a[3][3]) |
|
{ |
|
memcpy (x, a, sizeof (x)); |
|
} |
|
|
|
template <class T> |
|
inline |
|
Matrix33<T>::Matrix33 (T a, T b, T c, T d, T e, T f, T g, T h, T i) |
|
{ |
|
x[0][0] = a; |
|
x[0][1] = b; |
|
x[0][2] = c; |
|
x[1][0] = d; |
|
x[1][1] = e; |
|
x[1][2] = f; |
|
x[2][0] = g; |
|
x[2][1] = h; |
|
x[2][2] = i; |
|
} |
|
|
|
template <class T> |
|
inline |
|
Matrix33<T>::Matrix33 (const Matrix33 &v) |
|
{ |
|
memcpy (x, v.x, sizeof (x)); |
|
} |
|
|
|
template <class T> |
|
template <class S> |
|
inline |
|
Matrix33<T>::Matrix33 (const Matrix33<S> &v) |
|
{ |
|
x[0][0] = T (v.x[0][0]); |
|
x[0][1] = T (v.x[0][1]); |
|
x[0][2] = T (v.x[0][2]); |
|
x[1][0] = T (v.x[1][0]); |
|
x[1][1] = T (v.x[1][1]); |
|
x[1][2] = T (v.x[1][2]); |
|
x[2][0] = T (v.x[2][0]); |
|
x[2][1] = T (v.x[2][1]); |
|
x[2][2] = T (v.x[2][2]); |
|
} |
|
|
|
template <class T> |
|
inline const Matrix33<T> & |
|
Matrix33<T>::operator = (const Matrix33 &v) |
|
{ |
|
memcpy (x, v.x, sizeof (x)); |
|
return *this; |
|
} |
|
|
|
template <class T> |
|
inline const Matrix33<T> & |
|
Matrix33<T>::operator = (T a) |
|
{ |
|
x[0][0] = a; |
|
x[0][1] = a; |
|
x[0][2] = a; |
|
x[1][0] = a; |
|
x[1][1] = a; |
|
x[1][2] = a; |
|
x[2][0] = a; |
|
x[2][1] = a; |
|
x[2][2] = a; |
|
return *this; |
|
} |
|
|
|
template <class T> |
|
inline T * |
|
Matrix33<T>::getValue () |
|
{ |
|
return (T *) &x[0][0]; |
|
} |
|
|
|
template <class T> |
|
inline const T * |
|
Matrix33<T>::getValue () const |
|
{ |
|
return (const T *) &x[0][0]; |
|
} |
|
|
|
template <class T> |
|
template <class S> |
|
inline void |
|
Matrix33<T>::getValue (Matrix33<S> &v) const |
|
{ |
|
if (isSameType<S,T>::value) |
|
{ |
|
memcpy (v.x, x, sizeof (x)); |
|
} |
|
else |
|
{ |
|
v.x[0][0] = x[0][0]; |
|
v.x[0][1] = x[0][1]; |
|
v.x[0][2] = x[0][2]; |
|
v.x[1][0] = x[1][0]; |
|
v.x[1][1] = x[1][1]; |
|
v.x[1][2] = x[1][2]; |
|
v.x[2][0] = x[2][0]; |
|
v.x[2][1] = x[2][1]; |
|
v.x[2][2] = x[2][2]; |
|
} |
|
} |
|
|
|
template <class T> |
|
template <class S> |
|
inline Matrix33<T> & |
|
Matrix33<T>::setValue (const Matrix33<S> &v) |
|
{ |
|
if (isSameType<S,T>::value) |
|
{ |
|
memcpy (x, v.x, sizeof (x)); |
|
} |
|
else |
|
{ |
|
x[0][0] = v.x[0][0]; |
|
x[0][1] = v.x[0][1]; |
|
x[0][2] = v.x[0][2]; |
|
x[1][0] = v.x[1][0]; |
|
x[1][1] = v.x[1][1]; |
|
x[1][2] = v.x[1][2]; |
|
x[2][0] = v.x[2][0]; |
|
x[2][1] = v.x[2][1]; |
|
x[2][2] = v.x[2][2]; |
|
} |
|
|
|
return *this; |
|
} |
|
|
|
template <class T> |
|
template <class S> |
|
inline Matrix33<T> & |
|
Matrix33<T>::setTheMatrix (const Matrix33<S> &v) |
|
{ |
|
if (isSameType<S,T>::value) |
|
{ |
|
memcpy (x, v.x, sizeof (x)); |
|
} |
|
else |
|
{ |
|
x[0][0] = v.x[0][0]; |
|
x[0][1] = v.x[0][1]; |
|
x[0][2] = v.x[0][2]; |
|
x[1][0] = v.x[1][0]; |
|
x[1][1] = v.x[1][1]; |
|
x[1][2] = v.x[1][2]; |
|
x[2][0] = v.x[2][0]; |
|
x[2][1] = v.x[2][1]; |
|
x[2][2] = v.x[2][2]; |
|
} |
|
|
|
return *this; |
|
} |
|
|
|
template <class T> |
|
inline void |
|
Matrix33<T>::makeIdentity() |
|
{ |
|
memset (x, 0, sizeof (x)); |
|
x[0][0] = 1; |
|
x[1][1] = 1; |
|
x[2][2] = 1; |
|
} |
|
|
|
template <class T> |
|
bool |
|
Matrix33<T>::operator == (const Matrix33 &v) const |
|
{ |
|
return x[0][0] == v.x[0][0] && |
|
x[0][1] == v.x[0][1] && |
|
x[0][2] == v.x[0][2] && |
|
x[1][0] == v.x[1][0] && |
|
x[1][1] == v.x[1][1] && |
|
x[1][2] == v.x[1][2] && |
|
x[2][0] == v.x[2][0] && |
|
x[2][1] == v.x[2][1] && |
|
x[2][2] == v.x[2][2]; |
|
} |
|
|
|
template <class T> |
|
bool |
|
Matrix33<T>::operator != (const Matrix33 &v) const |
|
{ |
|
return x[0][0] != v.x[0][0] || |
|
x[0][1] != v.x[0][1] || |
|
x[0][2] != v.x[0][2] || |
|
x[1][0] != v.x[1][0] || |
|
x[1][1] != v.x[1][1] || |
|
x[1][2] != v.x[1][2] || |
|
x[2][0] != v.x[2][0] || |
|
x[2][1] != v.x[2][1] || |
|
x[2][2] != v.x[2][2]; |
|
} |
|
|
|
template <class T> |
|
bool |
|
Matrix33<T>::equalWithAbsError (const Matrix33<T> &m, T e) const |
|
{ |
|
for (int i = 0; i < 3; i++) |
|
for (int j = 0; j < 3; j++) |
|
if (!Imath::equalWithAbsError ((*this)[i][j], m[i][j], e)) |
|
return false; |
|
|
|
return true; |
|
} |
|
|
|
template <class T> |
|
bool |
|
Matrix33<T>::equalWithRelError (const Matrix33<T> &m, T e) const |
|
{ |
|
for (int i = 0; i < 3; i++) |
|
for (int j = 0; j < 3; j++) |
|
if (!Imath::equalWithRelError ((*this)[i][j], m[i][j], e)) |
|
return false; |
|
|
|
return true; |
|
} |
|
|
|
template <class T> |
|
const Matrix33<T> & |
|
Matrix33<T>::operator += (const Matrix33<T> &v) |
|
{ |
|
x[0][0] += v.x[0][0]; |
|
x[0][1] += v.x[0][1]; |
|
x[0][2] += v.x[0][2]; |
|
x[1][0] += v.x[1][0]; |
|
x[1][1] += v.x[1][1]; |
|
x[1][2] += v.x[1][2]; |
|
x[2][0] += v.x[2][0]; |
|
x[2][1] += v.x[2][1]; |
|
x[2][2] += v.x[2][2]; |
|
|
|
return *this; |
|
} |
|
|
|
template <class T> |
|
const Matrix33<T> & |
|
Matrix33<T>::operator += (T a) |
|
{ |
|
x[0][0] += a; |
|
x[0][1] += a; |
|
x[0][2] += a; |
|
x[1][0] += a; |
|
x[1][1] += a; |
|
x[1][2] += a; |
|
x[2][0] += a; |
|
x[2][1] += a; |
|
x[2][2] += a; |
|
|
|
return *this; |
|
} |
|
|
|
template <class T> |
|
Matrix33<T> |
|
Matrix33<T>::operator + (const Matrix33<T> &v) const |
|
{ |
|
return Matrix33 (x[0][0] + v.x[0][0], |
|
x[0][1] + v.x[0][1], |
|
x[0][2] + v.x[0][2], |
|
x[1][0] + v.x[1][0], |
|
x[1][1] + v.x[1][1], |
|
x[1][2] + v.x[1][2], |
|
x[2][0] + v.x[2][0], |
|
x[2][1] + v.x[2][1], |
|
x[2][2] + v.x[2][2]); |
|
} |
|
|
|
template <class T> |
|
const Matrix33<T> & |
|
Matrix33<T>::operator -= (const Matrix33<T> &v) |
|
{ |
|
x[0][0] -= v.x[0][0]; |
|
x[0][1] -= v.x[0][1]; |
|
x[0][2] -= v.x[0][2]; |
|
x[1][0] -= v.x[1][0]; |
|
x[1][1] -= v.x[1][1]; |
|
x[1][2] -= v.x[1][2]; |
|
x[2][0] -= v.x[2][0]; |
|
x[2][1] -= v.x[2][1]; |
|
x[2][2] -= v.x[2][2]; |
|
|
|
return *this; |
|
} |
|
|
|
template <class T> |
|
const Matrix33<T> & |
|
Matrix33<T>::operator -= (T a) |
|
{ |
|
x[0][0] -= a; |
|
x[0][1] -= a; |
|
x[0][2] -= a; |
|
x[1][0] -= a; |
|
x[1][1] -= a; |
|
x[1][2] -= a; |
|
x[2][0] -= a; |
|
x[2][1] -= a; |
|
x[2][2] -= a; |
|
|
|
return *this; |
|
} |
|
|
|
template <class T> |
|
Matrix33<T> |
|
Matrix33<T>::operator - (const Matrix33<T> &v) const |
|
{ |
|
return Matrix33 (x[0][0] - v.x[0][0], |
|
x[0][1] - v.x[0][1], |
|
x[0][2] - v.x[0][2], |
|
x[1][0] - v.x[1][0], |
|
x[1][1] - v.x[1][1], |
|
x[1][2] - v.x[1][2], |
|
x[2][0] - v.x[2][0], |
|
x[2][1] - v.x[2][1], |
|
x[2][2] - v.x[2][2]); |
|
} |
|
|
|
template <class T> |
|
Matrix33<T> |
|
Matrix33<T>::operator - () const |
|
{ |
|
return Matrix33 (-x[0][0], |
|
-x[0][1], |
|
-x[0][2], |
|
-x[1][0], |
|
-x[1][1], |
|
-x[1][2], |
|
-x[2][0], |
|
-x[2][1], |
|
-x[2][2]); |
|
} |
|
|
|
template <class T> |
|
const Matrix33<T> & |
|
Matrix33<T>::negate () |
|
{ |
|
x[0][0] = -x[0][0]; |
|
x[0][1] = -x[0][1]; |
|
x[0][2] = -x[0][2]; |
|
x[1][0] = -x[1][0]; |
|
x[1][1] = -x[1][1]; |
|
x[1][2] = -x[1][2]; |
|
x[2][0] = -x[2][0]; |
|
x[2][1] = -x[2][1]; |
|
x[2][2] = -x[2][2]; |
|
|
|
return *this; |
|
} |
|
|
|
template <class T> |
|
const Matrix33<T> & |
|
Matrix33<T>::operator *= (T a) |
|
{ |
|
x[0][0] *= a; |
|
x[0][1] *= a; |
|
x[0][2] *= a; |
|
x[1][0] *= a; |
|
x[1][1] *= a; |
|
x[1][2] *= a; |
|
x[2][0] *= a; |
|
x[2][1] *= a; |
|
x[2][2] *= a; |
|
|
|
return *this; |
|
} |
|
|
|
template <class T> |
|
Matrix33<T> |
|
Matrix33<T>::operator * (T a) const |
|
{ |
|
return Matrix33 (x[0][0] * a, |
|
x[0][1] * a, |
|
x[0][2] * a, |
|
x[1][0] * a, |
|
x[1][1] * a, |
|
x[1][2] * a, |
|
x[2][0] * a, |
|
x[2][1] * a, |
|
x[2][2] * a); |
|
} |
|
|
|
template <class T> |
|
inline Matrix33<T> |
|
operator * (T a, const Matrix33<T> &v) |
|
{ |
|
return v * a; |
|
} |
|
|
|
template <class T> |
|
const Matrix33<T> & |
|
Matrix33<T>::operator *= (const Matrix33<T> &v) |
|
{ |
|
Matrix33 tmp (T (0)); |
|
|
|
for (int i = 0; i < 3; i++) |
|
for (int j = 0; j < 3; j++) |
|
for (int k = 0; k < 3; k++) |
|
tmp.x[i][j] += x[i][k] * v.x[k][j]; |
|
|
|
*this = tmp; |
|
return *this; |
|
} |
|
|
|
template <class T> |
|
Matrix33<T> |
|
Matrix33<T>::operator * (const Matrix33<T> &v) const |
|
{ |
|
Matrix33 tmp (T (0)); |
|
|
|
for (int i = 0; i < 3; i++) |
|
for (int j = 0; j < 3; j++) |
|
for (int k = 0; k < 3; k++) |
|
tmp.x[i][j] += x[i][k] * v.x[k][j]; |
|
|
|
return tmp; |
|
} |
|
|
|
template <class T> |
|
template <class S> |
|
void |
|
Matrix33<T>::multVecMatrix(const Vec2<S> &src, Vec2<S> &dst) const |
|
{ |
|
S a, b, w; |
|
|
|
a = src[0] * x[0][0] + src[1] * x[1][0] + x[2][0]; |
|
b = src[0] * x[0][1] + src[1] * x[1][1] + x[2][1]; |
|
w = src[0] * x[0][2] + src[1] * x[1][2] + x[2][2]; |
|
|
|
dst.x = a / w; |
|
dst.y = b / w; |
|
} |
|
|
|
template <class T> |
|
template <class S> |
|
void |
|
Matrix33<T>::multDirMatrix(const Vec2<S> &src, Vec2<S> &dst) const |
|
{ |
|
S a, b; |
|
|
|
a = src[0] * x[0][0] + src[1] * x[1][0]; |
|
b = src[0] * x[0][1] + src[1] * x[1][1]; |
|
|
|
dst.x = a; |
|
dst.y = b; |
|
} |
|
|
|
template <class T> |
|
const Matrix33<T> & |
|
Matrix33<T>::operator /= (T a) |
|
{ |
|
x[0][0] /= a; |
|
x[0][1] /= a; |
|
x[0][2] /= a; |
|
x[1][0] /= a; |
|
x[1][1] /= a; |
|
x[1][2] /= a; |
|
x[2][0] /= a; |
|
x[2][1] /= a; |
|
x[2][2] /= a; |
|
|
|
return *this; |
|
} |
|
|
|
template <class T> |
|
Matrix33<T> |
|
Matrix33<T>::operator / (T a) const |
|
{ |
|
return Matrix33 (x[0][0] / a, |
|
x[0][1] / a, |
|
x[0][2] / a, |
|
x[1][0] / a, |
|
x[1][1] / a, |
|
x[1][2] / a, |
|
x[2][0] / a, |
|
x[2][1] / a, |
|
x[2][2] / a); |
|
} |
|
|
|
template <class T> |
|
const Matrix33<T> & |
|
Matrix33<T>::transpose () |
|
{ |
|
Matrix33 tmp (x[0][0], |
|
x[1][0], |
|
x[2][0], |
|
x[0][1], |
|
x[1][1], |
|
x[2][1], |
|
x[0][2], |
|
x[1][2], |
|
x[2][2]); |
|
*this = tmp; |
|
return *this; |
|
} |
|
|
|
template <class T> |
|
Matrix33<T> |
|
Matrix33<T>::transposed () const |
|
{ |
|
return Matrix33 (x[0][0], |
|
x[1][0], |
|
x[2][0], |
|
x[0][1], |
|
x[1][1], |
|
x[2][1], |
|
x[0][2], |
|
x[1][2], |
|
x[2][2]); |
|
} |
|
|
|
template <class T> |
|
const Matrix33<T> & |
|
Matrix33<T>::gjInvert (bool singExc) throw (Iex::MathExc) |
|
{ |
|
*this = gjInverse (singExc); |
|
return *this; |
|
} |
|
|
|
template <class T> |
|
Matrix33<T> |
|
Matrix33<T>::gjInverse (bool singExc) const throw (Iex::MathExc) |
|
{ |
|
int i, j, k; |
|
Matrix33 s; |
|
Matrix33 t (*this); |
|
|
|
// Forward elimination |
|
|
|
for (i = 0; i < 2 ; i++) |
|
{ |
|
int pivot = i; |
|
|
|
T pivotsize = t[i][i]; |
|
|
|
if (pivotsize < 0) |
|
pivotsize = -pivotsize; |
|
|
|
for (j = i + 1; j < 3; j++) |
|
{ |
|
T tmp = t[j][i]; |
|
|
|
if (tmp < 0) |
|
tmp = -tmp; |
|
|
|
if (tmp > pivotsize) |
|
{ |
|
pivot = j; |
|
pivotsize = tmp; |
|
} |
|
} |
|
|
|
if (pivotsize == 0) |
|
{ |
|
if (singExc) |
|
throw ::Imath::SingMatrixExc ("Cannot invert singular matrix."); |
|
|
|
return Matrix33(); |
|
} |
|
|
|
if (pivot != i) |
|
{ |
|
for (j = 0; j < 3; j++) |
|
{ |
|
T tmp; |
|
|
|
tmp = t[i][j]; |
|
t[i][j] = t[pivot][j]; |
|
t[pivot][j] = tmp; |
|
|
|
tmp = s[i][j]; |
|
s[i][j] = s[pivot][j]; |
|
s[pivot][j] = tmp; |
|
} |
|
} |
|
|
|
for (j = i + 1; j < 3; j++) |
|
{ |
|
T f = t[j][i] / t[i][i]; |
|
|
|
for (k = 0; k < 3; k++) |
|
{ |
|
t[j][k] -= f * t[i][k]; |
|
s[j][k] -= f * s[i][k]; |
|
} |
|
} |
|
} |
|
|
|
// Backward substitution |
|
|
|
for (i = 2; i >= 0; --i) |
|
{ |
|
T f; |
|
|
|
if ((f = t[i][i]) == 0) |
|
{ |
|
if (singExc) |
|
throw ::Imath::SingMatrixExc ("Cannot invert singular matrix."); |
|
|
|
return Matrix33(); |
|
} |
|
|
|
for (j = 0; j < 3; j++) |
|
{ |
|
t[i][j] /= f; |
|
s[i][j] /= f; |
|
} |
|
|
|
for (j = 0; j < i; j++) |
|
{ |
|
f = t[j][i]; |
|
|
|
for (k = 0; k < 3; k++) |
|
{ |
|
t[j][k] -= f * t[i][k]; |
|
s[j][k] -= f * s[i][k]; |
|
} |
|
} |
|
} |
|
|
|
return s; |
|
} |
|
|
|
template <class T> |
|
const Matrix33<T> & |
|
Matrix33<T>::invert (bool singExc) throw (Iex::MathExc) |
|
{ |
|
*this = inverse (singExc); |
|
return *this; |
|
} |
|
|
|
template <class T> |
|
Matrix33<T> |
|
Matrix33<T>::inverse (bool singExc) const throw (Iex::MathExc) |
|
{ |
|
if (x[0][2] != 0 || x[1][2] != 0 || x[2][2] != 1) |
|
{ |
|
Matrix33 s (x[1][1] * x[2][2] - x[2][1] * x[1][2], |
|
x[2][1] * x[0][2] - x[0][1] * x[2][2], |
|
x[0][1] * x[1][2] - x[1][1] * x[0][2], |
|
|
|
x[2][0] * x[1][2] - x[1][0] * x[2][2], |
|
x[0][0] * x[2][2] - x[2][0] * x[0][2], |
|
x[1][0] * x[0][2] - x[0][0] * x[1][2], |
|
|
|
x[1][0] * x[2][1] - x[2][0] * x[1][1], |
|
x[2][0] * x[0][1] - x[0][0] * x[2][1], |
|
x[0][0] * x[1][1] - x[1][0] * x[0][1]); |
|
|
|
T r = x[0][0] * s[0][0] + x[0][1] * s[1][0] + x[0][2] * s[2][0]; |
|
|
|
if (Imath::abs (r) >= 1) |
|
{ |
|
for (int i = 0; i < 3; ++i) |
|
{ |
|
for (int j = 0; j < 3; ++j) |
|
{ |
|
s[i][j] /= r; |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
T mr = Imath::abs (r) / limits<T>::smallest(); |
|
|
|
for (int i = 0; i < 3; ++i) |
|
{ |
|
for (int j = 0; j < 3; ++j) |
|
{ |
|
if (mr > Imath::abs (s[i][j])) |
|
{ |
|
s[i][j] /= r; |
|
} |
|
else |
|
{ |
|
if (singExc) |
|
throw SingMatrixExc ("Cannot invert " |
|
"singular matrix."); |
|
return Matrix33(); |
|
} |
|
} |
|
} |
|
} |
|
|
|
return s; |
|
} |
|
else |
|
{ |
|
Matrix33 s ( x[1][1], |
|
-x[0][1], |
|
0, |
|
|
|
-x[1][0], |
|
x[0][0], |
|
0, |
|
|
|
0, |
|
0, |
|
1); |
|
|
|
T r = x[0][0] * x[1][1] - x[1][0] * x[0][1]; |
|
|
|
if (Imath::abs (r) >= 1) |
|
{ |
|
for (int i = 0; i < 2; ++i) |
|
{ |
|
for (int j = 0; j < 2; ++j) |
|
{ |
|
s[i][j] /= r; |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
T mr = Imath::abs (r) / limits<T>::smallest(); |
|
|
|
for (int i = 0; i < 2; ++i) |
|
{ |
|
for (int j = 0; j < 2; ++j) |
|
{ |
|
if (mr > Imath::abs (s[i][j])) |
|
{ |
|
s[i][j] /= r; |
|
} |
|
else |
|
{ |
|
if (singExc) |
|
throw SingMatrixExc ("Cannot invert " |
|
"singular matrix."); |
|
return Matrix33(); |
|
} |
|
} |
|
} |
|
} |
|
|
|
s[2][0] = -x[2][0] * s[0][0] - x[2][1] * s[1][0]; |
|
s[2][1] = -x[2][0] * s[0][1] - x[2][1] * s[1][1]; |
|
|
|
return s; |
|
} |
|
} |
|
|
|
template <class T> |
|
inline T |
|
Matrix33<T>::minorOf (const int r, const int c) const |
|
{ |
|
int r0 = 0 + (r < 1 ? 1 : 0); |
|
int r1 = 1 + (r < 2 ? 1 : 0); |
|
int c0 = 0 + (c < 1 ? 1 : 0); |
|
int c1 = 1 + (c < 2 ? 1 : 0); |
|
|
|
return x[r0][c0]*x[r1][c1] - x[r1][c0]*x[r0][c1]; |
|
} |
|
|
|
template <class T> |
|
inline T |
|
Matrix33<T>::fastMinor( const int r0, const int r1, |
|
const int c0, const int c1) const |
|
{ |
|
return x[r0][c0]*x[r1][c1] - x[r0][c1]*x[r1][c0]; |
|
} |
|
|
|
template <class T> |
|
inline T |
|
Matrix33<T>::determinant () const |
|
{ |
|
return x[0][0]*(x[1][1]*x[2][2] - x[1][2]*x[2][1]) + |
|
x[0][1]*(x[1][2]*x[2][0] - x[1][0]*x[2][2]) + |
|
x[0][2]*(x[1][0]*x[2][1] - x[1][1]*x[2][0]); |
|
} |
|
|
|
template <class T> |
|
template <class S> |
|
const Matrix33<T> & |
|
Matrix33<T>::setRotation (S r) |
|
{ |
|
S cos_r, sin_r; |
|
|
|
cos_r = Math<T>::cos (r); |
|
sin_r = Math<T>::sin (r); |
|
|
|
x[0][0] = cos_r; |
|
x[0][1] = sin_r; |
|
x[0][2] = 0; |
|
|
|
x[1][0] = -sin_r; |
|
x[1][1] = cos_r; |
|
x[1][2] = 0; |
|
|
|
x[2][0] = 0; |
|
x[2][1] = 0; |
|
x[2][2] = 1; |
|
|
|
return *this; |
|
} |
|
|
|
template <class T> |
|
template <class S> |
|
const Matrix33<T> & |
|
Matrix33<T>::rotate (S r) |
|
{ |
|
*this *= Matrix33<T>().setRotation (r); |
|
return *this; |
|
} |
|
|
|
template <class T> |
|
const Matrix33<T> & |
|
Matrix33<T>::setScale (T s) |
|
{ |
|
memset (x, 0, sizeof (x)); |
|
x[0][0] = s; |
|
x[1][1] = s; |
|
x[2][2] = 1; |
|
|
|
return *this; |
|
} |
|
|
|
template <class T> |
|
template <class S> |
|
const Matrix33<T> & |
|
Matrix33<T>::setScale (const Vec2<S> &s) |
|
{ |
|
memset (x, 0, sizeof (x)); |
|
x[0][0] = s[0]; |
|
x[1][1] = s[1]; |
|
x[2][2] = 1; |
|
|
|
return *this; |
|
} |
|
|
|
template <class T> |
|
template <class S> |
|
const Matrix33<T> & |
|
Matrix33<T>::scale (const Vec2<S> &s) |
|
{ |
|
x[0][0] *= s[0]; |
|
x[0][1] *= s[0]; |
|
x[0][2] *= s[0]; |
|
|
|
x[1][0] *= s[1]; |
|
x[1][1] *= s[1]; |
|
x[1][2] *= s[1]; |
|
|
|
return *this; |
|
} |
|
|
|
template <class T> |
|
template <class S> |
|
const Matrix33<T> & |
|
Matrix33<T>::setTranslation (const Vec2<S> &t) |
|
{ |
|
x[0][0] = 1; |
|
x[0][1] = 0; |
|
x[0][2] = 0; |
|
|
|
x[1][0] = 0; |
|
x[1][1] = 1; |
|
x[1][2] = 0; |
|
|
|
x[2][0] = t[0]; |
|
x[2][1] = t[1]; |
|
x[2][2] = 1; |
|
|
|
return *this; |
|
} |
|
|
|
template <class T> |
|
inline Vec2<T> |
|
Matrix33<T>::translation () const |
|
{ |
|
return Vec2<T> (x[2][0], x[2][1]); |
|
} |
|
|
|
template <class T> |
|
template <class S> |
|
const Matrix33<T> & |
|
Matrix33<T>::translate (const Vec2<S> &t) |
|
{ |
|
x[2][0] += t[0] * x[0][0] + t[1] * x[1][0]; |
|
x[2][1] += t[0] * x[0][1] + t[1] * x[1][1]; |
|
x[2][2] += t[0] * x[0][2] + t[1] * x[1][2]; |
|
|
|
return *this; |
|
} |
|
|
|
template <class T> |
|
template <class S> |
|
const Matrix33<T> & |
|
Matrix33<T>::setShear (const S &xy) |
|
{ |
|
x[0][0] = 1; |
|
x[0][1] = 0; |
|
x[0][2] = 0; |
|
|
|
x[1][0] = xy; |
|
x[1][1] = 1; |
|
x[1][2] = 0; |
|
|
|
x[2][0] = 0; |
|
x[2][1] = 0; |
|
x[2][2] = 1; |
|
|
|
return *this; |
|
} |
|
|
|
template <class T> |
|
template <class S> |
|
const Matrix33<T> & |
|
Matrix33<T>::setShear (const Vec2<S> &h) |
|
{ |
|
x[0][0] = 1; |
|
x[0][1] = h[1]; |
|
x[0][2] = 0; |
|
|
|
x[1][0] = h[0]; |
|
x[1][1] = 1; |
|
x[1][2] = 0; |
|
|
|
x[2][0] = 0; |
|
x[2][1] = 0; |
|
x[2][2] = 1; |
|
|
|
return *this; |
|
} |
|
|
|
template <class T> |
|
template <class S> |
|
const Matrix33<T> & |
|
Matrix33<T>::shear (const S &xy) |
|
{ |
|
// |
|
// In this case, we don't need a temp. copy of the matrix |
|
// because we never use a value on the RHS after we've |
|
// changed it on the LHS. |
|
// |
|
|
|
x[1][0] += xy * x[0][0]; |
|
x[1][1] += xy * x[0][1]; |
|
x[1][2] += xy * x[0][2]; |
|
|
|
return *this; |
|
} |
|
|
|
template <class T> |
|
template <class S> |
|
const Matrix33<T> & |
|
Matrix33<T>::shear (const Vec2<S> &h) |
|
{ |
|
Matrix33<T> P (*this); |
|
|
|
x[0][0] = P[0][0] + h[1] * P[1][0]; |
|
x[0][1] = P[0][1] + h[1] * P[1][1]; |
|
x[0][2] = P[0][2] + h[1] * P[1][2]; |
|
|
|
x[1][0] = P[1][0] + h[0] * P[0][0]; |
|
x[1][1] = P[1][1] + h[0] * P[0][1]; |
|
x[1][2] = P[1][2] + h[0] * P[0][2]; |
|
|
|
return *this; |
|
} |
|
|
|
|
|
//--------------------------- |
|
// Implementation of Matrix44 |
|
//--------------------------- |
|
|
|
template <class T> |
|
inline T * |
|
Matrix44<T>::operator [] (int i) |
|
{ |
|
return x[i]; |
|
} |
|
|
|
template <class T> |
|
inline const T * |
|
Matrix44<T>::operator [] (int i) const |
|
{ |
|
return x[i]; |
|
} |
|
|
|
template <class T> |
|
inline |
|
Matrix44<T>::Matrix44 () |
|
{ |
|
memset (x, 0, sizeof (x)); |
|
x[0][0] = 1; |
|
x[1][1] = 1; |
|
x[2][2] = 1; |
|
x[3][3] = 1; |
|
} |
|
|
|
template <class T> |
|
inline |
|
Matrix44<T>::Matrix44 (T a) |
|
{ |
|
x[0][0] = a; |
|
x[0][1] = a; |
|
x[0][2] = a; |
|
x[0][3] = a; |
|
x[1][0] = a; |
|
x[1][1] = a; |
|
x[1][2] = a; |
|
x[1][3] = a; |
|
x[2][0] = a; |
|
x[2][1] = a; |
|
x[2][2] = a; |
|
x[2][3] = a; |
|
x[3][0] = a; |
|
x[3][1] = a; |
|
x[3][2] = a; |
|
x[3][3] = a; |
|
} |
|
|
|
template <class T> |
|
inline |
|
Matrix44<T>::Matrix44 (const T a[4][4]) |
|
{ |
|
memcpy (x, a, sizeof (x)); |
|
} |
|
|
|
template <class T> |
|
inline |
|
Matrix44<T>::Matrix44 (T a, T b, T c, T d, T e, T f, T g, T h, |
|
T i, T j, T k, T l, T m, T n, T o, T p) |
|
{ |
|
x[0][0] = a; |
|
x[0][1] = b; |
|
x[0][2] = c; |
|
x[0][3] = d; |
|
x[1][0] = e; |
|
x[1][1] = f; |
|
x[1][2] = g; |
|
x[1][3] = h; |
|
x[2][0] = i; |
|
x[2][1] = j; |
|
x[2][2] = k; |
|
x[2][3] = l; |
|
x[3][0] = m; |
|
x[3][1] = n; |
|
x[3][2] = o; |
|
x[3][3] = p; |
|
} |
|
|
|
|
|
template <class T> |
|
inline |
|
Matrix44<T>::Matrix44 (Matrix33<T> r, Vec3<T> t) |
|
{ |
|
x[0][0] = r[0][0]; |
|
x[0][1] = r[0][1]; |
|
x[0][2] = r[0][2]; |
|
x[0][3] = 0; |
|
x[1][0] = r[1][0]; |
|
x[1][1] = r[1][1]; |
|
x[1][2] = r[1][2]; |
|
x[1][3] = 0; |
|
x[2][0] = r[2][0]; |
|
x[2][1] = r[2][1]; |
|
x[2][2] = r[2][2]; |
|
x[2][3] = 0; |
|
x[3][0] = t[0]; |
|
x[3][1] = t[1]; |
|
x[3][2] = t[2]; |
|
x[3][3] = 1; |
|
} |
|
|
|
template <class T> |
|
inline |
|
Matrix44<T>::Matrix44 (const Matrix44 &v) |
|
{ |
|
x[0][0] = v.x[0][0]; |
|
x[0][1] = v.x[0][1]; |
|
x[0][2] = v.x[0][2]; |
|
x[0][3] = v.x[0][3]; |
|
x[1][0] = v.x[1][0]; |
|
x[1][1] = v.x[1][1]; |
|
x[1][2] = v.x[1][2]; |
|
x[1][3] = v.x[1][3]; |
|
x[2][0] = v.x[2][0]; |
|
x[2][1] = v.x[2][1]; |
|
x[2][2] = v.x[2][2]; |
|
x[2][3] = v.x[2][3]; |
|
x[3][0] = v.x[3][0]; |
|
x[3][1] = v.x[3][1]; |
|
x[3][2] = v.x[3][2]; |
|
x[3][3] = v.x[3][3]; |
|
} |
|
|
|
template <class T> |
|
template <class S> |
|
inline |
|
Matrix44<T>::Matrix44 (const Matrix44<S> &v) |
|
{ |
|
x[0][0] = T (v.x[0][0]); |
|
x[0][1] = T (v.x[0][1]); |
|
x[0][2] = T (v.x[0][2]); |
|
x[0][3] = T (v.x[0][3]); |
|
x[1][0] = T (v.x[1][0]); |
|
x[1][1] = T (v.x[1][1]); |
|
x[1][2] = T (v.x[1][2]); |
|
x[1][3] = T (v.x[1][3]); |
|
x[2][0] = T (v.x[2][0]); |
|
x[2][1] = T (v.x[2][1]); |
|
x[2][2] = T (v.x[2][2]); |
|
x[2][3] = T (v.x[2][3]); |
|
x[3][0] = T (v.x[3][0]); |
|
x[3][1] = T (v.x[3][1]); |
|
x[3][2] = T (v.x[3][2]); |
|
x[3][3] = T (v.x[3][3]); |
|
} |
|
|
|
template <class T> |
|
inline const Matrix44<T> & |
|
Matrix44<T>::operator = (const Matrix44 &v) |
|
{ |
|
x[0][0] = v.x[0][0]; |
|
x[0][1] = v.x[0][1]; |
|
x[0][2] = v.x[0][2]; |
|
x[0][3] = v.x[0][3]; |
|
x[1][0] = v.x[1][0]; |
|
x[1][1] = v.x[1][1]; |
|
x[1][2] = v.x[1][2]; |
|
x[1][3] = v.x[1][3]; |
|
x[2][0] = v.x[2][0]; |
|
x[2][1] = v.x[2][1]; |
|
x[2][2] = v.x[2][2]; |
|
x[2][3] = v.x[2][3]; |
|
x[3][0] = v.x[3][0]; |
|
x[3][1] = v.x[3][1]; |
|
x[3][2] = v.x[3][2]; |
|
x[3][3] = v.x[3][3]; |
|
return *this; |
|
} |
|
|
|
template <class T> |
|
inline const Matrix44<T> & |
|
Matrix44<T>::operator = (T a) |
|
{ |
|
x[0][0] = a; |
|
x[0][1] = a; |
|
x[0][2] = a; |
|
x[0][3] = a; |
|
x[1][0] = a; |
|
x[1][1] = a; |
|
x[1][2] = a; |
|
x[1][3] = a; |
|
x[2][0] = a; |
|
x[2][1] = a; |
|
x[2][2] = a; |
|
x[2][3] = a; |
|
x[3][0] = a; |
|
x[3][1] = a; |
|
x[3][2] = a; |
|
x[3][3] = a; |
|
return *this; |
|
} |
|
|
|
template <class T> |
|
inline T * |
|
Matrix44<T>::getValue () |
|
{ |
|
return (T *) &x[0][0]; |
|
} |
|
|
|
template <class T> |
|
inline const T * |
|
Matrix44<T>::getValue () const |
|
{ |
|
return (const T *) &x[0][0]; |
|
} |
|
|
|
template <class T> |
|
template <class S> |
|
inline void |
|
Matrix44<T>::getValue (Matrix44<S> &v) const |
|
{ |
|
if (isSameType<S,T>::value) |
|
{ |
|
memcpy (v.x, x, sizeof (x)); |
|
} |
|
else |
|
{ |
|
v.x[0][0] = x[0][0]; |
|
v.x[0][1] = x[0][1]; |
|
v.x[0][2] = x[0][2]; |
|
v.x[0][3] = x[0][3]; |
|
v.x[1][0] = x[1][0]; |
|
v.x[1][1] = x[1][1]; |
|
v.x[1][2] = x[1][2]; |
|
v.x[1][3] = x[1][3]; |
|
v.x[2][0] = x[2][0]; |
|
v.x[2][1] = x[2][1]; |
|
v.x[2][2] = x[2][2]; |
|
v.x[2][3] = x[2][3]; |
|
v.x[3][0] = x[3][0]; |
|
v.x[3][1] = x[3][1]; |
|
v.x[3][2] = x[3][2]; |
|
v.x[3][3] = x[3][3]; |
|
} |
|
} |
|
|
|
template <class T> |
|
template <class S> |
|
inline Matrix44<T> & |
|
Matrix44<T>::setValue (const Matrix44<S> &v) |
|
{ |
|
if (isSameType<S,T>::value) |
|
{ |
|
memcpy (x, v.x, sizeof (x)); |
|
} |
|
else |
|
{ |
|
x[0][0] = v.x[0][0]; |
|
x[0][1] = v.x[0][1]; |
|
x[0][2] = v.x[0][2]; |
|
x[0][3] = v.x[0][3]; |
|
x[1][0] = v.x[1][0]; |
|
x[1][1] = v.x[1][1]; |
|
x[1][2] = v.x[1][2]; |
|
x[1][3] = v.x[1][3]; |
|
x[2][0] = v.x[2][0]; |
|
x[2][1] = v.x[2][1]; |
|
x[2][2] = v.x[2][2]; |
|
x[2][3] = v.x[2][3]; |
|
x[3][0] = v.x[3][0]; |
|
x[3][1] = v.x[3][1]; |
|
x[3][2] = v.x[3][2]; |
|
x[3][3] = v.x[3][3]; |
|
} |
|
|
|
return *this; |
|
} |
|
|
|
template <class T> |
|
template <class S> |
|
inline Matrix44<T> & |
|
Matrix44<T>::setTheMatrix (const Matrix44<S> &v) |
|
{ |
|
if (isSameType<S,T>::value) |
|
{ |
|
memcpy (x, v.x, sizeof (x)); |
|
} |
|
else |
|
{ |
|
x[0][0] = v.x[0][0]; |
|
x[0][1] = v.x[0][1]; |
|
x[0][2] = v.x[0][2]; |
|
x[0][3] = v.x[0][3]; |
|
x[1][0] = v.x[1][0]; |
|
x[1][1] = v.x[1][1]; |
|
x[1][2] = v.x[1][2]; |
|
x[1][3] = v.x[1][3]; |
|
x[2][0] = v.x[2][0]; |
|
x[2][1] = v.x[2][1]; |
|
x[2][2] = v.x[2][2]; |
|
x[2][3] = v.x[2][3]; |
|
x[3][0] = v.x[3][0]; |
|
x[3][1] = v.x[3][1]; |
|
x[3][2] = v.x[3][2]; |
|
x[3][3] = v.x[3][3]; |
|
} |
|
|
|
return *this; |
|
} |
|
|
|
template <class T> |
|
inline void |
|
Matrix44<T>::makeIdentity() |
|
{ |
|
memset (x, 0, sizeof (x)); |
|
x[0][0] = 1; |
|
x[1][1] = 1; |
|
x[2][2] = 1; |
|
x[3][3] = 1; |
|
} |
|
|
|
template <class T> |
|
bool |
|
Matrix44<T>::operator == (const Matrix44 &v) const |
|
{ |
|
return x[0][0] == v.x[0][0] && |
|
x[0][1] == v.x[0][1] && |
|
x[0][2] == v.x[0][2] && |
|
x[0][3] == v.x[0][3] && |
|
x[1][0] == v.x[1][0] && |
|
x[1][1] == v.x[1][1] && |
|
x[1][2] == v.x[1][2] && |
|
x[1][3] == v.x[1][3] && |
|
x[2][0] == v.x[2][0] && |
|
x[2][1] == v.x[2][1] && |
|
x[2][2] == v.x[2][2] && |
|
x[2][3] == v.x[2][3] && |
|
x[3][0] == v.x[3][0] && |
|
x[3][1] == v.x[3][1] && |
|
x[3][2] == v.x[3][2] && |
|
x[3][3] == v.x[3][3]; |
|
} |
|
|
|
template <class T> |
|
bool |
|
Matrix44<T>::operator != (const Matrix44 &v) const |
|
{ |
|
return x[0][0] != v.x[0][0] || |
|
x[0][1] != v.x[0][1] || |
|
x[0][2] != v.x[0][2] || |
|
x[0][3] != v.x[0][3] || |
|
x[1][0] != v.x[1][0] || |
|
x[1][1] != v.x[1][1] || |
|
x[1][2] != v.x[1][2] || |
|
x[1][3] != v.x[1][3] || |
|
x[2][0] != v.x[2][0] || |
|
x[2][1] != v.x[2][1] || |
|
x[2][2] != v.x[2][2] || |
|
x[2][3] != v.x[2][3] || |
|
x[3][0] != v.x[3][0] || |
|
x[3][1] != v.x[3][1] || |
|
x[3][2] != v.x[3][2] || |
|
x[3][3] != v.x[3][3]; |
|
} |
|
|
|
template <class T> |
|
bool |
|
Matrix44<T>::equalWithAbsError (const Matrix44<T> &m, T e) const |
|
{ |
|
for (int i = 0; i < 4; i++) |
|
for (int j = 0; j < 4; j++) |
|
if (!Imath::equalWithAbsError ((*this)[i][j], m[i][j], e)) |
|
return false; |
|
|
|
return true; |
|
} |
|
|
|
template <class T> |
|
bool |
|
Matrix44<T>::equalWithRelError (const Matrix44<T> &m, T e) const |
|
{ |
|
for (int i = 0; i < 4; i++) |
|
for (int j = 0; j < 4; j++) |
|
if (!Imath::equalWithRelError ((*this)[i][j], m[i][j], e)) |
|
return false; |
|
|
|
return true; |
|
} |
|
|
|
template <class T> |
|
const Matrix44<T> & |
|
Matrix44<T>::operator += (const Matrix44<T> &v) |
|
{ |
|
x[0][0] += v.x[0][0]; |
|
x[0][1] += v.x[0][1]; |
|
x[0][2] += v.x[0][2]; |
|
x[0][3] += v.x[0][3]; |
|
x[1][0] += v.x[1][0]; |
|
x[1][1] += v.x[1][1]; |
|
x[1][2] += v.x[1][2]; |
|
x[1][3] += v.x[1][3]; |
|
x[2][0] += v.x[2][0]; |
|
x[2][1] += v.x[2][1]; |
|
x[2][2] += v.x[2][2]; |
|
x[2][3] += v.x[2][3]; |
|
x[3][0] += v.x[3][0]; |
|
x[3][1] += v.x[3][1]; |
|
x[3][2] += v.x[3][2]; |
|
x[3][3] += v.x[3][3]; |
|
|
|
return *this; |
|
} |
|
|
|
template <class T> |
|
const Matrix44<T> & |
|
Matrix44<T>::operator += (T a) |
|
{ |
|
x[0][0] += a; |
|
x[0][1] += a; |
|
x[0][2] += a; |
|
x[0][3] += a; |
|
x[1][0] += a; |
|
x[1][1] += a; |
|
x[1][2] += a; |
|
x[1][3] += a; |
|
x[2][0] += a; |
|
x[2][1] += a; |
|
x[2][2] += a; |
|
x[2][3] += a; |
|
x[3][0] += a; |
|
x[3][1] += a; |
|
x[3][2] += a; |
|
x[3][3] += a; |
|
|
|
return *this; |
|
} |
|
|
|
template <class T> |
|
Matrix44<T> |
|
Matrix44<T>::operator + (const Matrix44<T> &v) const |
|
{ |
|
return Matrix44 (x[0][0] + v.x[0][0], |
|
x[0][1] + v.x[0][1], |
|
x[0][2] + v.x[0][2], |
|
x[0][3] + v.x[0][3], |
|
x[1][0] + v.x[1][0], |
|
x[1][1] + v.x[1][1], |
|
x[1][2] + v.x[1][2], |
|
x[1][3] + v.x[1][3], |
|
x[2][0] + v.x[2][0], |
|
x[2][1] + v.x[2][1], |
|
x[2][2] + v.x[2][2], |
|
x[2][3] + v.x[2][3], |
|
x[3][0] + v.x[3][0], |
|
x[3][1] + v.x[3][1], |
|
x[3][2] + v.x[3][2], |
|
x[3][3] + v.x[3][3]); |
|
} |
|
|
|
template <class T> |
|
const Matrix44<T> & |
|
Matrix44<T>::operator -= (const Matrix44<T> &v) |
|
{ |
|
x[0][0] -= v.x[0][0]; |
|
x[0][1] -= v.x[0][1]; |
|
x[0][2] -= v.x[0][2]; |
|
x[0][3] -= v.x[0][3]; |
|
x[1][0] -= v.x[1][0]; |
|
x[1][1] -= v.x[1][1]; |
|
x[1][2] -= v.x[1][2]; |
|
x[1][3] -= v.x[1][3]; |
|
x[2][0] -= v.x[2][0]; |
|
x[2][1] -= v.x[2][1]; |
|
x[2][2] -= v.x[2][2]; |
|
x[2][3] -= v.x[2][3]; |
|
x[3][0] -= v.x[3][0]; |
|
x[3][1] -= v.x[3][1]; |
|
x[3][2] -= v.x[3][2]; |
|
x[3][3] -= v.x[3][3]; |
|
|
|
return *this; |
|
} |
|
|
|
template <class T> |
|
const Matrix44<T> & |
|
Matrix44<T>::operator -= (T a) |
|
{ |
|
x[0][0] -= a; |
|
x[0][1] -= a; |
|
x[0][2] -= a; |
|
x[0][3] -= a; |
|
x[1][0] -= a; |
|
x[1][1] -= a; |
|
x[1][2] -= a; |
|
x[1][3] -= a; |
|
x[2][0] -= a; |
|
x[2][1] -= a; |
|
x[2][2] -= a; |
|
x[2][3] -= a; |
|
x[3][0] -= a; |
|
x[3][1] -= a; |
|
x[3][2] -= a; |
|
x[3][3] -= a; |
|
|
|
return *this; |
|
} |
|
|
|
template <class T> |
|
Matrix44<T> |
|
Matrix44<T>::operator - (const Matrix44<T> &v) const |
|
{ |
|
return Matrix44 (x[0][0] - v.x[0][0], |
|
x[0][1] - v.x[0][1], |
|
x[0][2] - v.x[0][2], |
|
x[0][3] - v.x[0][3], |
|
x[1][0] - v.x[1][0], |
|
x[1][1] - v.x[1][1], |
|
x[1][2] - v.x[1][2], |
|
x[1][3] - v.x[1][3], |
|
x[2][0] - v.x[2][0], |
|
x[2][1] - v.x[2][1], |
|
x[2][2] - v.x[2][2], |
|
x[2][3] - v.x[2][3], |
|
x[3][0] - v.x[3][0], |
|
x[3][1] - v.x[3][1], |
|
x[3][2] - v.x[3][2], |
|
x[3][3] - v.x[3][3]); |
|
} |
|
|
|
template <class T> |
|
Matrix44<T> |
|
Matrix44<T>::operator - () const |
|
{ |
|
return Matrix44 (-x[0][0], |
|
-x[0][1], |
|
-x[0][2], |
|
-x[0][3], |
|
-x[1][0], |
|
-x[1][1], |
|
-x[1][2], |
|
-x[1][3], |
|
-x[2][0], |
|
-x[2][1], |
|
-x[2][2], |
|
-x[2][3], |
|
-x[3][0], |
|
-x[3][1], |
|
-x[3][2], |
|
-x[3][3]); |
|
} |
|
|
|
template <class T> |
|
const Matrix44<T> & |
|
Matrix44<T>::negate () |
|
{ |
|
x[0][0] = -x[0][0]; |
|
x[0][1] = -x[0][1]; |
|
x[0][2] = -x[0][2]; |
|
x[0][3] = -x[0][3]; |
|
x[1][0] = -x[1][0]; |
|
x[1][1] = -x[1][1]; |
|
x[1][2] = -x[1][2]; |
|
x[1][3] = -x[1][3]; |
|
x[2][0] = -x[2][0]; |
|
x[2][1] = -x[2][1]; |
|
x[2][2] = -x[2][2]; |
|
x[2][3] = -x[2][3]; |
|
x[3][0] = -x[3][0]; |
|
x[3][1] = -x[3][1]; |
|
x[3][2] = -x[3][2]; |
|
x[3][3] = -x[3][3]; |
|
|
|
return *this; |
|
} |
|
|
|
template <class T> |
|
const Matrix44<T> & |
|
Matrix44<T>::operator *= (T a) |
|
{ |
|
x[0][0] *= a; |
|
x[0][1] *= a; |
|
x[0][2] *= a; |
|
x[0][3] *= a; |
|
x[1][0] *= a; |
|
x[1][1] *= a; |
|
x[1][2] *= a; |
|
x[1][3] *= a; |
|
x[2][0] *= a; |
|
x[2][1] *= a; |
|
x[2][2] *= a; |
|
x[2][3] *= a; |
|
x[3][0] *= a; |
|
x[3][1] *= a; |
|
x[3][2] *= a; |
|
x[3][3] *= a; |
|
|
|
return *this; |
|
} |
|
|
|
template <class T> |
|
Matrix44<T> |
|
Matrix44<T>::operator * (T a) const |
|
{ |
|
return Matrix44 (x[0][0] * a, |
|
x[0][1] * a, |
|
x[0][2] * a, |
|
x[0][3] * a, |
|
x[1][0] * a, |
|
x[1][1] * a, |
|
x[1][2] * a, |
|
x[1][3] * a, |
|
x[2][0] * a, |
|
x[2][1] * a, |
|
x[2][2] * a, |
|
x[2][3] * a, |
|
x[3][0] * a, |
|
x[3][1] * a, |
|
x[3][2] * a, |
|
x[3][3] * a); |
|
} |
|
|
|
template <class T> |
|
inline Matrix44<T> |
|
operator * (T a, const Matrix44<T> &v) |
|
{ |
|
return v * a; |
|
} |
|
|
|
template <class T> |
|
inline const Matrix44<T> & |
|
Matrix44<T>::operator *= (const Matrix44<T> &v) |
|
{ |
|
Matrix44 tmp (T (0)); |
|
|
|
multiply (*this, v, tmp); |
|
*this = tmp; |
|
return *this; |
|
} |
|
|
|
template <class T> |
|
inline Matrix44<T> |
|
Matrix44<T>::operator * (const Matrix44<T> &v) const |
|
{ |
|
Matrix44 tmp (T (0)); |
|
|
|
multiply (*this, v, tmp); |
|
return tmp; |
|
} |
|
|
|
template <class T> |
|
void |
|
Matrix44<T>::multiply (const Matrix44<T> &a, |
|
const Matrix44<T> &b, |
|
Matrix44<T> &c) |
|
{ |
|
register const T * IMATH_RESTRICT ap = &a.x[0][0]; |
|
register const T * IMATH_RESTRICT bp = &b.x[0][0]; |
|
register T * IMATH_RESTRICT cp = &c.x[0][0]; |
|
|
|
register T a0, a1, a2, a3; |
|
|
|
a0 = ap[0]; |
|
a1 = ap[1]; |
|
a2 = ap[2]; |
|
a3 = ap[3]; |
|
|
|
cp[0] = a0 * bp[0] + a1 * bp[4] + a2 * bp[8] + a3 * bp[12]; |
|
cp[1] = a0 * bp[1] + a1 * bp[5] + a2 * bp[9] + a3 * bp[13]; |
|
cp[2] = a0 * bp[2] + a1 * bp[6] + a2 * bp[10] + a3 * bp[14]; |
|
cp[3] = a0 * bp[3] + a1 * bp[7] + a2 * bp[11] + a3 * bp[15]; |
|
|
|
a0 = ap[4]; |
|
a1 = ap[5]; |
|
a2 = ap[6]; |
|
a3 = ap[7]; |
|
|
|
cp[4] = a0 * bp[0] + a1 * bp[4] + a2 * bp[8] + a3 * bp[12]; |
|
cp[5] = a0 * bp[1] + a1 * bp[5] + a2 * bp[9] + a3 * bp[13]; |
|
cp[6] = a0 * bp[2] + a1 * bp[6] + a2 * bp[10] + a3 * bp[14]; |
|
cp[7] = a0 * bp[3] + a1 * bp[7] + a2 * bp[11] + a3 * bp[15]; |
|
|
|
a0 = ap[8]; |
|
a1 = ap[9]; |
|
a2 = ap[10]; |
|
a3 = ap[11]; |
|
|
|
cp[8] = a0 * bp[0] + a1 * bp[4] + a2 * bp[8] + a3 * bp[12]; |
|
cp[9] = a0 * bp[1] + a1 * bp[5] + a2 * bp[9] + a3 * bp[13]; |
|
cp[10] = a0 * bp[2] + a1 * bp[6] + a2 * bp[10] + a3 * bp[14]; |
|
cp[11] = a0 * bp[3] + a1 * bp[7] + a2 * bp[11] + a3 * bp[15]; |
|
|
|
a0 = ap[12]; |
|
a1 = ap[13]; |
|
a2 = ap[14]; |
|
a3 = ap[15]; |
|
|
|
cp[12] = a0 * bp[0] + a1 * bp[4] + a2 * bp[8] + a3 * bp[12]; |
|
cp[13] = a0 * bp[1] + a1 * bp[5] + a2 * bp[9] + a3 * bp[13]; |
|
cp[14] = a0 * bp[2] + a1 * bp[6] + a2 * bp[10] + a3 * bp[14]; |
|
cp[15] = a0 * bp[3] + a1 * bp[7] + a2 * bp[11] + a3 * bp[15]; |
|
} |
|
|
|
template <class T> template <class S> |
|
void |
|
Matrix44<T>::multVecMatrix(const Vec3<S> &src, Vec3<S> &dst) const |
|
{ |
|
S a, b, c, w; |
|
|
|
a = src[0] * x[0][0] + src[1] * x[1][0] + src[2] * x[2][0] + x[3][0]; |
|
b = src[0] * x[0][1] + src[1] * x[1][1] + src[2] * x[2][1] + x[3][1]; |
|
c = src[0] * x[0][2] + src[1] * x[1][2] + src[2] * x[2][2] + x[3][2]; |
|
w = src[0] * x[0][3] + src[1] * x[1][3] + src[2] * x[2][3] + x[3][3]; |
|
|
|
dst.x = a / w; |
|
dst.y = b / w; |
|
dst.z = c / w; |
|
} |
|
|
|
template <class T> template <class S> |
|
void |
|
Matrix44<T>::multDirMatrix(const Vec3<S> &src, Vec3<S> &dst) const |
|
{ |
|
S a, b, c; |
|
|
|
a = src[0] * x[0][0] + src[1] * x[1][0] + src[2] * x[2][0]; |
|
b = src[0] * x[0][1] + src[1] * x[1][1] + src[2] * x[2][1]; |
|
c = src[0] * x[0][2] + src[1] * x[1][2] + src[2] * x[2][2]; |
|
|
|
dst.x = a; |
|
dst.y = b; |
|
dst.z = c; |
|
} |
|
|
|
template <class T> |
|
const Matrix44<T> & |
|
Matrix44<T>::operator /= (T a) |
|
{ |
|
x[0][0] /= a; |
|
x[0][1] /= a; |
|
x[0][2] /= a; |
|
x[0][3] /= a; |
|
x[1][0] /= a; |
|
x[1][1] /= a; |
|
x[1][2] /= a; |
|
x[1][3] /= a; |
|
x[2][0] /= a; |
|
x[2][1] /= a; |
|
x[2][2] /= a; |
|
x[2][3] /= a; |
|
x[3][0] /= a; |
|
x[3][1] /= a; |
|
x[3][2] /= a; |
|
x[3][3] /= a; |
|
|
|
return *this; |
|
} |
|
|
|
template <class T> |
|
Matrix44<T> |
|
Matrix44<T>::operator / (T a) const |
|
{ |
|
return Matrix44 (x[0][0] / a, |
|
x[0][1] / a, |
|
x[0][2] / a, |
|
x[0][3] / a, |
|
x[1][0] / a, |
|
x[1][1] / a, |
|
x[1][2] / a, |
|
x[1][3] / a, |
|
x[2][0] / a, |
|
x[2][1] / a, |
|
x[2][2] / a, |
|
x[2][3] / a, |
|
x[3][0] / a, |
|
x[3][1] / a, |
|
x[3][2] / a, |
|
x[3][3] / a); |
|
} |
|
|
|
template <class T> |
|
const Matrix44<T> & |
|
Matrix44<T>::transpose () |
|
{ |
|
Matrix44 tmp (x[0][0], |
|
x[1][0], |
|
x[2][0], |
|
x[3][0], |
|
x[0][1], |
|
x[1][1], |
|
x[2][1], |
|
x[3][1], |
|
x[0][2], |
|
x[1][2], |
|
x[2][2], |
|
x[3][2], |
|
x[0][3], |
|
x[1][3], |
|
x[2][3], |
|
x[3][3]); |
|
*this = tmp; |
|
return *this; |
|
} |
|
|
|
template <class T> |
|
Matrix44<T> |
|
Matrix44<T>::transposed () const |
|
{ |
|
return Matrix44 (x[0][0], |
|
x[1][0], |
|
x[2][0], |
|
x[3][0], |
|
x[0][1], |
|
x[1][1], |
|
x[2][1], |
|
x[3][1], |
|
x[0][2], |
|
x[1][2], |
|
x[2][2], |
|
x[3][2], |
|
x[0][3], |
|
x[1][3], |
|
x[2][3], |
|
x[3][3]); |
|
} |
|
|
|
template <class T> |
|
const Matrix44<T> & |
|
Matrix44<T>::gjInvert (bool singExc) throw (Iex::MathExc) |
|
{ |
|
*this = gjInverse (singExc); |
|
return *this; |
|
} |
|
|
|
template <class T> |
|
Matrix44<T> |
|
Matrix44<T>::gjInverse (bool singExc) const throw (Iex::MathExc) |
|
{ |
|
int i, j, k; |
|
Matrix44 s; |
|
Matrix44 t (*this); |
|
|
|
// Forward elimination |
|
|
|
for (i = 0; i < 3 ; i++) |
|
{ |
|
int pivot = i; |
|
|
|
T pivotsize = t[i][i]; |
|
|
|
if (pivotsize < 0) |
|
pivotsize = -pivotsize; |
|
|
|
for (j = i + 1; j < 4; j++) |
|
{ |
|
T tmp = t[j][i]; |
|
|
|
if (tmp < 0) |
|
tmp = -tmp; |
|
|
|
if (tmp > pivotsize) |
|
{ |
|
pivot = j; |
|
pivotsize = tmp; |
|
} |
|
} |
|
|
|
if (pivotsize == 0) |
|
{ |
|
if (singExc) |
|
throw ::Imath::SingMatrixExc ("Cannot invert singular matrix."); |
|
|
|
return Matrix44(); |
|
} |
|
|
|
if (pivot != i) |
|
{ |
|
for (j = 0; j < 4; j++) |
|
{ |
|
T tmp; |
|
|
|
tmp = t[i][j]; |
|
t[i][j] = t[pivot][j]; |
|
t[pivot][j] = tmp; |
|
|
|
tmp = s[i][j]; |
|
s[i][j] = s[pivot][j]; |
|
s[pivot][j] = tmp; |
|
} |
|
} |
|
|
|
for (j = i + 1; j < 4; j++) |
|
{ |
|
T f = t[j][i] / t[i][i]; |
|
|
|
for (k = 0; k < 4; k++) |
|
{ |
|
t[j][k] -= f * t[i][k]; |
|
s[j][k] -= f * s[i][k]; |
|
} |
|
} |
|
} |
|
|
|
// Backward substitution |
|
|
|
for (i = 3; i >= 0; --i) |
|
{ |
|
T f; |
|
|
|
if ((f = t[i][i]) == 0) |
|
{ |
|
if (singExc) |
|
throw ::Imath::SingMatrixExc ("Cannot invert singular matrix."); |
|
|
|
return Matrix44(); |
|
} |
|
|
|
for (j = 0; j < 4; j++) |
|
{ |
|
t[i][j] /= f; |
|
s[i][j] /= f; |
|
} |
|
|
|
for (j = 0; j < i; j++) |
|
{ |
|
f = t[j][i]; |
|
|
|
for (k = 0; k < 4; k++) |
|
{ |
|
t[j][k] -= f * t[i][k]; |
|
s[j][k] -= f * s[i][k]; |
|
} |
|
} |
|
} |
|
|
|
return s; |
|
} |
|
|
|
template <class T> |
|
const Matrix44<T> & |
|
Matrix44<T>::invert (bool singExc) throw (Iex::MathExc) |
|
{ |
|
*this = inverse (singExc); |
|
return *this; |
|
} |
|
|
|
template <class T> |
|
Matrix44<T> |
|
Matrix44<T>::inverse (bool singExc) const throw (Iex::MathExc) |
|
{ |
|
if (x[0][3] != 0 || x[1][3] != 0 || x[2][3] != 0 || x[3][3] != 1) |
|
return gjInverse(singExc); |
|
|
|
Matrix44 s (x[1][1] * x[2][2] - x[2][1] * x[1][2], |
|
x[2][1] * x[0][2] - x[0][1] * x[2][2], |
|
x[0][1] * x[1][2] - x[1][1] * x[0][2], |
|
0, |
|
|
|
x[2][0] * x[1][2] - x[1][0] * x[2][2], |
|
x[0][0] * x[2][2] - x[2][0] * x[0][2], |
|
x[1][0] * x[0][2] - x[0][0] * x[1][2], |
|
0, |
|
|
|
x[1][0] * x[2][1] - x[2][0] * x[1][1], |
|
x[2][0] * x[0][1] - x[0][0] * x[2][1], |
|
x[0][0] * x[1][1] - x[1][0] * x[0][1], |
|
0, |
|
|
|
0, |
|
0, |
|
0, |
|
1); |
|
|
|
T r = x[0][0] * s[0][0] + x[0][1] * s[1][0] + x[0][2] * s[2][0]; |
|
|
|
if (Imath::abs (r) >= 1) |
|
{ |
|
for (int i = 0; i < 3; ++i) |
|
{ |
|
for (int j = 0; j < 3; ++j) |
|
{ |
|
s[i][j] /= r; |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
T mr = Imath::abs (r) / limits<T>::smallest(); |
|
|
|
for (int i = 0; i < 3; ++i) |
|
{ |
|
for (int j = 0; j < 3; ++j) |
|
{ |
|
if (mr > Imath::abs (s[i][j])) |
|
{ |
|
s[i][j] /= r; |
|
} |
|
else |
|
{ |
|
if (singExc) |
|
throw SingMatrixExc ("Cannot invert singular matrix."); |
|
|
|
return Matrix44(); |
|
} |
|
} |
|
} |
|
} |
|
|
|
s[3][0] = -x[3][0] * s[0][0] - x[3][1] * s[1][0] - x[3][2] * s[2][0]; |
|
s[3][1] = -x[3][0] * s[0][1] - x[3][1] * s[1][1] - x[3][2] * s[2][1]; |
|
s[3][2] = -x[3][0] * s[0][2] - x[3][1] * s[1][2] - x[3][2] * s[2][2]; |
|
|
|
return s; |
|
} |
|
|
|
template <class T> |
|
inline T |
|
Matrix44<T>::fastMinor( const int r0, const int r1, const int r2, |
|
const int c0, const int c1, const int c2) const |
|
{ |
|
return x[r0][c0] * (x[r1][c1]*x[r2][c2] - x[r1][c2]*x[r2][c1]) |
|
+ x[r0][c1] * (x[r1][c2]*x[r2][c0] - x[r1][c0]*x[r2][c2]) |
|
+ x[r0][c2] * (x[r1][c0]*x[r2][c1] - x[r1][c1]*x[r2][c0]); |
|
} |
|
|
|
template <class T> |
|
inline T |
|
Matrix44<T>::minorOf (const int r, const int c) const |
|
{ |
|
int r0 = 0 + (r < 1 ? 1 : 0); |
|
int r1 = 1 + (r < 2 ? 1 : 0); |
|
int r2 = 2 + (r < 3 ? 1 : 0); |
|
int c0 = 0 + (c < 1 ? 1 : 0); |
|
int c1 = 1 + (c < 2 ? 1 : 0); |
|
int c2 = 2 + (c < 3 ? 1 : 0); |
|
|
|
Matrix33<T> working (x[r0][c0],x[r1][c0],x[r2][c0], |
|
x[r0][c1],x[r1][c1],x[r2][c1], |
|
x[r0][c2],x[r1][c2],x[r2][c2]); |
|
|
|
return working.determinant(); |
|
} |
|
|
|
template <class T> |
|
inline T |
|
Matrix44<T>::determinant () const |
|
{ |
|
T sum = (T)0; |
|
|
|
if (x[0][3] != 0.) sum -= x[0][3] * fastMinor(1,2,3,0,1,2); |
|
if (x[1][3] != 0.) sum += x[1][3] * fastMinor(0,2,3,0,1,2); |
|
if (x[2][3] != 0.) sum -= x[2][3] * fastMinor(0,1,3,0,1,2); |
|
if (x[3][3] != 0.) sum += x[3][3] * fastMinor(0,1,2,0,1,2); |
|
|
|
return sum; |
|
} |
|
|
|
template <class T> |
|
template <class S> |
|
const Matrix44<T> & |
|
Matrix44<T>::setEulerAngles (const Vec3<S>& r) |
|
{ |
|
S cos_rz, sin_rz, cos_ry, sin_ry, cos_rx, sin_rx; |
|
|
|
cos_rz = Math<T>::cos (r[2]); |
|
cos_ry = Math<T>::cos (r[1]); |
|
cos_rx = Math<T>::cos (r[0]); |
|
|
|
sin_rz = Math<T>::sin (r[2]); |
|
sin_ry = Math<T>::sin (r[1]); |
|
sin_rx = Math<T>::sin (r[0]); |
|
|
|
x[0][0] = cos_rz * cos_ry; |
|
x[0][1] = sin_rz * cos_ry; |
|
x[0][2] = -sin_ry; |
|
x[0][3] = 0; |
|
|
|
x[1][0] = -sin_rz * cos_rx + cos_rz * sin_ry * sin_rx; |
|
x[1][1] = cos_rz * cos_rx + sin_rz * sin_ry * sin_rx; |
|
x[1][2] = cos_ry * sin_rx; |
|
x[1][3] = 0; |
|
|
|
x[2][0] = sin_rz * sin_rx + cos_rz * sin_ry * cos_rx; |
|
x[2][1] = -cos_rz * sin_rx + sin_rz * sin_ry * cos_rx; |
|
x[2][2] = cos_ry * cos_rx; |
|
x[2][3] = 0; |
|
|
|
x[3][0] = 0; |
|
x[3][1] = 0; |
|
x[3][2] = 0; |
|
x[3][3] = 1; |
|
|
|
return *this; |
|
} |
|
|
|
template <class T> |
|
template <class S> |
|
const Matrix44<T> & |
|
Matrix44<T>::setAxisAngle (const Vec3<S>& axis, S angle) |
|
{ |
|
Vec3<S> unit (axis.normalized()); |
|
S sine = Math<T>::sin (angle); |
|
S cosine = Math<T>::cos (angle); |
|
|
|
x[0][0] = unit[0] * unit[0] * (1 - cosine) + cosine; |
|
x[0][1] = unit[0] * unit[1] * (1 - cosine) + unit[2] * sine; |
|
x[0][2] = unit[0] * unit[2] * (1 - cosine) - unit[1] * sine; |
|
x[0][3] = 0; |
|
|
|
x[1][0] = unit[0] * unit[1] * (1 - cosine) - unit[2] * sine; |
|
x[1][1] = unit[1] * unit[1] * (1 - cosine) + cosine; |
|
x[1][2] = unit[1] * unit[2] * (1 - cosine) + unit[0] * sine; |
|
x[1][3] = 0; |
|
|
|
x[2][0] = unit[0] * unit[2] * (1 - cosine) + unit[1] * sine; |
|
x[2][1] = unit[1] * unit[2] * (1 - cosine) - unit[0] * sine; |
|
x[2][2] = unit[2] * unit[2] * (1 - cosine) + cosine; |
|
x[2][3] = 0; |
|
|
|
x[3][0] = 0; |
|
x[3][1] = 0; |
|
x[3][2] = 0; |
|
x[3][3] = 1; |
|
|
|
return *this; |
|
} |
|
|
|
template <class T> |
|
template <class S> |
|
const Matrix44<T> & |
|
Matrix44<T>::rotate (const Vec3<S> &r) |
|
{ |
|
S cos_rz, sin_rz, cos_ry, sin_ry, cos_rx, sin_rx; |
|
S m00, m01, m02; |
|
S m10, m11, m12; |
|
S m20, m21, m22; |
|
|
|
cos_rz = Math<S>::cos (r[2]); |
|
cos_ry = Math<S>::cos (r[1]); |
|
cos_rx = Math<S>::cos (r[0]); |
|
|
|
sin_rz = Math<S>::sin (r[2]); |
|
sin_ry = Math<S>::sin (r[1]); |
|
sin_rx = Math<S>::sin (r[0]); |
|
|
|
m00 = cos_rz * cos_ry; |
|
m01 = sin_rz * cos_ry; |
|
m02 = -sin_ry; |
|
m10 = -sin_rz * cos_rx + cos_rz * sin_ry * sin_rx; |
|
m11 = cos_rz * cos_rx + sin_rz * sin_ry * sin_rx; |
|
m12 = cos_ry * sin_rx; |
|
m20 = -sin_rz * -sin_rx + cos_rz * sin_ry * cos_rx; |
|
m21 = cos_rz * -sin_rx + sin_rz * sin_ry * cos_rx; |
|
m22 = cos_ry * cos_rx; |
|
|
|
Matrix44<T> P (*this); |
|
|
|
x[0][0] = P[0][0] * m00 + P[1][0] * m01 + P[2][0] * m02; |
|
x[0][1] = P[0][1] * m00 + P[1][1] * m01 + P[2][1] * m02; |
|
x[0][2] = P[0][2] * m00 + P[1][2] * m01 + P[2][2] * m02; |
|
x[0][3] = P[0][3] * m00 + P[1][3] * m01 + P[2][3] * m02; |
|
|
|
x[1][0] = P[0][0] * m10 + P[1][0] * m11 + P[2][0] * m12; |
|
x[1][1] = P[0][1] * m10 + P[1][1] * m11 + P[2][1] * m12; |
|
x[1][2] = P[0][2] * m10 + P[1][2] * m11 + P[2][2] * m12; |
|
x[1][3] = P[0][3] * m10 + P[1][3] * m11 + P[2][3] * m12; |
|
|
|
x[2][0] = P[0][0] * m20 + P[1][0] * m21 + P[2][0] * m22; |
|
x[2][1] = P[0][1] * m20 + P[1][1] * m21 + P[2][1] * m22; |
|
x[2][2] = P[0][2] * m20 + P[1][2] * m21 + P[2][2] * m22; |
|
x[2][3] = P[0][3] * m20 + P[1][3] * m21 + P[2][3] * m22; |
|
|
|
return *this; |
|
} |
|
|
|
template <class T> |
|
const Matrix44<T> & |
|
Matrix44<T>::setScale (T s) |
|
{ |
|
memset (x, 0, sizeof (x)); |
|
x[0][0] = s; |
|
x[1][1] = s; |
|
x[2][2] = s; |
|
x[3][3] = 1; |
|
|
|
return *this; |
|
} |
|
|
|
template <class T> |
|
template <class S> |
|
const Matrix44<T> & |
|
Matrix44<T>::setScale (const Vec3<S> &s) |
|
{ |
|
memset (x, 0, sizeof (x)); |
|
x[0][0] = s[0]; |
|
x[1][1] = s[1]; |
|
x[2][2] = s[2]; |
|
x[3][3] = 1; |
|
|
|
return *this; |
|
} |
|
|
|
template <class T> |
|
template <class S> |
|
const Matrix44<T> & |
|
Matrix44<T>::scale (const Vec3<S> &s) |
|
{ |
|
x[0][0] *= s[0]; |
|
x[0][1] *= s[0]; |
|
x[0][2] *= s[0]; |
|
x[0][3] *= s[0]; |
|
|
|
x[1][0] *= s[1]; |
|
x[1][1] *= s[1]; |
|
x[1][2] *= s[1]; |
|
x[1][3] *= s[1]; |
|
|
|
x[2][0] *= s[2]; |
|
x[2][1] *= s[2]; |
|
x[2][2] *= s[2]; |
|
x[2][3] *= s[2]; |
|
|
|
return *this; |
|
} |
|
|
|
template <class T> |
|
template <class S> |
|
const Matrix44<T> & |
|
Matrix44<T>::setTranslation (const Vec3<S> &t) |
|
{ |
|
x[0][0] = 1; |
|
x[0][1] = 0; |
|
x[0][2] = 0; |
|
x[0][3] = 0; |
|
|
|
x[1][0] = 0; |
|
x[1][1] = 1; |
|
x[1][2] = 0; |
|
x[1][3] = 0; |
|
|
|
x[2][0] = 0; |
|
x[2][1] = 0; |
|
x[2][2] = 1; |
|
x[2][3] = 0; |
|
|
|
x[3][0] = t[0]; |
|
x[3][1] = t[1]; |
|
x[3][2] = t[2]; |
|
x[3][3] = 1; |
|
|
|
return *this; |
|
} |
|
|
|
template <class T> |
|
inline const Vec3<T> |
|
Matrix44<T>::translation () const |
|
{ |
|
return Vec3<T> (x[3][0], x[3][1], x[3][2]); |
|
} |
|
|
|
template <class T> |
|
template <class S> |
|
const Matrix44<T> & |
|
Matrix44<T>::translate (const Vec3<S> &t) |
|
{ |
|
x[3][0] += t[0] * x[0][0] + t[1] * x[1][0] + t[2] * x[2][0]; |
|
x[3][1] += t[0] * x[0][1] + t[1] * x[1][1] + t[2] * x[2][1]; |
|
x[3][2] += t[0] * x[0][2] + t[1] * x[1][2] + t[2] * x[2][2]; |
|
x[3][3] += t[0] * x[0][3] + t[1] * x[1][3] + t[2] * x[2][3]; |
|
|
|
return *this; |
|
} |
|
|
|
template <class T> |
|
template <class S> |
|
const Matrix44<T> & |
|
Matrix44<T>::setShear (const Vec3<S> &h) |
|
{ |
|
x[0][0] = 1; |
|
x[0][1] = 0; |
|
x[0][2] = 0; |
|
x[0][3] = 0; |
|
|
|
x[1][0] = h[0]; |
|
x[1][1] = 1; |
|
x[1][2] = 0; |
|
x[1][3] = 0; |
|
|
|
x[2][0] = h[1]; |
|
x[2][1] = h[2]; |
|
x[2][2] = 1; |
|
x[2][3] = 0; |
|
|
|
x[3][0] = 0; |
|
x[3][1] = 0; |
|
x[3][2] = 0; |
|
x[3][3] = 1; |
|
|
|
return *this; |
|
} |
|
|
|
template <class T> |
|
template <class S> |
|
const Matrix44<T> & |
|
Matrix44<T>::setShear (const Shear6<S> &h) |
|
{ |
|
x[0][0] = 1; |
|
x[0][1] = h.yx; |
|
x[0][2] = h.zx; |
|
x[0][3] = 0; |
|
|
|
x[1][0] = h.xy; |
|
x[1][1] = 1; |
|
x[1][2] = h.zy; |
|
x[1][3] = 0; |
|
|
|
x[2][0] = h.xz; |
|
x[2][1] = h.yz; |
|
x[2][2] = 1; |
|
x[2][3] = 0; |
|
|
|
x[3][0] = 0; |
|
x[3][1] = 0; |
|
x[3][2] = 0; |
|
x[3][3] = 1; |
|
|
|
return *this; |
|
} |
|
|
|
template <class T> |
|
template <class S> |
|
const Matrix44<T> & |
|
Matrix44<T>::shear (const Vec3<S> &h) |
|
{ |
|
// |
|
// In this case, we don't need a temp. copy of the matrix |
|
// because we never use a value on the RHS after we've |
|
// changed it on the LHS. |
|
// |
|
|
|
for (int i=0; i < 4; i++) |
|
{ |
|
x[2][i] += h[1] * x[0][i] + h[2] * x[1][i]; |
|
x[1][i] += h[0] * x[0][i]; |
|
} |
|
|
|
return *this; |
|
} |
|
|
|
template <class T> |
|
template <class S> |
|
const Matrix44<T> & |
|
Matrix44<T>::shear (const Shear6<S> &h) |
|
{ |
|
Matrix44<T> P (*this); |
|
|
|
for (int i=0; i < 4; i++) |
|
{ |
|
x[0][i] = P[0][i] + h.yx * P[1][i] + h.zx * P[2][i]; |
|
x[1][i] = h.xy * P[0][i] + P[1][i] + h.zy * P[2][i]; |
|
x[2][i] = h.xz * P[0][i] + h.yz * P[1][i] + P[2][i]; |
|
} |
|
|
|
return *this; |
|
} |
|
|
|
|
|
//-------------------------------- |
|
// Implementation of stream output |
|
//-------------------------------- |
|
|
|
template <class T> |
|
std::ostream & |
|
operator << (std::ostream &s, const Matrix33<T> &m) |
|
{ |
|
std::ios_base::fmtflags oldFlags = s.flags(); |
|
int width; |
|
|
|
if (s.flags() & std::ios_base::fixed) |
|
{ |
|
s.setf (std::ios_base::showpoint); |
|
width = s.precision() + 5; |
|
} |
|
else |
|
{ |
|
s.setf (std::ios_base::scientific); |
|
s.setf (std::ios_base::showpoint); |
|
width = s.precision() + 8; |
|
} |
|
|
|
s << "(" << std::setw (width) << m[0][0] << |
|
" " << std::setw (width) << m[0][1] << |
|
" " << std::setw (width) << m[0][2] << "\n" << |
|
|
|
" " << std::setw (width) << m[1][0] << |
|
" " << std::setw (width) << m[1][1] << |
|
" " << std::setw (width) << m[1][2] << "\n" << |
|
|
|
" " << std::setw (width) << m[2][0] << |
|
" " << std::setw (width) << m[2][1] << |
|
" " << std::setw (width) << m[2][2] << ")\n"; |
|
|
|
s.flags (oldFlags); |
|
return s; |
|
} |
|
|
|
template <class T> |
|
std::ostream & |
|
operator << (std::ostream &s, const Matrix44<T> &m) |
|
{ |
|
std::ios_base::fmtflags oldFlags = s.flags(); |
|
int width; |
|
|
|
if (s.flags() & std::ios_base::fixed) |
|
{ |
|
s.setf (std::ios_base::showpoint); |
|
width = s.precision() + 5; |
|
} |
|
else |
|
{ |
|
s.setf (std::ios_base::scientific); |
|
s.setf (std::ios_base::showpoint); |
|
width = s.precision() + 8; |
|
} |
|
|
|
s << "(" << std::setw (width) << m[0][0] << |
|
" " << std::setw (width) << m[0][1] << |
|
" " << std::setw (width) << m[0][2] << |
|
" " << std::setw (width) << m[0][3] << "\n" << |
|
|
|
" " << std::setw (width) << m[1][0] << |
|
" " << std::setw (width) << m[1][1] << |
|
" " << std::setw (width) << m[1][2] << |
|
" " << std::setw (width) << m[1][3] << "\n" << |
|
|
|
" " << std::setw (width) << m[2][0] << |
|
" " << std::setw (width) << m[2][1] << |
|
" " << std::setw (width) << m[2][2] << |
|
" " << std::setw (width) << m[2][3] << "\n" << |
|
|
|
" " << std::setw (width) << m[3][0] << |
|
" " << std::setw (width) << m[3][1] << |
|
" " << std::setw (width) << m[3][2] << |
|
" " << std::setw (width) << m[3][3] << ")\n"; |
|
|
|
s.flags (oldFlags); |
|
return s; |
|
} |
|
|
|
|
|
//--------------------------------------------------------------- |
|
// Implementation of vector-times-matrix multiplication operators |
|
//--------------------------------------------------------------- |
|
|
|
template <class S, class T> |
|
inline const Vec2<S> & |
|
operator *= (Vec2<S> &v, const Matrix33<T> &m) |
|
{ |
|
S x = S(v.x * m[0][0] + v.y * m[1][0] + m[2][0]); |
|
S y = S(v.x * m[0][1] + v.y * m[1][1] + m[2][1]); |
|
S w = S(v.x * m[0][2] + v.y * m[1][2] + m[2][2]); |
|
|
|
v.x = x / w; |
|
v.y = y / w; |
|
|
|
return v; |
|
} |
|
|
|
template <class S, class T> |
|
inline Vec2<S> |
|
operator * (const Vec2<S> &v, const Matrix33<T> &m) |
|
{ |
|
S x = S(v.x * m[0][0] + v.y * m[1][0] + m[2][0]); |
|
S y = S(v.x * m[0][1] + v.y * m[1][1] + m[2][1]); |
|
S w = S(v.x * m[0][2] + v.y * m[1][2] + m[2][2]); |
|
|
|
return Vec2<S> (x / w, y / w); |
|
} |
|
|
|
|
|
template <class S, class T> |
|
inline const Vec3<S> & |
|
operator *= (Vec3<S> &v, const Matrix33<T> &m) |
|
{ |
|
S x = S(v.x * m[0][0] + v.y * m[1][0] + v.z * m[2][0]); |
|
S y = S(v.x * m[0][1] + v.y * m[1][1] + v.z * m[2][1]); |
|
S z = S(v.x * m[0][2] + v.y * m[1][2] + v.z * m[2][2]); |
|
|
|
v.x = x; |
|
v.y = y; |
|
v.z = z; |
|
|
|
return v; |
|
} |
|
|
|
template <class S, class T> |
|
inline Vec3<S> |
|
operator * (const Vec3<S> &v, const Matrix33<T> &m) |
|
{ |
|
S x = S(v.x * m[0][0] + v.y * m[1][0] + v.z * m[2][0]); |
|
S y = S(v.x * m[0][1] + v.y * m[1][1] + v.z * m[2][1]); |
|
S z = S(v.x * m[0][2] + v.y * m[1][2] + v.z * m[2][2]); |
|
|
|
return Vec3<S> (x, y, z); |
|
} |
|
|
|
|
|
template <class S, class T> |
|
inline const Vec3<S> & |
|
operator *= (Vec3<S> &v, const Matrix44<T> &m) |
|
{ |
|
S x = S(v.x * m[0][0] + v.y * m[1][0] + v.z * m[2][0] + m[3][0]); |
|
S y = S(v.x * m[0][1] + v.y * m[1][1] + v.z * m[2][1] + m[3][1]); |
|
S z = S(v.x * m[0][2] + v.y * m[1][2] + v.z * m[2][2] + m[3][2]); |
|
S w = S(v.x * m[0][3] + v.y * m[1][3] + v.z * m[2][3] + m[3][3]); |
|
|
|
v.x = x / w; |
|
v.y = y / w; |
|
v.z = z / w; |
|
|
|
return v; |
|
} |
|
|
|
template <class S, class T> |
|
inline Vec3<S> |
|
operator * (const Vec3<S> &v, const Matrix44<T> &m) |
|
{ |
|
S x = S(v.x * m[0][0] + v.y * m[1][0] + v.z * m[2][0] + m[3][0]); |
|
S y = S(v.x * m[0][1] + v.y * m[1][1] + v.z * m[2][1] + m[3][1]); |
|
S z = S(v.x * m[0][2] + v.y * m[1][2] + v.z * m[2][2] + m[3][2]); |
|
S w = S(v.x * m[0][3] + v.y * m[1][3] + v.z * m[2][3] + m[3][3]); |
|
|
|
return Vec3<S> (x / w, y / w, z / w); |
|
} |
|
|
|
|
|
template <class S, class T> |
|
inline const Vec4<S> & |
|
operator *= (Vec4<S> &v, const Matrix44<T> &m) |
|
{ |
|
S x = S(v.x * m[0][0] + v.y * m[1][0] + v.z * m[2][0] + v.w * m[3][0]); |
|
S y = S(v.x * m[0][1] + v.y * m[1][1] + v.z * m[2][1] + v.w * m[3][1]); |
|
S z = S(v.x * m[0][2] + v.y * m[1][2] + v.z * m[2][2] + v.w * m[3][2]); |
|
S w = S(v.x * m[0][3] + v.y * m[1][3] + v.z * m[2][3] + v.w * m[3][3]); |
|
|
|
v.x = x; |
|
v.y = y; |
|
v.z = z; |
|
v.w = w; |
|
|
|
return v; |
|
} |
|
|
|
template <class S, class T> |
|
inline Vec4<S> |
|
operator * (const Vec4<S> &v, const Matrix44<T> &m) |
|
{ |
|
S x = S(v.x * m[0][0] + v.y * m[1][0] + v.z * m[2][0] + v.w * m[3][0]); |
|
S y = S(v.x * m[0][1] + v.y * m[1][1] + v.z * m[2][1] + v.w * m[3][1]); |
|
S z = S(v.x * m[0][2] + v.y * m[1][2] + v.z * m[2][2] + v.w * m[3][2]); |
|
S w = S(v.x * m[0][3] + v.y * m[1][3] + v.z * m[2][3] + v.w * m[3][3]); |
|
|
|
return Vec4<S> (x, y, z, w); |
|
} |
|
|
|
} // namespace Imath |
|
|
|
|
|
|
|
#endif
|
|
|