mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
124 lines
4.5 KiB
124 lines
4.5 KiB
/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved. |
|
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// @Authors |
|
// Jin Ma, jin@multicorewareinc.com |
|
// Xiaopeng Fu, fuxiaopeng2222@163.com |
|
// Erping Pang, pang_er_ping@163.com |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other oclMaterials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "test_precomp.hpp" |
|
#ifdef HAVE_OPENCL |
|
using namespace cv; |
|
using namespace cv::ocl; |
|
using namespace cvtest; |
|
using namespace testing; |
|
///////K-NEAREST NEIGHBOR////////////////////////// |
|
static void genTrainData(Mat& trainData, int trainDataRow, int trainDataCol, |
|
Mat& trainLabel = Mat().setTo(Scalar::all(0)), int nClasses = 0) |
|
{ |
|
cv::RNG &rng = TS::ptr()->get_rng(); |
|
cv::Size size(trainDataCol, trainDataRow); |
|
trainData = randomMat(rng, size, CV_32FC1, 1.0, 1000.0, false); |
|
if(nClasses != 0) |
|
{ |
|
cv::Size size1(trainDataRow, 1); |
|
trainLabel = randomMat(rng, size1, CV_8UC1, 0, nClasses - 1, false); |
|
trainLabel.convertTo(trainLabel, CV_32FC1); |
|
} |
|
} |
|
|
|
PARAM_TEST_CASE(KNN, int, Size, int, bool) |
|
{ |
|
int k; |
|
int trainDataCol; |
|
int testDataRow; |
|
int nClass; |
|
bool regression; |
|
virtual void SetUp() |
|
{ |
|
k = GET_PARAM(0); |
|
nClass = GET_PARAM(2); |
|
trainDataCol = GET_PARAM(1).width; |
|
testDataRow = GET_PARAM(1).height; |
|
regression = GET_PARAM(3); |
|
} |
|
}; |
|
|
|
TEST_P(KNN, Accuracy) |
|
{ |
|
Mat trainData, trainLabels; |
|
const int trainDataRow = 500; |
|
genTrainData(trainData, trainDataRow, trainDataCol, trainLabels, nClass); |
|
|
|
Mat testData, testLabels; |
|
genTrainData(testData, testDataRow, trainDataCol); |
|
|
|
KNearestNeighbour knn_ocl; |
|
CvKNearest knn_cpu; |
|
Mat best_label_cpu; |
|
oclMat best_label_ocl; |
|
|
|
/*ocl k-Nearest_Neighbor start*/ |
|
oclMat trainData_ocl; |
|
trainData_ocl.upload(trainData); |
|
Mat simpleIdx; |
|
knn_ocl.train(trainData, trainLabels, simpleIdx, regression); |
|
|
|
oclMat testdata; |
|
testdata.upload(testData); |
|
knn_ocl.find_nearest(testdata, k, best_label_ocl); |
|
/*ocl k-Nearest_Neighbor end*/ |
|
|
|
/*cpu k-Nearest_Neighbor start*/ |
|
knn_cpu.train(trainData, trainLabels, simpleIdx, regression); |
|
knn_cpu.find_nearest(testData, k, &best_label_cpu); |
|
/*cpu k-Nearest_Neighbor end*/ |
|
if(regression) |
|
{ |
|
EXPECT_MAT_SIMILAR(Mat(best_label_ocl), best_label_cpu, 1e-5); |
|
} |
|
else |
|
{ |
|
EXPECT_MAT_NEAR(Mat(best_label_ocl), best_label_cpu, 0.0); |
|
} |
|
} |
|
INSTANTIATE_TEST_CASE_P(OCL_ML, KNN, Combine(Values(6, 5), Values(Size(200, 400), Size(300, 600)), |
|
Values(4, 3), Values(false, true))); |
|
#endif // HAVE_OPENCL
|