Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

262 lines
7.6 KiB

package org.opencv.test.features2d;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import org.opencv.core.CvType;
import org.opencv.core.Mat;
import org.opencv.core.MatOfDMatch;
import org.opencv.core.MatOfKeyPoint;
import org.opencv.core.Point;
import org.opencv.core.Scalar;
import org.opencv.core.DMatch;
import org.opencv.features2d.DescriptorMatcher;
import org.opencv.features2d.FastFeatureDetector;
import org.opencv.test.OpenCVTestCase;
import org.opencv.test.OpenCVTestRunner;
import org.opencv.imgproc.Imgproc;
import org.opencv.features2d.Feature2D;
public class BruteForceHammingDescriptorMatcherTest extends OpenCVTestCase {
DescriptorMatcher matcher;
int matSize;
DMatch[] truth;
private Mat getMaskImg() {
return new Mat(4, 4, CvType.CV_8U, new Scalar(0)) {
{
put(0, 0, 1, 1, 1, 1, 1, 1, 1, 1);
}
};
}
private Mat getQueryDescriptors() {
return getTestDescriptors(getQueryImg());
}
private Mat getQueryImg() {
Mat img = new Mat(matSize, matSize, CvType.CV_8U, new Scalar(255));
Imgproc.line(img, new Point(40, matSize - 40), new Point(matSize - 50, 50), new Scalar(0), 8);
return img;
}
private Mat getTestDescriptors(Mat img) {
MatOfKeyPoint keypoints = new MatOfKeyPoint();
Mat descriptors = new Mat();
Feature2D detector = FastFeatureDetector.create();
Feature2D extractor = createClassInstance(XFEATURES2D+"BriefDescriptorExtractor", DEFAULT_FACTORY, null, null);
detector.detect(img, keypoints);
extractor.compute(img, keypoints, descriptors);
return descriptors;
}
private Mat getTrainDescriptors() {
return getTestDescriptors(getTrainImg());
}
private Mat getTrainImg() {
Mat img = new Mat(matSize, matSize, CvType.CV_8U, new Scalar(255));
Imgproc.line(img, new Point(40, 40), new Point(matSize - 40, matSize - 40), new Scalar(0), 8);
return img;
}
protected void setUp() throws Exception {
super.setUp();
matcher = DescriptorMatcher.create(DescriptorMatcher.BRUTEFORCE_HAMMING);
matSize = 100;
truth = new DMatch[] {
new DMatch(0, 0, 0, 51),
new DMatch(1, 2, 0, 42),
new DMatch(2, 1, 0, 40),
new DMatch(3, 3, 0, 53) };
}
public void testAdd() {
matcher.add(Arrays.asList(new Mat()));
assertFalse(matcher.empty());
}
public void testClear() {
matcher.add(Arrays.asList(new Mat()));
matcher.clear();
assertTrue(matcher.empty());
}
public void testClone() {
Mat train = new Mat(1, 1, CvType.CV_8U, new Scalar(123));
Mat truth = train.clone();
matcher.add(Arrays.asList(train));
DescriptorMatcher cloned = matcher.clone();
assertNotNull(cloned);
List<Mat> descriptors = cloned.getTrainDescriptors();
assertEquals(1, descriptors.size());
assertMatEqual(truth, descriptors.get(0));
}
public void testCloneBoolean() {
matcher.add(Arrays.asList(new Mat()));
DescriptorMatcher cloned = matcher.clone(true);
assertNotNull(cloned);
assertTrue(cloned.empty());
}
public void testCreate() {
assertNotNull(matcher);
}
public void testEmpty() {
assertTrue(matcher.empty());
}
public void testGetTrainDescriptors() {
Mat train = new Mat(1, 1, CvType.CV_8U, new Scalar(123));
Mat truth = train.clone();
matcher.add(Arrays.asList(train));
List<Mat> descriptors = matcher.getTrainDescriptors();
assertEquals(1, descriptors.size());
assertMatEqual(truth, descriptors.get(0));
}
public void testIsMaskSupported() {
assertTrue(matcher.isMaskSupported());
}
public void testKnnMatchMatListOfListOfDMatchInt() {
fail("Not yet implemented");
}
public void testKnnMatchMatListOfListOfDMatchIntListOfMat() {
fail("Not yet implemented");
}
public void testKnnMatchMatListOfListOfDMatchIntListOfMatBoolean() {
fail("Not yet implemented");
}
public void testKnnMatchMatMatListOfListOfDMatchInt() {
fail("Not yet implemented");
}
public void testKnnMatchMatMatListOfListOfDMatchIntMat() {
fail("Not yet implemented");
}
public void testKnnMatchMatMatListOfListOfDMatchIntMatBoolean() {
fail("Not yet implemented");
}
public void testMatchMatListOfDMatch() {
Mat train = getTrainDescriptors();
Mat query = getQueryDescriptors();
MatOfDMatch matches = new MatOfDMatch();
matcher.add(Arrays.asList(train));
matcher.match(query, matches);
assertListDMatchEquals(Arrays.asList(truth), matches.toList(), EPS);
}
public void testMatchMatListOfDMatchListOfMat() {
Mat train = getTrainDescriptors();
Mat query = getQueryDescriptors();
Mat mask = getMaskImg();
MatOfDMatch matches = new MatOfDMatch();
matcher.add(Arrays.asList(train));
matcher.match(query, matches, Arrays.asList(mask));
assertListDMatchEquals(Arrays.asList(truth[0], truth[1]), matches.toList(), EPS);
}
public void testMatchMatMatListOfDMatch() {
Mat train = getTrainDescriptors();
Mat query = getQueryDescriptors();
MatOfDMatch matches = new MatOfDMatch();
matcher.match(query, train, matches);
assertListDMatchEquals(Arrays.asList(truth), matches.toList(), EPS);
}
public void testMatchMatMatListOfDMatchMat() {
Mat train = getTrainDescriptors();
Mat query = getQueryDescriptors();
Mat mask = getMaskImg();
MatOfDMatch matches = new MatOfDMatch();
matcher.match(query, train, matches, mask);
assertListDMatchEquals(Arrays.asList(truth[0], truth[1]), matches.toList(), EPS);
}
public void testRadiusMatchMatListOfListOfDMatchFloat() {
Mat train = getTrainDescriptors();
Mat query = getQueryDescriptors();
ArrayList<MatOfDMatch> matches = new ArrayList<MatOfDMatch>();
matcher.radiusMatch(query, train, matches, 50.f);
assertEquals(4, matches.size());
assertTrue(matches.get(0).empty());
assertMatEqual(matches.get(1), new MatOfDMatch(truth[1]), EPS);
assertMatEqual(matches.get(2), new MatOfDMatch(truth[2]), EPS);
assertTrue(matches.get(3).empty());
}
public void testRadiusMatchMatListOfListOfDMatchFloatListOfMat() {
fail("Not yet implemented");
}
public void testRadiusMatchMatListOfListOfDMatchFloatListOfMatBoolean() {
fail("Not yet implemented");
}
public void testRadiusMatchMatMatListOfListOfDMatchFloat() {
fail("Not yet implemented");
}
public void testRadiusMatchMatMatListOfListOfDMatchFloatMat() {
fail("Not yet implemented");
}
public void testRadiusMatchMatMatListOfListOfDMatchFloatMatBoolean() {
fail("Not yet implemented");
}
public void testRead() {
String filename = OpenCVTestRunner.getTempFileName("yml");
writeFile(filename, "%YAML:1.0\n---\n");
matcher.read(filename);
assertTrue(true);// BruteforceMatcher has no settings
}
public void testTrain() {
matcher.train();// BruteforceMatcher does not need to train
}
public void testWrite() {
String filename = OpenCVTestRunner.getTempFileName("yml");
matcher.write(filename);
String truth = "%YAML:1.0\n---\n";
assertEquals(truth, readFile(filename));
}
}