Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

161 lines
6.7 KiB

// //////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//
// //////////////////////////////////////////////////////////////////////////////////////
// Author: Sajjad Taheri, University of California, Irvine. sajjadt[at]uci[dot]edu
//
// LICENSE AGREEMENT
// Copyright (c) 2015 The Regents of the University of California (Regents)
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// 3. Neither the name of the University nor the
// names of its contributors may be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ''AS IS'' AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL CONTRIBUTORS BE LIABLE FOR ANY
// DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
// ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
if (typeof module !== 'undefined' && module.exports) {
// The environment is Node.js
var cv = require('./opencv.js'); // eslint-disable-line no-var
cv.FS_createLazyFile('/', 'haarcascade_frontalface_default.xml', // eslint-disable-line new-cap
'haarcascade_frontalface_default.xml', true, false);
}
QUnit.module('Object Detection', {});
QUnit.test('Cascade classification', function(assert) {
// Group rectangle
{
let rectList = new cv.RectVector();
let weights = new cv.IntVector();
let groupThreshold = 1;
const eps = 0.2;
let rect1 = new cv.Rect(1, 2, 3, 4);
let rect2 = new cv.Rect(1, 4, 2, 3);
rectList.push_back(rect1);
rectList.push_back(rect2);
cv.groupRectangles(rectList, weights, groupThreshold, eps);
rectList.delete();
weights.delete();
}
// CascadeClassifier
{
let classifier = new cv.CascadeClassifier();
const modelPath = '/haarcascade_frontalface_default.xml';
assert.equal(classifier.empty(), true);
classifier.load(modelPath);
assert.equal(classifier.empty(), false);
let image = cv.Mat.eye({height: 10, width: 10}, cv.CV_8UC3);
let objects = new cv.RectVector();
let numDetections = new cv.IntVector();
const scaleFactor = 1.1;
const minNeighbors = 3;
const flags = 0;
const minSize = {height: 0, width: 0};
const maxSize = {height: 10, width: 10};
classifier.detectMultiScale2(image, objects, numDetections, scaleFactor,
minNeighbors, flags, minSize, maxSize);
// test default parameters
classifier.detectMultiScale2(image, objects, numDetections, scaleFactor,
minNeighbors, flags, minSize);
classifier.detectMultiScale2(image, objects, numDetections, scaleFactor,
minNeighbors, flags);
classifier.detectMultiScale2(image, objects, numDetections, scaleFactor,
minNeighbors);
classifier.detectMultiScale2(image, objects, numDetections, scaleFactor);
classifier.delete();
objects.delete();
numDetections.delete();
}
// HOGDescriptor
{
let hog = new cv.HOGDescriptor();
let mat = new cv.Mat({height: 10, width: 10}, cv.CV_8UC1);
let descriptors = new cv.FloatVector();
let locations = new cv.PointVector();
assert.equal(hog.winSize.height, 128);
assert.equal(hog.winSize.width, 64);
assert.equal(hog.nbins, 9);
assert.equal(hog.derivAperture, 1);
assert.equal(hog.winSigma, -1);
assert.equal(hog.histogramNormType, 0);
assert.equal(hog.nlevels, 64);
hog.nlevels = 32;
assert.equal(hog.nlevels, 32);
hog.delete();
mat.delete();
descriptors.delete();
locations.delete();
}
});