mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1745 lines
65 KiB
1745 lines
65 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
|
|
using namespace cv; |
|
using namespace cv::gpu; |
|
|
|
/*stub for deprecated constructor*/ |
|
cv::gpu::CannyBuf::CannyBuf(const GpuMat&, const GpuMat&) { } |
|
|
|
#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER) |
|
|
|
void cv::gpu::meanShiftFiltering(const GpuMat&, GpuMat&, int, int, TermCriteria, Stream&) { throw_nogpu(); } |
|
void cv::gpu::meanShiftProc(const GpuMat&, GpuMat&, GpuMat&, int, int, TermCriteria, Stream&) { throw_nogpu(); } |
|
void cv::gpu::drawColorDisp(const GpuMat&, GpuMat&, int, Stream&) { throw_nogpu(); } |
|
void cv::gpu::reprojectImageTo3D(const GpuMat&, GpuMat&, const Mat&, int, Stream&) { throw_nogpu(); } |
|
void cv::gpu::copyMakeBorder(const GpuMat&, GpuMat&, int, int, int, int, int, const Scalar&, Stream&) { throw_nogpu(); } |
|
void cv::gpu::buildWarpPlaneMaps(Size, Rect, const Mat&, const Mat&, const Mat&, float, GpuMat&, GpuMat&, Stream&) { throw_nogpu(); } |
|
void cv::gpu::buildWarpCylindricalMaps(Size, Rect, const Mat&, const Mat&, float, GpuMat&, GpuMat&, Stream&) { throw_nogpu(); } |
|
void cv::gpu::buildWarpSphericalMaps(Size, Rect, const Mat&, const Mat&, float, GpuMat&, GpuMat&, Stream&) { throw_nogpu(); } |
|
void cv::gpu::rotate(const GpuMat&, GpuMat&, Size, double, double, double, int, Stream&) { throw_nogpu(); } |
|
void cv::gpu::integral(const GpuMat&, GpuMat&, Stream&) { throw_nogpu(); } |
|
void cv::gpu::integralBuffered(const GpuMat&, GpuMat&, GpuMat&, Stream&) { throw_nogpu(); } |
|
void cv::gpu::sqrIntegral(const GpuMat&, GpuMat&, Stream&) { throw_nogpu(); } |
|
void cv::gpu::columnSum(const GpuMat&, GpuMat&) { throw_nogpu(); } |
|
void cv::gpu::rectStdDev(const GpuMat&, const GpuMat&, GpuMat&, const Rect&, Stream&) { throw_nogpu(); } |
|
void cv::gpu::evenLevels(GpuMat&, int, int, int) { throw_nogpu(); } |
|
void cv::gpu::histEven(const GpuMat&, GpuMat&, int, int, int, Stream&) { throw_nogpu(); } |
|
void cv::gpu::histEven(const GpuMat&, GpuMat&, GpuMat&, int, int, int, Stream&) { throw_nogpu(); } |
|
void cv::gpu::histEven(const GpuMat&, GpuMat*, int*, int*, int*, Stream&) { throw_nogpu(); } |
|
void cv::gpu::histEven(const GpuMat&, GpuMat*, GpuMat&, int*, int*, int*, Stream&) { throw_nogpu(); } |
|
void cv::gpu::histRange(const GpuMat&, GpuMat&, const GpuMat&, Stream&) { throw_nogpu(); } |
|
void cv::gpu::histRange(const GpuMat&, GpuMat&, const GpuMat&, GpuMat&, Stream&) { throw_nogpu(); } |
|
void cv::gpu::histRange(const GpuMat&, GpuMat*, const GpuMat*, Stream&) { throw_nogpu(); } |
|
void cv::gpu::histRange(const GpuMat&, GpuMat*, const GpuMat*, GpuMat&, Stream&) { throw_nogpu(); } |
|
void cv::gpu::calcHist(const GpuMat&, GpuMat&, Stream&) { throw_nogpu(); } |
|
void cv::gpu::calcHist(const GpuMat&, GpuMat&, GpuMat&, Stream&) { throw_nogpu(); } |
|
void cv::gpu::equalizeHist(const GpuMat&, GpuMat&, Stream&) { throw_nogpu(); } |
|
void cv::gpu::equalizeHist(const GpuMat&, GpuMat&, GpuMat&, Stream&) { throw_nogpu(); } |
|
void cv::gpu::equalizeHist(const GpuMat&, GpuMat&, GpuMat&, GpuMat&, Stream&) { throw_nogpu(); } |
|
void cv::gpu::cornerHarris(const GpuMat&, GpuMat&, int, int, double, int) { throw_nogpu(); } |
|
void cv::gpu::cornerHarris(const GpuMat&, GpuMat&, GpuMat&, GpuMat&, int, int, double, int) { throw_nogpu(); } |
|
void cv::gpu::cornerHarris(const GpuMat&, GpuMat&, GpuMat&, GpuMat&, GpuMat&, int, int, double, int, Stream&) { throw_nogpu(); } |
|
void cv::gpu::cornerMinEigenVal(const GpuMat&, GpuMat&, int, int, int) { throw_nogpu(); } |
|
void cv::gpu::cornerMinEigenVal(const GpuMat&, GpuMat&, GpuMat&, GpuMat&, int, int, int) { throw_nogpu(); } |
|
void cv::gpu::cornerMinEigenVal(const GpuMat&, GpuMat&, GpuMat&, GpuMat&, GpuMat&, int, int, int, Stream&) { throw_nogpu(); } |
|
void cv::gpu::mulSpectrums(const GpuMat&, const GpuMat&, GpuMat&, int, bool, Stream&) { throw_nogpu(); } |
|
void cv::gpu::mulAndScaleSpectrums(const GpuMat&, const GpuMat&, GpuMat&, int, float, bool, Stream&) { throw_nogpu(); } |
|
void cv::gpu::dft(const GpuMat&, GpuMat&, Size, int, Stream&) { throw_nogpu(); } |
|
void cv::gpu::ConvolveBuf::create(Size, Size) { throw_nogpu(); } |
|
void cv::gpu::convolve(const GpuMat&, const GpuMat&, GpuMat&, bool) { throw_nogpu(); } |
|
void cv::gpu::convolve(const GpuMat&, const GpuMat&, GpuMat&, bool, ConvolveBuf&, Stream&) { throw_nogpu(); } |
|
void cv::gpu::Canny(const GpuMat&, GpuMat&, double, double, int, bool) { throw_nogpu(); } |
|
void cv::gpu::Canny(const GpuMat&, CannyBuf&, GpuMat&, double, double, int, bool) { throw_nogpu(); } |
|
void cv::gpu::Canny(const GpuMat&, const GpuMat&, GpuMat&, double, double, bool) { throw_nogpu(); } |
|
void cv::gpu::Canny(const GpuMat&, const GpuMat&, CannyBuf&, GpuMat&, double, double, bool) { throw_nogpu(); } |
|
void cv::gpu::CannyBuf::create(const Size&, int) { throw_nogpu(); } |
|
void cv::gpu::CannyBuf::release() { throw_nogpu(); } |
|
cv::Ptr<cv::gpu::CLAHE> cv::gpu::createCLAHE(double, cv::Size) { throw_nogpu(); return cv::Ptr<cv::gpu::CLAHE>(); } |
|
|
|
#else /* !defined (HAVE_CUDA) */ |
|
|
|
//////////////////////////////////////////////////////////////////////// |
|
// meanShiftFiltering_GPU |
|
|
|
namespace cv { namespace gpu { namespace device |
|
{ |
|
namespace imgproc |
|
{ |
|
void meanShiftFiltering_gpu(const PtrStepSzb& src, PtrStepSzb dst, int sp, int sr, int maxIter, float eps, cudaStream_t stream); |
|
} |
|
}}} |
|
|
|
void cv::gpu::meanShiftFiltering(const GpuMat& src, GpuMat& dst, int sp, int sr, TermCriteria criteria, Stream& stream) |
|
{ |
|
using namespace ::cv::gpu::device::imgproc; |
|
|
|
if( src.empty() ) |
|
CV_Error( CV_StsBadArg, "The input image is empty" ); |
|
|
|
if( src.depth() != CV_8U || src.channels() != 4 ) |
|
CV_Error( CV_StsUnsupportedFormat, "Only 8-bit, 4-channel images are supported" ); |
|
|
|
dst.create( src.size(), CV_8UC4 ); |
|
|
|
if( !(criteria.type & TermCriteria::MAX_ITER) ) |
|
criteria.maxCount = 5; |
|
|
|
int maxIter = std::min(std::max(criteria.maxCount, 1), 100); |
|
|
|
float eps; |
|
if( !(criteria.type & TermCriteria::EPS) ) |
|
eps = 1.f; |
|
eps = (float)std::max(criteria.epsilon, 0.0); |
|
|
|
meanShiftFiltering_gpu(src, dst, sp, sr, maxIter, eps, StreamAccessor::getStream(stream)); |
|
} |
|
|
|
//////////////////////////////////////////////////////////////////////// |
|
// meanShiftProc_GPU |
|
|
|
namespace cv { namespace gpu { namespace device |
|
{ |
|
namespace imgproc |
|
{ |
|
void meanShiftProc_gpu(const PtrStepSzb& src, PtrStepSzb dstr, PtrStepSzb dstsp, int sp, int sr, int maxIter, float eps, cudaStream_t stream); |
|
} |
|
}}} |
|
|
|
void cv::gpu::meanShiftProc(const GpuMat& src, GpuMat& dstr, GpuMat& dstsp, int sp, int sr, TermCriteria criteria, Stream& stream) |
|
{ |
|
using namespace ::cv::gpu::device::imgproc; |
|
|
|
if( src.empty() ) |
|
CV_Error( CV_StsBadArg, "The input image is empty" ); |
|
|
|
if( src.depth() != CV_8U || src.channels() != 4 ) |
|
CV_Error( CV_StsUnsupportedFormat, "Only 8-bit, 4-channel images are supported" ); |
|
|
|
dstr.create( src.size(), CV_8UC4 ); |
|
dstsp.create( src.size(), CV_16SC2 ); |
|
|
|
if( !(criteria.type & TermCriteria::MAX_ITER) ) |
|
criteria.maxCount = 5; |
|
|
|
int maxIter = std::min(std::max(criteria.maxCount, 1), 100); |
|
|
|
float eps; |
|
if( !(criteria.type & TermCriteria::EPS) ) |
|
eps = 1.f; |
|
eps = (float)std::max(criteria.epsilon, 0.0); |
|
|
|
meanShiftProc_gpu(src, dstr, dstsp, sp, sr, maxIter, eps, StreamAccessor::getStream(stream)); |
|
} |
|
|
|
//////////////////////////////////////////////////////////////////////// |
|
// drawColorDisp |
|
|
|
namespace cv { namespace gpu { namespace device |
|
{ |
|
namespace imgproc |
|
{ |
|
void drawColorDisp_gpu(const PtrStepSzb& src, const PtrStepSzb& dst, int ndisp, const cudaStream_t& stream); |
|
void drawColorDisp_gpu(const PtrStepSz<short>& src, const PtrStepSzb& dst, int ndisp, const cudaStream_t& stream); |
|
} |
|
}}} |
|
|
|
namespace |
|
{ |
|
template <typename T> |
|
void drawColorDisp_caller(const GpuMat& src, GpuMat& dst, int ndisp, const cudaStream_t& stream) |
|
{ |
|
using namespace ::cv::gpu::device::imgproc; |
|
|
|
dst.create(src.size(), CV_8UC4); |
|
|
|
drawColorDisp_gpu((PtrStepSz<T>)src, dst, ndisp, stream); |
|
} |
|
|
|
typedef void (*drawColorDisp_caller_t)(const GpuMat& src, GpuMat& dst, int ndisp, const cudaStream_t& stream); |
|
|
|
const drawColorDisp_caller_t drawColorDisp_callers[] = {drawColorDisp_caller<unsigned char>, 0, 0, drawColorDisp_caller<short>, 0, 0, 0, 0}; |
|
} |
|
|
|
void cv::gpu::drawColorDisp(const GpuMat& src, GpuMat& dst, int ndisp, Stream& stream) |
|
{ |
|
CV_Assert(src.type() == CV_8U || src.type() == CV_16S); |
|
|
|
drawColorDisp_callers[src.type()](src, dst, ndisp, StreamAccessor::getStream(stream)); |
|
} |
|
|
|
//////////////////////////////////////////////////////////////////////// |
|
// reprojectImageTo3D |
|
|
|
namespace cv { namespace gpu { namespace device |
|
{ |
|
namespace imgproc |
|
{ |
|
template <typename T, typename D> |
|
void reprojectImageTo3D_gpu(const PtrStepSzb disp, PtrStepSzb xyz, const float* q, cudaStream_t stream); |
|
} |
|
}}} |
|
|
|
void cv::gpu::reprojectImageTo3D(const GpuMat& disp, GpuMat& xyz, const Mat& Q, int dst_cn, Stream& stream) |
|
{ |
|
using namespace cv::gpu::device::imgproc; |
|
|
|
typedef void (*func_t)(const PtrStepSzb disp, PtrStepSzb xyz, const float* q, cudaStream_t stream); |
|
static const func_t funcs[2][4] = |
|
{ |
|
{reprojectImageTo3D_gpu<uchar, float3>, 0, 0, reprojectImageTo3D_gpu<short, float3>}, |
|
{reprojectImageTo3D_gpu<uchar, float4>, 0, 0, reprojectImageTo3D_gpu<short, float4>} |
|
}; |
|
|
|
CV_Assert(disp.type() == CV_8U || disp.type() == CV_16S); |
|
CV_Assert(Q.type() == CV_32F && Q.rows == 4 && Q.cols == 4 && Q.isContinuous()); |
|
CV_Assert(dst_cn == 3 || dst_cn == 4); |
|
|
|
xyz.create(disp.size(), CV_MAKE_TYPE(CV_32F, dst_cn)); |
|
|
|
funcs[dst_cn == 4][disp.type()](disp, xyz, Q.ptr<float>(), StreamAccessor::getStream(stream)); |
|
} |
|
|
|
//////////////////////////////////////////////////////////////////////// |
|
// copyMakeBorder |
|
|
|
namespace cv { namespace gpu { namespace device |
|
{ |
|
namespace imgproc |
|
{ |
|
template <typename T, int cn> void copyMakeBorder_gpu(const PtrStepSzb& src, const PtrStepSzb& dst, int top, int left, int borderMode, const T* borderValue, cudaStream_t stream); |
|
} |
|
}}} |
|
|
|
namespace |
|
{ |
|
template <typename T, int cn> void copyMakeBorder_caller(const PtrStepSzb& src, const PtrStepSzb& dst, int top, int left, int borderType, const Scalar& value, cudaStream_t stream) |
|
{ |
|
using namespace ::cv::gpu::device::imgproc; |
|
|
|
Scalar_<T> val(saturate_cast<T>(value[0]), saturate_cast<T>(value[1]), saturate_cast<T>(value[2]), saturate_cast<T>(value[3])); |
|
|
|
copyMakeBorder_gpu<T, cn>(src, dst, top, left, borderType, val.val, stream); |
|
} |
|
} |
|
|
|
#if defined __GNUC__ && __GNUC__ > 2 && __GNUC_MINOR__ > 4 |
|
typedef Npp32s __attribute__((__may_alias__)) Npp32s_a; |
|
#else |
|
typedef Npp32s Npp32s_a; |
|
#endif |
|
|
|
void cv::gpu::copyMakeBorder(const GpuMat& src, GpuMat& dst, int top, int bottom, int left, int right, int borderType, const Scalar& value, Stream& s) |
|
{ |
|
CV_Assert(src.depth() <= CV_32F && src.channels() <= 4); |
|
CV_Assert(borderType == BORDER_REFLECT101 || borderType == BORDER_REPLICATE || borderType == BORDER_CONSTANT || borderType == BORDER_REFLECT || borderType == BORDER_WRAP); |
|
|
|
dst.create(src.rows + top + bottom, src.cols + left + right, src.type()); |
|
|
|
cudaStream_t stream = StreamAccessor::getStream(s); |
|
|
|
if (borderType == BORDER_CONSTANT && (src.type() == CV_8UC1 || src.type() == CV_8UC4 || src.type() == CV_32SC1 || src.type() == CV_32FC1)) |
|
{ |
|
NppiSize srcsz; |
|
srcsz.width = src.cols; |
|
srcsz.height = src.rows; |
|
|
|
NppiSize dstsz; |
|
dstsz.width = dst.cols; |
|
dstsz.height = dst.rows; |
|
|
|
NppStreamHandler h(stream); |
|
|
|
switch (src.type()) |
|
{ |
|
case CV_8UC1: |
|
{ |
|
Npp8u nVal = saturate_cast<Npp8u>(value[0]); |
|
nppSafeCall( nppiCopyConstBorder_8u_C1R(src.ptr<Npp8u>(), static_cast<int>(src.step), srcsz, |
|
dst.ptr<Npp8u>(), static_cast<int>(dst.step), dstsz, top, left, nVal) ); |
|
break; |
|
} |
|
case CV_8UC4: |
|
{ |
|
Npp8u nVal[] = {saturate_cast<Npp8u>(value[0]), saturate_cast<Npp8u>(value[1]), saturate_cast<Npp8u>(value[2]), saturate_cast<Npp8u>(value[3])}; |
|
nppSafeCall( nppiCopyConstBorder_8u_C4R(src.ptr<Npp8u>(), static_cast<int>(src.step), srcsz, |
|
dst.ptr<Npp8u>(), static_cast<int>(dst.step), dstsz, top, left, nVal) ); |
|
break; |
|
} |
|
case CV_32SC1: |
|
{ |
|
Npp32s nVal = saturate_cast<Npp32s>(value[0]); |
|
nppSafeCall( nppiCopyConstBorder_32s_C1R(src.ptr<Npp32s>(), static_cast<int>(src.step), srcsz, |
|
dst.ptr<Npp32s>(), static_cast<int>(dst.step), dstsz, top, left, nVal) ); |
|
break; |
|
} |
|
case CV_32FC1: |
|
{ |
|
Npp32f val = saturate_cast<Npp32f>(value[0]); |
|
Npp32s nVal = *(reinterpret_cast<Npp32s_a*>(&val)); |
|
nppSafeCall( nppiCopyConstBorder_32s_C1R(src.ptr<Npp32s>(), static_cast<int>(src.step), srcsz, |
|
dst.ptr<Npp32s>(), static_cast<int>(dst.step), dstsz, top, left, nVal) ); |
|
break; |
|
} |
|
} |
|
|
|
if (stream == 0) |
|
cudaSafeCall( cudaDeviceSynchronize() ); |
|
} |
|
else |
|
{ |
|
typedef void (*caller_t)(const PtrStepSzb& src, const PtrStepSzb& dst, int top, int left, int borderType, const Scalar& value, cudaStream_t stream); |
|
static const caller_t callers[6][4] = |
|
{ |
|
{ copyMakeBorder_caller<uchar, 1> , copyMakeBorder_caller<uchar, 2> , copyMakeBorder_caller<uchar, 3> , copyMakeBorder_caller<uchar, 4>}, |
|
{0/*copyMakeBorder_caller<schar, 1>*/, 0/*copyMakeBorder_caller<schar, 2>*/ , 0/*copyMakeBorder_caller<schar, 3>*/, 0/*copyMakeBorder_caller<schar, 4>*/}, |
|
{ copyMakeBorder_caller<ushort, 1> , 0/*copyMakeBorder_caller<ushort, 2>*/, copyMakeBorder_caller<ushort, 3> , copyMakeBorder_caller<ushort, 4>}, |
|
{ copyMakeBorder_caller<short, 1> , 0/*copyMakeBorder_caller<short, 2>*/ , copyMakeBorder_caller<short, 3> , copyMakeBorder_caller<short, 4>}, |
|
{0/*copyMakeBorder_caller<int, 1>*/, 0/*copyMakeBorder_caller<int, 2>*/ , 0/*copyMakeBorder_caller<int, 3>*/, 0/*copyMakeBorder_caller<int , 4>*/}, |
|
{ copyMakeBorder_caller<float, 1> , 0/*copyMakeBorder_caller<float, 2>*/ , copyMakeBorder_caller<float, 3> , copyMakeBorder_caller<float ,4>} |
|
}; |
|
|
|
caller_t func = callers[src.depth()][src.channels() - 1]; |
|
CV_Assert(func != 0); |
|
|
|
int gpuBorderType; |
|
CV_Assert(tryConvertToGpuBorderType(borderType, gpuBorderType)); |
|
|
|
func(src, dst, top, left, gpuBorderType, value, stream); |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////////////// |
|
// buildWarpPlaneMaps |
|
|
|
namespace cv { namespace gpu { namespace device |
|
{ |
|
namespace imgproc |
|
{ |
|
void buildWarpPlaneMaps(int tl_u, int tl_v, PtrStepSzf map_x, PtrStepSzf map_y, |
|
const float k_rinv[9], const float r_kinv[9], const float t[3], float scale, |
|
cudaStream_t stream); |
|
} |
|
}}} |
|
|
|
void cv::gpu::buildWarpPlaneMaps(Size src_size, Rect dst_roi, const Mat &K, const Mat& R, const Mat &T, |
|
float scale, GpuMat& map_x, GpuMat& map_y, Stream& stream) |
|
{ |
|
(void)src_size; |
|
using namespace ::cv::gpu::device::imgproc; |
|
|
|
CV_Assert(K.size() == Size(3,3) && K.type() == CV_32F); |
|
CV_Assert(R.size() == Size(3,3) && R.type() == CV_32F); |
|
CV_Assert((T.size() == Size(3,1) || T.size() == Size(1,3)) && T.type() == CV_32F && T.isContinuous()); |
|
|
|
Mat K_Rinv = K * R.t(); |
|
Mat R_Kinv = R * K.inv(); |
|
CV_Assert(K_Rinv.isContinuous()); |
|
CV_Assert(R_Kinv.isContinuous()); |
|
|
|
map_x.create(dst_roi.size(), CV_32F); |
|
map_y.create(dst_roi.size(), CV_32F); |
|
device::imgproc::buildWarpPlaneMaps(dst_roi.tl().x, dst_roi.tl().y, map_x, map_y, K_Rinv.ptr<float>(), R_Kinv.ptr<float>(), |
|
T.ptr<float>(), scale, StreamAccessor::getStream(stream)); |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////////////// |
|
// buildWarpCylyndricalMaps |
|
|
|
namespace cv { namespace gpu { namespace device |
|
{ |
|
namespace imgproc |
|
{ |
|
void buildWarpCylindricalMaps(int tl_u, int tl_v, PtrStepSzf map_x, PtrStepSzf map_y, |
|
const float k_rinv[9], const float r_kinv[9], float scale, |
|
cudaStream_t stream); |
|
} |
|
}}} |
|
|
|
void cv::gpu::buildWarpCylindricalMaps(Size src_size, Rect dst_roi, const Mat &K, const Mat& R, float scale, |
|
GpuMat& map_x, GpuMat& map_y, Stream& stream) |
|
{ |
|
(void)src_size; |
|
using namespace ::cv::gpu::device::imgproc; |
|
|
|
CV_Assert(K.size() == Size(3,3) && K.type() == CV_32F); |
|
CV_Assert(R.size() == Size(3,3) && R.type() == CV_32F); |
|
|
|
Mat K_Rinv = K * R.t(); |
|
Mat R_Kinv = R * K.inv(); |
|
CV_Assert(K_Rinv.isContinuous()); |
|
CV_Assert(R_Kinv.isContinuous()); |
|
|
|
map_x.create(dst_roi.size(), CV_32F); |
|
map_y.create(dst_roi.size(), CV_32F); |
|
device::imgproc::buildWarpCylindricalMaps(dst_roi.tl().x, dst_roi.tl().y, map_x, map_y, K_Rinv.ptr<float>(), R_Kinv.ptr<float>(), scale, StreamAccessor::getStream(stream)); |
|
} |
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////// |
|
// buildWarpSphericalMaps |
|
|
|
namespace cv { namespace gpu { namespace device |
|
{ |
|
namespace imgproc |
|
{ |
|
void buildWarpSphericalMaps(int tl_u, int tl_v, PtrStepSzf map_x, PtrStepSzf map_y, |
|
const float k_rinv[9], const float r_kinv[9], float scale, |
|
cudaStream_t stream); |
|
} |
|
}}} |
|
|
|
void cv::gpu::buildWarpSphericalMaps(Size src_size, Rect dst_roi, const Mat &K, const Mat& R, float scale, |
|
GpuMat& map_x, GpuMat& map_y, Stream& stream) |
|
{ |
|
(void)src_size; |
|
using namespace ::cv::gpu::device::imgproc; |
|
|
|
CV_Assert(K.size() == Size(3,3) && K.type() == CV_32F); |
|
CV_Assert(R.size() == Size(3,3) && R.type() == CV_32F); |
|
|
|
Mat K_Rinv = K * R.t(); |
|
Mat R_Kinv = R * K.inv(); |
|
CV_Assert(K_Rinv.isContinuous()); |
|
CV_Assert(R_Kinv.isContinuous()); |
|
|
|
map_x.create(dst_roi.size(), CV_32F); |
|
map_y.create(dst_roi.size(), CV_32F); |
|
device::imgproc::buildWarpSphericalMaps(dst_roi.tl().x, dst_roi.tl().y, map_x, map_y, K_Rinv.ptr<float>(), R_Kinv.ptr<float>(), scale, StreamAccessor::getStream(stream)); |
|
} |
|
|
|
//////////////////////////////////////////////////////////////////////// |
|
// rotate |
|
|
|
namespace |
|
{ |
|
template<int DEPTH> struct NppTypeTraits; |
|
template<> struct NppTypeTraits<CV_8U> { typedef Npp8u npp_t; }; |
|
template<> struct NppTypeTraits<CV_8S> { typedef Npp8s npp_t; }; |
|
template<> struct NppTypeTraits<CV_16U> { typedef Npp16u npp_t; }; |
|
template<> struct NppTypeTraits<CV_16S> { typedef Npp16s npp_t; }; |
|
template<> struct NppTypeTraits<CV_32S> { typedef Npp32s npp_t; }; |
|
template<> struct NppTypeTraits<CV_32F> { typedef Npp32f npp_t; }; |
|
template<> struct NppTypeTraits<CV_64F> { typedef Npp64f npp_t; }; |
|
|
|
template <int DEPTH> struct NppRotateFunc |
|
{ |
|
typedef typename NppTypeTraits<DEPTH>::npp_t npp_t; |
|
|
|
typedef NppStatus (*func_t)(const npp_t* pSrc, NppiSize oSrcSize, int nSrcStep, NppiRect oSrcROI, |
|
npp_t* pDst, int nDstStep, NppiRect oDstROI, |
|
double nAngle, double nShiftX, double nShiftY, int eInterpolation); |
|
}; |
|
|
|
template <int DEPTH, typename NppRotateFunc<DEPTH>::func_t func> struct NppRotate |
|
{ |
|
typedef typename NppRotateFunc<DEPTH>::npp_t npp_t; |
|
|
|
static void call(const GpuMat& src, GpuMat& dst, Size dsize, double angle, double xShift, double yShift, int interpolation, cudaStream_t stream) |
|
{ |
|
(void)dsize; |
|
static const int npp_inter[] = {NPPI_INTER_NN, NPPI_INTER_LINEAR, NPPI_INTER_CUBIC}; |
|
|
|
NppStreamHandler h(stream); |
|
|
|
NppiSize srcsz; |
|
srcsz.height = src.rows; |
|
srcsz.width = src.cols; |
|
NppiRect srcroi; |
|
srcroi.x = srcroi.y = 0; |
|
srcroi.height = src.rows; |
|
srcroi.width = src.cols; |
|
NppiRect dstroi; |
|
dstroi.x = dstroi.y = 0; |
|
dstroi.height = dst.rows; |
|
dstroi.width = dst.cols; |
|
|
|
nppSafeCall( func(src.ptr<npp_t>(), srcsz, static_cast<int>(src.step), srcroi, |
|
dst.ptr<npp_t>(), static_cast<int>(dst.step), dstroi, angle, xShift, yShift, npp_inter[interpolation]) ); |
|
|
|
if (stream == 0) |
|
cudaSafeCall( cudaDeviceSynchronize() ); |
|
} |
|
}; |
|
} |
|
|
|
void cv::gpu::rotate(const GpuMat& src, GpuMat& dst, Size dsize, double angle, double xShift, double yShift, int interpolation, Stream& stream) |
|
{ |
|
typedef void (*func_t)(const GpuMat& src, GpuMat& dst, Size dsize, double angle, double xShift, double yShift, int interpolation, cudaStream_t stream); |
|
|
|
static const func_t funcs[6][4] = |
|
{ |
|
{NppRotate<CV_8U, nppiRotate_8u_C1R>::call, 0, NppRotate<CV_8U, nppiRotate_8u_C3R>::call, NppRotate<CV_8U, nppiRotate_8u_C4R>::call}, |
|
{0,0,0,0}, |
|
{NppRotate<CV_16U, nppiRotate_16u_C1R>::call, 0, NppRotate<CV_16U, nppiRotate_16u_C3R>::call, NppRotate<CV_16U, nppiRotate_16u_C4R>::call}, |
|
{0,0,0,0}, |
|
{0,0,0,0}, |
|
{NppRotate<CV_32F, nppiRotate_32f_C1R>::call, 0, NppRotate<CV_32F, nppiRotate_32f_C3R>::call, NppRotate<CV_32F, nppiRotate_32f_C4R>::call} |
|
}; |
|
|
|
CV_Assert(src.depth() == CV_8U || src.depth() == CV_16U || src.depth() == CV_32F); |
|
CV_Assert(src.channels() == 1 || src.channels() == 3 || src.channels() == 4); |
|
CV_Assert(interpolation == INTER_NEAREST || interpolation == INTER_LINEAR || interpolation == INTER_CUBIC); |
|
|
|
dst.create(dsize, src.type()); |
|
dst.setTo(Scalar::all(0)); |
|
|
|
funcs[src.depth()][src.channels() - 1](src, dst, dsize, angle, xShift, yShift, interpolation, StreamAccessor::getStream(stream)); |
|
} |
|
|
|
//////////////////////////////////////////////////////////////////////// |
|
// integral |
|
|
|
void cv::gpu::integral(const GpuMat& src, GpuMat& sum, Stream& s) |
|
{ |
|
GpuMat buffer; |
|
integralBuffered(src, sum, buffer, s); |
|
} |
|
|
|
namespace cv { namespace gpu { namespace device |
|
{ |
|
namespace imgproc |
|
{ |
|
void shfl_integral_gpu(const PtrStepSzb& img, PtrStepSz<unsigned int> integral, cudaStream_t stream); |
|
} |
|
}}} |
|
|
|
void cv::gpu::integralBuffered(const GpuMat& src, GpuMat& sum, GpuMat& buffer, Stream& s) |
|
{ |
|
CV_Assert(src.type() == CV_8UC1); |
|
|
|
cudaStream_t stream = StreamAccessor::getStream(s); |
|
|
|
cv::Size whole; |
|
cv::Point offset; |
|
|
|
src.locateROI(whole, offset); |
|
|
|
if (deviceSupports(WARP_SHUFFLE_FUNCTIONS) && src.cols <= 2048 |
|
&& offset.x % 16 == 0 && ((src.cols + 63) / 64) * 64 <= (static_cast<int>(src.step) - offset.x)) |
|
{ |
|
ensureSizeIsEnough(((src.rows + 7) / 8) * 8, ((src.cols + 63) / 64) * 64, CV_32SC1, buffer); |
|
|
|
cv::gpu::device::imgproc::shfl_integral_gpu(src, buffer, stream); |
|
|
|
sum.create(src.rows + 1, src.cols + 1, CV_32SC1); |
|
if (s) |
|
s.enqueueMemSet(sum, Scalar::all(0)); |
|
else |
|
sum.setTo(Scalar::all(0)); |
|
|
|
GpuMat inner = sum(Rect(1, 1, src.cols, src.rows)); |
|
GpuMat res = buffer(Rect(0, 0, src.cols, src.rows)); |
|
|
|
if (s) |
|
s.enqueueCopy(res, inner); |
|
else |
|
res.copyTo(inner); |
|
} |
|
else |
|
{ |
|
sum.create(src.rows + 1, src.cols + 1, CV_32SC1); |
|
|
|
NcvSize32u roiSize; |
|
roiSize.width = src.cols; |
|
roiSize.height = src.rows; |
|
|
|
cudaDeviceProp prop; |
|
cudaSafeCall( cudaGetDeviceProperties(&prop, cv::gpu::getDevice()) ); |
|
|
|
Ncv32u bufSize; |
|
ncvSafeCall( nppiStIntegralGetSize_8u32u(roiSize, &bufSize, prop) ); |
|
ensureSizeIsEnough(1, bufSize, CV_8UC1, buffer); |
|
|
|
|
|
NppStStreamHandler h(stream); |
|
|
|
ncvSafeCall( nppiStIntegral_8u32u_C1R(const_cast<Ncv8u*>(src.ptr<Ncv8u>()), static_cast<int>(src.step), |
|
sum.ptr<Ncv32u>(), static_cast<int>(sum.step), roiSize, buffer.ptr<Ncv8u>(), bufSize, prop) ); |
|
|
|
if (stream == 0) |
|
cudaSafeCall( cudaDeviceSynchronize() ); |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////////////// |
|
// sqrIntegral |
|
|
|
void cv::gpu::sqrIntegral(const GpuMat& src, GpuMat& sqsum, Stream& s) |
|
{ |
|
CV_Assert(src.type() == CV_8U); |
|
|
|
NcvSize32u roiSize; |
|
roiSize.width = src.cols; |
|
roiSize.height = src.rows; |
|
|
|
cudaDeviceProp prop; |
|
cudaSafeCall( cudaGetDeviceProperties(&prop, cv::gpu::getDevice()) ); |
|
|
|
Ncv32u bufSize; |
|
ncvSafeCall(nppiStSqrIntegralGetSize_8u64u(roiSize, &bufSize, prop)); |
|
GpuMat buf(1, bufSize, CV_8U); |
|
|
|
cudaStream_t stream = StreamAccessor::getStream(s); |
|
|
|
NppStStreamHandler h(stream); |
|
|
|
sqsum.create(src.rows + 1, src.cols + 1, CV_64F); |
|
ncvSafeCall(nppiStSqrIntegral_8u64u_C1R(const_cast<Ncv8u*>(src.ptr<Ncv8u>(0)), static_cast<int>(src.step), |
|
sqsum.ptr<Ncv64u>(0), static_cast<int>(sqsum.step), roiSize, buf.ptr<Ncv8u>(0), bufSize, prop)); |
|
|
|
if (stream == 0) |
|
cudaSafeCall( cudaDeviceSynchronize() ); |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////////////// |
|
// columnSum |
|
|
|
namespace cv { namespace gpu { namespace device |
|
{ |
|
namespace imgproc |
|
{ |
|
void columnSum_32F(const PtrStepSzb src, const PtrStepSzb dst); |
|
} |
|
}}} |
|
|
|
void cv::gpu::columnSum(const GpuMat& src, GpuMat& dst) |
|
{ |
|
using namespace ::cv::gpu::device::imgproc; |
|
|
|
CV_Assert(src.type() == CV_32F); |
|
|
|
dst.create(src.size(), CV_32F); |
|
|
|
device::imgproc::columnSum_32F(src, dst); |
|
} |
|
|
|
void cv::gpu::rectStdDev(const GpuMat& src, const GpuMat& sqr, GpuMat& dst, const Rect& rect, Stream& s) |
|
{ |
|
CV_Assert(src.type() == CV_32SC1 && sqr.type() == CV_64FC1); |
|
|
|
dst.create(src.size(), CV_32FC1); |
|
|
|
NppiSize sz; |
|
sz.width = src.cols; |
|
sz.height = src.rows; |
|
|
|
NppiRect nppRect; |
|
nppRect.height = rect.height; |
|
nppRect.width = rect.width; |
|
nppRect.x = rect.x; |
|
nppRect.y = rect.y; |
|
|
|
cudaStream_t stream = StreamAccessor::getStream(s); |
|
|
|
NppStreamHandler h(stream); |
|
|
|
nppSafeCall( nppiRectStdDev_32s32f_C1R(src.ptr<Npp32s>(), static_cast<int>(src.step), sqr.ptr<Npp64f>(), static_cast<int>(sqr.step), |
|
dst.ptr<Npp32f>(), static_cast<int>(dst.step), sz, nppRect) ); |
|
|
|
if (stream == 0) |
|
cudaSafeCall( cudaDeviceSynchronize() ); |
|
} |
|
|
|
|
|
//////////////////////////////////////////////////////////////////////// |
|
// Histogram |
|
|
|
namespace |
|
{ |
|
typedef NppStatus (*get_buf_size_c1_t)(NppiSize oSizeROI, int nLevels, int* hpBufferSize); |
|
typedef NppStatus (*get_buf_size_c4_t)(NppiSize oSizeROI, int nLevels[], int* hpBufferSize); |
|
|
|
template<int SDEPTH> struct NppHistogramEvenFuncC1 |
|
{ |
|
typedef typename NppTypeTraits<SDEPTH>::npp_t src_t; |
|
|
|
typedef NppStatus (*func_ptr)(const src_t* pSrc, int nSrcStep, NppiSize oSizeROI, Npp32s * pHist, |
|
int nLevels, Npp32s nLowerLevel, Npp32s nUpperLevel, Npp8u * pBuffer); |
|
}; |
|
template<int SDEPTH> struct NppHistogramEvenFuncC4 |
|
{ |
|
typedef typename NppTypeTraits<SDEPTH>::npp_t src_t; |
|
|
|
typedef NppStatus (*func_ptr)(const src_t* pSrc, int nSrcStep, NppiSize oSizeROI, |
|
Npp32s * pHist[4], int nLevels[4], Npp32s nLowerLevel[4], Npp32s nUpperLevel[4], Npp8u * pBuffer); |
|
}; |
|
|
|
template<int SDEPTH, typename NppHistogramEvenFuncC1<SDEPTH>::func_ptr func, get_buf_size_c1_t get_buf_size> |
|
struct NppHistogramEvenC1 |
|
{ |
|
typedef typename NppHistogramEvenFuncC1<SDEPTH>::src_t src_t; |
|
|
|
static void hist(const GpuMat& src, GpuMat& hist, GpuMat& buffer, int histSize, int lowerLevel, int upperLevel, cudaStream_t stream) |
|
{ |
|
int levels = histSize + 1; |
|
hist.create(1, histSize, CV_32S); |
|
|
|
NppiSize sz; |
|
sz.width = src.cols; |
|
sz.height = src.rows; |
|
|
|
int buf_size; |
|
get_buf_size(sz, levels, &buf_size); |
|
|
|
ensureSizeIsEnough(1, buf_size, CV_8U, buffer); |
|
|
|
NppStreamHandler h(stream); |
|
|
|
nppSafeCall( func(src.ptr<src_t>(), static_cast<int>(src.step), sz, hist.ptr<Npp32s>(), levels, |
|
lowerLevel, upperLevel, buffer.ptr<Npp8u>()) ); |
|
|
|
if (stream == 0) |
|
cudaSafeCall( cudaDeviceSynchronize() ); |
|
} |
|
}; |
|
template<int SDEPTH, typename NppHistogramEvenFuncC4<SDEPTH>::func_ptr func, get_buf_size_c4_t get_buf_size> |
|
struct NppHistogramEvenC4 |
|
{ |
|
typedef typename NppHistogramEvenFuncC4<SDEPTH>::src_t src_t; |
|
|
|
static void hist(const GpuMat& src, GpuMat hist[4], GpuMat& buffer, int histSize[4], int lowerLevel[4], int upperLevel[4], cudaStream_t stream) |
|
{ |
|
int levels[] = {histSize[0] + 1, histSize[1] + 1, histSize[2] + 1, histSize[3] + 1}; |
|
hist[0].create(1, histSize[0], CV_32S); |
|
hist[1].create(1, histSize[1], CV_32S); |
|
hist[2].create(1, histSize[2], CV_32S); |
|
hist[3].create(1, histSize[3], CV_32S); |
|
|
|
NppiSize sz; |
|
sz.width = src.cols; |
|
sz.height = src.rows; |
|
|
|
Npp32s* pHist[] = {hist[0].ptr<Npp32s>(), hist[1].ptr<Npp32s>(), hist[2].ptr<Npp32s>(), hist[3].ptr<Npp32s>()}; |
|
|
|
int buf_size; |
|
get_buf_size(sz, levels, &buf_size); |
|
|
|
ensureSizeIsEnough(1, buf_size, CV_8U, buffer); |
|
|
|
NppStreamHandler h(stream); |
|
|
|
nppSafeCall( func(src.ptr<src_t>(), static_cast<int>(src.step), sz, pHist, levels, lowerLevel, upperLevel, buffer.ptr<Npp8u>()) ); |
|
|
|
if (stream == 0) |
|
cudaSafeCall( cudaDeviceSynchronize() ); |
|
} |
|
}; |
|
|
|
template<int SDEPTH> struct NppHistogramRangeFuncC1 |
|
{ |
|
typedef typename NppTypeTraits<SDEPTH>::npp_t src_t; |
|
typedef Npp32s level_t; |
|
enum {LEVEL_TYPE_CODE=CV_32SC1}; |
|
|
|
typedef NppStatus (*func_ptr)(const src_t* pSrc, int nSrcStep, NppiSize oSizeROI, Npp32s* pHist, |
|
const Npp32s* pLevels, int nLevels, Npp8u* pBuffer); |
|
}; |
|
template<> struct NppHistogramRangeFuncC1<CV_32F> |
|
{ |
|
typedef Npp32f src_t; |
|
typedef Npp32f level_t; |
|
enum {LEVEL_TYPE_CODE=CV_32FC1}; |
|
|
|
typedef NppStatus (*func_ptr)(const Npp32f* pSrc, int nSrcStep, NppiSize oSizeROI, Npp32s* pHist, |
|
const Npp32f* pLevels, int nLevels, Npp8u* pBuffer); |
|
}; |
|
template<int SDEPTH> struct NppHistogramRangeFuncC4 |
|
{ |
|
typedef typename NppTypeTraits<SDEPTH>::npp_t src_t; |
|
typedef Npp32s level_t; |
|
enum {LEVEL_TYPE_CODE=CV_32SC1}; |
|
|
|
typedef NppStatus (*func_ptr)(const src_t* pSrc, int nSrcStep, NppiSize oSizeROI, Npp32s* pHist[4], |
|
const Npp32s* pLevels[4], int nLevels[4], Npp8u* pBuffer); |
|
}; |
|
template<> struct NppHistogramRangeFuncC4<CV_32F> |
|
{ |
|
typedef Npp32f src_t; |
|
typedef Npp32f level_t; |
|
enum {LEVEL_TYPE_CODE=CV_32FC1}; |
|
|
|
typedef NppStatus (*func_ptr)(const Npp32f* pSrc, int nSrcStep, NppiSize oSizeROI, Npp32s* pHist[4], |
|
const Npp32f* pLevels[4], int nLevels[4], Npp8u* pBuffer); |
|
}; |
|
|
|
template<int SDEPTH, typename NppHistogramRangeFuncC1<SDEPTH>::func_ptr func, get_buf_size_c1_t get_buf_size> |
|
struct NppHistogramRangeC1 |
|
{ |
|
typedef typename NppHistogramRangeFuncC1<SDEPTH>::src_t src_t; |
|
typedef typename NppHistogramRangeFuncC1<SDEPTH>::level_t level_t; |
|
enum {LEVEL_TYPE_CODE=NppHistogramRangeFuncC1<SDEPTH>::LEVEL_TYPE_CODE}; |
|
|
|
static void hist(const GpuMat& src, GpuMat& hist, const GpuMat& levels, GpuMat& buffer, cudaStream_t stream) |
|
{ |
|
CV_Assert(levels.type() == LEVEL_TYPE_CODE && levels.rows == 1); |
|
|
|
hist.create(1, levels.cols - 1, CV_32S); |
|
|
|
NppiSize sz; |
|
sz.width = src.cols; |
|
sz.height = src.rows; |
|
|
|
int buf_size; |
|
get_buf_size(sz, levels.cols, &buf_size); |
|
|
|
ensureSizeIsEnough(1, buf_size, CV_8U, buffer); |
|
|
|
NppStreamHandler h(stream); |
|
|
|
nppSafeCall( func(src.ptr<src_t>(), static_cast<int>(src.step), sz, hist.ptr<Npp32s>(), levels.ptr<level_t>(), levels.cols, buffer.ptr<Npp8u>()) ); |
|
|
|
if (stream == 0) |
|
cudaSafeCall( cudaDeviceSynchronize() ); |
|
} |
|
}; |
|
template<int SDEPTH, typename NppHistogramRangeFuncC4<SDEPTH>::func_ptr func, get_buf_size_c4_t get_buf_size> |
|
struct NppHistogramRangeC4 |
|
{ |
|
typedef typename NppHistogramRangeFuncC4<SDEPTH>::src_t src_t; |
|
typedef typename NppHistogramRangeFuncC1<SDEPTH>::level_t level_t; |
|
enum {LEVEL_TYPE_CODE=NppHistogramRangeFuncC1<SDEPTH>::LEVEL_TYPE_CODE}; |
|
|
|
static void hist(const GpuMat& src, GpuMat hist[4], const GpuMat levels[4], GpuMat& buffer, cudaStream_t stream) |
|
{ |
|
CV_Assert(levels[0].type() == LEVEL_TYPE_CODE && levels[0].rows == 1); |
|
CV_Assert(levels[1].type() == LEVEL_TYPE_CODE && levels[1].rows == 1); |
|
CV_Assert(levels[2].type() == LEVEL_TYPE_CODE && levels[2].rows == 1); |
|
CV_Assert(levels[3].type() == LEVEL_TYPE_CODE && levels[3].rows == 1); |
|
|
|
hist[0].create(1, levels[0].cols - 1, CV_32S); |
|
hist[1].create(1, levels[1].cols - 1, CV_32S); |
|
hist[2].create(1, levels[2].cols - 1, CV_32S); |
|
hist[3].create(1, levels[3].cols - 1, CV_32S); |
|
|
|
Npp32s* pHist[] = {hist[0].ptr<Npp32s>(), hist[1].ptr<Npp32s>(), hist[2].ptr<Npp32s>(), hist[3].ptr<Npp32s>()}; |
|
int nLevels[] = {levels[0].cols, levels[1].cols, levels[2].cols, levels[3].cols}; |
|
const level_t* pLevels[] = {levels[0].ptr<level_t>(), levels[1].ptr<level_t>(), levels[2].ptr<level_t>(), levels[3].ptr<level_t>()}; |
|
|
|
NppiSize sz; |
|
sz.width = src.cols; |
|
sz.height = src.rows; |
|
|
|
int buf_size; |
|
get_buf_size(sz, nLevels, &buf_size); |
|
|
|
ensureSizeIsEnough(1, buf_size, CV_8U, buffer); |
|
|
|
NppStreamHandler h(stream); |
|
|
|
nppSafeCall( func(src.ptr<src_t>(), static_cast<int>(src.step), sz, pHist, pLevels, nLevels, buffer.ptr<Npp8u>()) ); |
|
|
|
if (stream == 0) |
|
cudaSafeCall( cudaDeviceSynchronize() ); |
|
} |
|
}; |
|
} |
|
|
|
void cv::gpu::evenLevels(GpuMat& levels, int nLevels, int lowerLevel, int upperLevel) |
|
{ |
|
Mat host_levels(1, nLevels, CV_32SC1); |
|
nppSafeCall( nppiEvenLevelsHost_32s(host_levels.ptr<Npp32s>(), nLevels, lowerLevel, upperLevel) ); |
|
levels.upload(host_levels); |
|
} |
|
|
|
void cv::gpu::histEven(const GpuMat& src, GpuMat& hist, int histSize, int lowerLevel, int upperLevel, Stream& stream) |
|
{ |
|
GpuMat buf; |
|
histEven(src, hist, buf, histSize, lowerLevel, upperLevel, stream); |
|
} |
|
|
|
namespace hist |
|
{ |
|
void histEven8u(PtrStepSzb src, int* hist, int binCount, int lowerLevel, int upperLevel, cudaStream_t stream); |
|
} |
|
|
|
namespace |
|
{ |
|
void histEven8u(const GpuMat& src, GpuMat& hist, int histSize, int lowerLevel, int upperLevel, cudaStream_t stream) |
|
{ |
|
hist.create(1, histSize, CV_32S); |
|
cudaSafeCall( cudaMemsetAsync(hist.data, 0, histSize * sizeof(int), stream) ); |
|
hist::histEven8u(src, hist.ptr<int>(), histSize, lowerLevel, upperLevel, stream); |
|
} |
|
} |
|
|
|
void cv::gpu::histEven(const GpuMat& src, GpuMat& hist, GpuMat& buf, int histSize, int lowerLevel, int upperLevel, Stream& stream) |
|
{ |
|
CV_Assert(src.type() == CV_8UC1 || src.type() == CV_16UC1 || src.type() == CV_16SC1 ); |
|
|
|
typedef void (*hist_t)(const GpuMat& src, GpuMat& hist, GpuMat& buf, int levels, int lowerLevel, int upperLevel, cudaStream_t stream); |
|
static const hist_t hist_callers[] = |
|
{ |
|
NppHistogramEvenC1<CV_8U , nppiHistogramEven_8u_C1R , nppiHistogramEvenGetBufferSize_8u_C1R >::hist, |
|
0, |
|
NppHistogramEvenC1<CV_16U, nppiHistogramEven_16u_C1R, nppiHistogramEvenGetBufferSize_16u_C1R>::hist, |
|
NppHistogramEvenC1<CV_16S, nppiHistogramEven_16s_C1R, nppiHistogramEvenGetBufferSize_16s_C1R>::hist |
|
}; |
|
|
|
if (src.depth() == CV_8U && deviceSupports(FEATURE_SET_COMPUTE_30)) |
|
{ |
|
histEven8u(src, hist, histSize, lowerLevel, upperLevel, StreamAccessor::getStream(stream)); |
|
return; |
|
} |
|
|
|
hist_callers[src.depth()](src, hist, buf, histSize, lowerLevel, upperLevel, StreamAccessor::getStream(stream)); |
|
} |
|
|
|
void cv::gpu::histEven(const GpuMat& src, GpuMat hist[4], int histSize[4], int lowerLevel[4], int upperLevel[4], Stream& stream) |
|
{ |
|
GpuMat buf; |
|
histEven(src, hist, buf, histSize, lowerLevel, upperLevel, stream); |
|
} |
|
|
|
void cv::gpu::histEven(const GpuMat& src, GpuMat hist[4], GpuMat& buf, int histSize[4], int lowerLevel[4], int upperLevel[4], Stream& stream) |
|
{ |
|
CV_Assert(src.type() == CV_8UC4 || src.type() == CV_16UC4 || src.type() == CV_16SC4 ); |
|
|
|
typedef void (*hist_t)(const GpuMat& src, GpuMat hist[4], GpuMat& buf, int levels[4], int lowerLevel[4], int upperLevel[4], cudaStream_t stream); |
|
static const hist_t hist_callers[] = |
|
{ |
|
NppHistogramEvenC4<CV_8U , nppiHistogramEven_8u_C4R , nppiHistogramEvenGetBufferSize_8u_C4R >::hist, |
|
0, |
|
NppHistogramEvenC4<CV_16U, nppiHistogramEven_16u_C4R, nppiHistogramEvenGetBufferSize_16u_C4R>::hist, |
|
NppHistogramEvenC4<CV_16S, nppiHistogramEven_16s_C4R, nppiHistogramEvenGetBufferSize_16s_C4R>::hist |
|
}; |
|
|
|
hist_callers[src.depth()](src, hist, buf, histSize, lowerLevel, upperLevel, StreamAccessor::getStream(stream)); |
|
} |
|
|
|
void cv::gpu::histRange(const GpuMat& src, GpuMat& hist, const GpuMat& levels, Stream& stream) |
|
{ |
|
GpuMat buf; |
|
histRange(src, hist, levels, buf, stream); |
|
} |
|
|
|
void cv::gpu::histRange(const GpuMat& src, GpuMat& hist, const GpuMat& levels, GpuMat& buf, Stream& stream) |
|
{ |
|
CV_Assert(src.type() == CV_8UC1 || src.type() == CV_16UC1 || src.type() == CV_16SC1 || src.type() == CV_32FC1); |
|
|
|
typedef void (*hist_t)(const GpuMat& src, GpuMat& hist, const GpuMat& levels, GpuMat& buf, cudaStream_t stream); |
|
static const hist_t hist_callers[] = |
|
{ |
|
NppHistogramRangeC1<CV_8U , nppiHistogramRange_8u_C1R , nppiHistogramRangeGetBufferSize_8u_C1R >::hist, |
|
0, |
|
NppHistogramRangeC1<CV_16U, nppiHistogramRange_16u_C1R, nppiHistogramRangeGetBufferSize_16u_C1R>::hist, |
|
NppHistogramRangeC1<CV_16S, nppiHistogramRange_16s_C1R, nppiHistogramRangeGetBufferSize_16s_C1R>::hist, |
|
0, |
|
NppHistogramRangeC1<CV_32F, nppiHistogramRange_32f_C1R, nppiHistogramRangeGetBufferSize_32f_C1R>::hist |
|
}; |
|
|
|
hist_callers[src.depth()](src, hist, levels, buf, StreamAccessor::getStream(stream)); |
|
} |
|
|
|
void cv::gpu::histRange(const GpuMat& src, GpuMat hist[4], const GpuMat levels[4], Stream& stream) |
|
{ |
|
GpuMat buf; |
|
histRange(src, hist, levels, buf, stream); |
|
} |
|
|
|
void cv::gpu::histRange(const GpuMat& src, GpuMat hist[4], const GpuMat levels[4], GpuMat& buf, Stream& stream) |
|
{ |
|
CV_Assert(src.type() == CV_8UC4 || src.type() == CV_16UC4 || src.type() == CV_16SC4 || src.type() == CV_32FC4); |
|
|
|
typedef void (*hist_t)(const GpuMat& src, GpuMat hist[4], const GpuMat levels[4], GpuMat& buf, cudaStream_t stream); |
|
static const hist_t hist_callers[] = |
|
{ |
|
NppHistogramRangeC4<CV_8U , nppiHistogramRange_8u_C4R , nppiHistogramRangeGetBufferSize_8u_C4R >::hist, |
|
0, |
|
NppHistogramRangeC4<CV_16U, nppiHistogramRange_16u_C4R, nppiHistogramRangeGetBufferSize_16u_C4R>::hist, |
|
NppHistogramRangeC4<CV_16S, nppiHistogramRange_16s_C4R, nppiHistogramRangeGetBufferSize_16s_C4R>::hist, |
|
0, |
|
NppHistogramRangeC4<CV_32F, nppiHistogramRange_32f_C4R, nppiHistogramRangeGetBufferSize_32f_C4R>::hist |
|
}; |
|
|
|
hist_callers[src.depth()](src, hist, levels, buf, StreamAccessor::getStream(stream)); |
|
} |
|
|
|
namespace hist |
|
{ |
|
void histogram256(PtrStepSzb src, int* hist, cudaStream_t stream); |
|
void equalizeHist(PtrStepSzb src, PtrStepSzb dst, const int* lut, cudaStream_t stream); |
|
} |
|
|
|
void cv::gpu::calcHist(const GpuMat& src, GpuMat& hist, Stream& stream) |
|
{ |
|
CV_Assert(src.type() == CV_8UC1); |
|
|
|
hist.create(1, 256, CV_32SC1); |
|
hist.setTo(Scalar::all(0)); |
|
|
|
hist::histogram256(src, hist.ptr<int>(), StreamAccessor::getStream(stream)); |
|
} |
|
|
|
void cv::gpu::calcHist(const GpuMat& src, GpuMat& hist, GpuMat& buf, Stream& stream) |
|
{ |
|
(void) buf; |
|
calcHist(src, hist, stream); |
|
} |
|
|
|
void cv::gpu::equalizeHist(const GpuMat& src, GpuMat& dst, Stream& stream) |
|
{ |
|
GpuMat hist; |
|
GpuMat buf; |
|
equalizeHist(src, dst, hist, buf, stream); |
|
} |
|
|
|
void cv::gpu::equalizeHist(const GpuMat& src, GpuMat& dst, GpuMat& hist, Stream& stream) |
|
{ |
|
GpuMat buf; |
|
equalizeHist(src, dst, hist, buf, stream); |
|
} |
|
|
|
void cv::gpu::equalizeHist(const GpuMat& src, GpuMat& dst, GpuMat& hist, GpuMat& buf, Stream& s) |
|
{ |
|
CV_Assert(src.type() == CV_8UC1); |
|
|
|
dst.create(src.size(), src.type()); |
|
|
|
int intBufSize; |
|
nppSafeCall( nppsIntegralGetBufferSize_32s(256, &intBufSize) ); |
|
|
|
ensureSizeIsEnough(1, intBufSize + 256 * sizeof(int), CV_8UC1, buf); |
|
|
|
GpuMat intBuf(1, intBufSize, CV_8UC1, buf.ptr()); |
|
GpuMat lut(1, 256, CV_32S, buf.ptr() + intBufSize); |
|
|
|
calcHist(src, hist, s); |
|
|
|
cudaStream_t stream = StreamAccessor::getStream(s); |
|
|
|
NppStreamHandler h(stream); |
|
|
|
nppSafeCall( nppsIntegral_32s(hist.ptr<Npp32s>(), lut.ptr<Npp32s>(), 256, intBuf.ptr<Npp8u>()) ); |
|
|
|
hist::equalizeHist(src, dst, lut.ptr<int>(), stream); |
|
} |
|
|
|
//////////////////////////////////////////////////////////////////////// |
|
// cornerHarris & minEgenVal |
|
|
|
namespace cv { namespace gpu { namespace device |
|
{ |
|
namespace imgproc |
|
{ |
|
void cornerHarris_gpu(int block_size, float k, PtrStepSzf Dx, PtrStepSzf Dy, PtrStepSzf dst, int border_type, cudaStream_t stream); |
|
void cornerMinEigenVal_gpu(int block_size, PtrStepSzf Dx, PtrStepSzf Dy, PtrStepSzf dst, int border_type, cudaStream_t stream); |
|
} |
|
}}} |
|
|
|
namespace |
|
{ |
|
void extractCovData(const GpuMat& src, GpuMat& Dx, GpuMat& Dy, GpuMat& buf, int blockSize, int ksize, int borderType, Stream& stream) |
|
{ |
|
double scale = static_cast<double>(1 << ((ksize > 0 ? ksize : 3) - 1)) * blockSize; |
|
|
|
if (ksize < 0) |
|
scale *= 2.; |
|
|
|
if (src.depth() == CV_8U) |
|
scale *= 255.; |
|
|
|
scale = 1./scale; |
|
|
|
Dx.create(src.size(), CV_32F); |
|
Dy.create(src.size(), CV_32F); |
|
|
|
if (ksize > 0) |
|
{ |
|
Sobel(src, Dx, CV_32F, 1, 0, buf, ksize, scale, borderType, -1, stream); |
|
Sobel(src, Dy, CV_32F, 0, 1, buf, ksize, scale, borderType, -1, stream); |
|
} |
|
else |
|
{ |
|
Scharr(src, Dx, CV_32F, 1, 0, buf, scale, borderType, -1, stream); |
|
Scharr(src, Dy, CV_32F, 0, 1, buf, scale, borderType, -1, stream); |
|
} |
|
} |
|
} |
|
|
|
void cv::gpu::cornerHarris(const GpuMat& src, GpuMat& dst, int blockSize, int ksize, double k, int borderType) |
|
{ |
|
GpuMat Dx, Dy; |
|
cornerHarris(src, dst, Dx, Dy, blockSize, ksize, k, borderType); |
|
} |
|
|
|
void cv::gpu::cornerHarris(const GpuMat& src, GpuMat& dst, GpuMat& Dx, GpuMat& Dy, int blockSize, int ksize, double k, int borderType) |
|
{ |
|
GpuMat buf; |
|
cornerHarris(src, dst, Dx, Dy, buf, blockSize, ksize, k, borderType); |
|
} |
|
|
|
void cv::gpu::cornerHarris(const GpuMat& src, GpuMat& dst, GpuMat& Dx, GpuMat& Dy, GpuMat& buf, int blockSize, int ksize, double k, int borderType, Stream& stream) |
|
{ |
|
using namespace cv::gpu::device::imgproc; |
|
|
|
CV_Assert(borderType == cv::BORDER_REFLECT101 || borderType == cv::BORDER_REPLICATE || borderType == cv::BORDER_REFLECT); |
|
|
|
int gpuBorderType; |
|
CV_Assert(tryConvertToGpuBorderType(borderType, gpuBorderType)); |
|
|
|
extractCovData(src, Dx, Dy, buf, blockSize, ksize, borderType, stream); |
|
|
|
dst.create(src.size(), CV_32F); |
|
|
|
cornerHarris_gpu(blockSize, static_cast<float>(k), Dx, Dy, dst, gpuBorderType, StreamAccessor::getStream(stream)); |
|
} |
|
|
|
void cv::gpu::cornerMinEigenVal(const GpuMat& src, GpuMat& dst, int blockSize, int ksize, int borderType) |
|
{ |
|
GpuMat Dx, Dy; |
|
cornerMinEigenVal(src, dst, Dx, Dy, blockSize, ksize, borderType); |
|
} |
|
|
|
void cv::gpu::cornerMinEigenVal(const GpuMat& src, GpuMat& dst, GpuMat& Dx, GpuMat& Dy, int blockSize, int ksize, int borderType) |
|
{ |
|
GpuMat buf; |
|
cornerMinEigenVal(src, dst, Dx, Dy, buf, blockSize, ksize, borderType); |
|
} |
|
|
|
void cv::gpu::cornerMinEigenVal(const GpuMat& src, GpuMat& dst, GpuMat& Dx, GpuMat& Dy, GpuMat& buf, int blockSize, int ksize, int borderType, Stream& stream) |
|
{ |
|
using namespace ::cv::gpu::device::imgproc; |
|
|
|
CV_Assert(borderType == cv::BORDER_REFLECT101 || borderType == cv::BORDER_REPLICATE || borderType == cv::BORDER_REFLECT); |
|
|
|
int gpuBorderType; |
|
CV_Assert(tryConvertToGpuBorderType(borderType, gpuBorderType)); |
|
|
|
extractCovData(src, Dx, Dy, buf, blockSize, ksize, borderType, stream); |
|
|
|
dst.create(src.size(), CV_32F); |
|
|
|
cornerMinEigenVal_gpu(blockSize, Dx, Dy, dst, gpuBorderType, StreamAccessor::getStream(stream)); |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////////////// |
|
// mulSpectrums |
|
|
|
#ifdef HAVE_CUFFT |
|
|
|
namespace cv { namespace gpu { namespace device |
|
{ |
|
namespace imgproc |
|
{ |
|
void mulSpectrums(const PtrStep<cufftComplex> a, const PtrStep<cufftComplex> b, PtrStepSz<cufftComplex> c, cudaStream_t stream); |
|
|
|
void mulSpectrums_CONJ(const PtrStep<cufftComplex> a, const PtrStep<cufftComplex> b, PtrStepSz<cufftComplex> c, cudaStream_t stream); |
|
} |
|
}}} |
|
|
|
#endif |
|
|
|
void cv::gpu::mulSpectrums(const GpuMat& a, const GpuMat& b, GpuMat& c, int flags, bool conjB, Stream& stream) |
|
{ |
|
#ifndef HAVE_CUFFT |
|
(void) a; |
|
(void) b; |
|
(void) c; |
|
(void) flags; |
|
(void) conjB; |
|
(void) stream; |
|
throw_nogpu(); |
|
#else |
|
(void) flags; |
|
using namespace ::cv::gpu::device::imgproc; |
|
|
|
typedef void (*Caller)(const PtrStep<cufftComplex>, const PtrStep<cufftComplex>, PtrStepSz<cufftComplex>, cudaStream_t stream); |
|
|
|
static Caller callers[] = { device::imgproc::mulSpectrums, device::imgproc::mulSpectrums_CONJ }; |
|
|
|
CV_Assert(a.type() == b.type() && a.type() == CV_32FC2); |
|
CV_Assert(a.size() == b.size()); |
|
|
|
c.create(a.size(), CV_32FC2); |
|
|
|
Caller caller = callers[(int)conjB]; |
|
caller(a, b, c, StreamAccessor::getStream(stream)); |
|
#endif |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////////////// |
|
// mulAndScaleSpectrums |
|
|
|
#ifdef HAVE_CUFFT |
|
|
|
namespace cv { namespace gpu { namespace device |
|
{ |
|
namespace imgproc |
|
{ |
|
void mulAndScaleSpectrums(const PtrStep<cufftComplex> a, const PtrStep<cufftComplex> b, float scale, PtrStepSz<cufftComplex> c, cudaStream_t stream); |
|
|
|
void mulAndScaleSpectrums_CONJ(const PtrStep<cufftComplex> a, const PtrStep<cufftComplex> b, float scale, PtrStepSz<cufftComplex> c, cudaStream_t stream); |
|
} |
|
}}} |
|
|
|
#endif |
|
|
|
void cv::gpu::mulAndScaleSpectrums(const GpuMat& a, const GpuMat& b, GpuMat& c, int flags, float scale, bool conjB, Stream& stream) |
|
{ |
|
#ifndef HAVE_CUFFT |
|
(void) a; |
|
(void) b; |
|
(void) c; |
|
(void) flags; |
|
(void) scale; |
|
(void) conjB; |
|
(void) stream; |
|
throw_nogpu(); |
|
#else |
|
(void)flags; |
|
using namespace ::cv::gpu::device::imgproc; |
|
|
|
typedef void (*Caller)(const PtrStep<cufftComplex>, const PtrStep<cufftComplex>, float scale, PtrStepSz<cufftComplex>, cudaStream_t stream); |
|
static Caller callers[] = { device::imgproc::mulAndScaleSpectrums, device::imgproc::mulAndScaleSpectrums_CONJ }; |
|
|
|
CV_Assert(a.type() == b.type() && a.type() == CV_32FC2); |
|
CV_Assert(a.size() == b.size()); |
|
|
|
c.create(a.size(), CV_32FC2); |
|
|
|
Caller caller = callers[(int)conjB]; |
|
caller(a, b, scale, c, StreamAccessor::getStream(stream)); |
|
#endif |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////////////// |
|
// dft |
|
|
|
void cv::gpu::dft(const GpuMat& src, GpuMat& dst, Size dft_size, int flags, Stream& stream) |
|
{ |
|
#ifndef HAVE_CUFFT |
|
|
|
OPENCV_GPU_UNUSED(src); |
|
OPENCV_GPU_UNUSED(dst); |
|
OPENCV_GPU_UNUSED(dft_size); |
|
OPENCV_GPU_UNUSED(flags); |
|
OPENCV_GPU_UNUSED(stream); |
|
|
|
throw_nogpu(); |
|
|
|
#else |
|
|
|
CV_Assert(src.type() == CV_32F || src.type() == CV_32FC2); |
|
|
|
// We don't support unpacked output (in the case of real input) |
|
CV_Assert(!(flags & DFT_COMPLEX_OUTPUT)); |
|
|
|
bool is_1d_input = (dft_size.height == 1) || (dft_size.width == 1); |
|
int is_row_dft = flags & DFT_ROWS; |
|
int is_scaled_dft = flags & DFT_SCALE; |
|
int is_inverse = flags & DFT_INVERSE; |
|
bool is_complex_input = src.channels() == 2; |
|
bool is_complex_output = !(flags & DFT_REAL_OUTPUT); |
|
|
|
// We don't support real-to-real transform |
|
CV_Assert(is_complex_input || is_complex_output); |
|
|
|
GpuMat src_data; |
|
|
|
// Make sure here we work with the continuous input, |
|
// as CUFFT can't handle gaps |
|
src_data = src; |
|
createContinuous(src.rows, src.cols, src.type(), src_data); |
|
if (src_data.data != src.data) |
|
src.copyTo(src_data); |
|
|
|
Size dft_size_opt = dft_size; |
|
if (is_1d_input && !is_row_dft) |
|
{ |
|
// If the source matrix is single column handle it as single row |
|
dft_size_opt.width = std::max(dft_size.width, dft_size.height); |
|
dft_size_opt.height = std::min(dft_size.width, dft_size.height); |
|
} |
|
|
|
cufftType dft_type = CUFFT_R2C; |
|
if (is_complex_input) |
|
dft_type = is_complex_output ? CUFFT_C2C : CUFFT_C2R; |
|
|
|
CV_Assert(dft_size_opt.width > 1); |
|
|
|
cufftHandle plan; |
|
if (is_1d_input || is_row_dft) |
|
cufftPlan1d(&plan, dft_size_opt.width, dft_type, dft_size_opt.height); |
|
else |
|
cufftPlan2d(&plan, dft_size_opt.height, dft_size_opt.width, dft_type); |
|
|
|
cufftSafeCall( cufftSetStream(plan, StreamAccessor::getStream(stream)) ); |
|
|
|
if (is_complex_input) |
|
{ |
|
if (is_complex_output) |
|
{ |
|
createContinuous(dft_size, CV_32FC2, dst); |
|
cufftSafeCall(cufftExecC2C( |
|
plan, src_data.ptr<cufftComplex>(), dst.ptr<cufftComplex>(), |
|
is_inverse ? CUFFT_INVERSE : CUFFT_FORWARD)); |
|
} |
|
else |
|
{ |
|
createContinuous(dft_size, CV_32F, dst); |
|
cufftSafeCall(cufftExecC2R( |
|
plan, src_data.ptr<cufftComplex>(), dst.ptr<cufftReal>())); |
|
} |
|
} |
|
else |
|
{ |
|
// We could swap dft_size for efficiency. Here we must reflect it |
|
if (dft_size == dft_size_opt) |
|
createContinuous(Size(dft_size.width / 2 + 1, dft_size.height), CV_32FC2, dst); |
|
else |
|
createContinuous(Size(dft_size.width, dft_size.height / 2 + 1), CV_32FC2, dst); |
|
|
|
cufftSafeCall(cufftExecR2C( |
|
plan, src_data.ptr<cufftReal>(), dst.ptr<cufftComplex>())); |
|
} |
|
|
|
cufftSafeCall(cufftDestroy(plan)); |
|
|
|
if (is_scaled_dft) |
|
multiply(dst, Scalar::all(1. / dft_size.area()), dst, 1, -1, stream); |
|
|
|
#endif |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////////////// |
|
// convolve |
|
|
|
void cv::gpu::ConvolveBuf::create(Size image_size, Size templ_size) |
|
{ |
|
result_size = Size(image_size.width - templ_size.width + 1, |
|
image_size.height - templ_size.height + 1); |
|
|
|
block_size = user_block_size; |
|
if (user_block_size.width == 0 || user_block_size.height == 0) |
|
block_size = estimateBlockSize(result_size, templ_size); |
|
|
|
dft_size.width = 1 << int(ceil(std::log(block_size.width + templ_size.width - 1.) / std::log(2.))); |
|
dft_size.height = 1 << int(ceil(std::log(block_size.height + templ_size.height - 1.) / std::log(2.))); |
|
|
|
// CUFFT has hard-coded kernels for power-of-2 sizes (up to 8192), |
|
// see CUDA Toolkit 4.1 CUFFT Library Programming Guide |
|
if (dft_size.width > 8192) |
|
dft_size.width = getOptimalDFTSize(block_size.width + templ_size.width - 1); |
|
if (dft_size.height > 8192) |
|
dft_size.height = getOptimalDFTSize(block_size.height + templ_size.height - 1); |
|
|
|
// To avoid wasting time doing small DFTs |
|
dft_size.width = std::max(dft_size.width, 512); |
|
dft_size.height = std::max(dft_size.height, 512); |
|
|
|
createContinuous(dft_size, CV_32F, image_block); |
|
createContinuous(dft_size, CV_32F, templ_block); |
|
createContinuous(dft_size, CV_32F, result_data); |
|
|
|
spect_len = dft_size.height * (dft_size.width / 2 + 1); |
|
createContinuous(1, spect_len, CV_32FC2, image_spect); |
|
createContinuous(1, spect_len, CV_32FC2, templ_spect); |
|
createContinuous(1, spect_len, CV_32FC2, result_spect); |
|
|
|
// Use maximum result matrix block size for the estimated DFT block size |
|
block_size.width = std::min(dft_size.width - templ_size.width + 1, result_size.width); |
|
block_size.height = std::min(dft_size.height - templ_size.height + 1, result_size.height); |
|
} |
|
|
|
|
|
Size cv::gpu::ConvolveBuf::estimateBlockSize(Size result_size, Size /*templ_size*/) |
|
{ |
|
int width = (result_size.width + 2) / 3; |
|
int height = (result_size.height + 2) / 3; |
|
width = std::min(width, result_size.width); |
|
height = std::min(height, result_size.height); |
|
return Size(width, height); |
|
} |
|
|
|
|
|
void cv::gpu::convolve(const GpuMat& image, const GpuMat& templ, GpuMat& result, bool ccorr) |
|
{ |
|
ConvolveBuf buf; |
|
convolve(image, templ, result, ccorr, buf); |
|
} |
|
|
|
void cv::gpu::convolve(const GpuMat& image, const GpuMat& templ, GpuMat& result, bool ccorr, ConvolveBuf& buf, Stream& stream) |
|
{ |
|
using namespace ::cv::gpu::device::imgproc; |
|
|
|
#ifndef HAVE_CUFFT |
|
throw_nogpu(); |
|
#else |
|
StaticAssert<sizeof(float) == sizeof(cufftReal)>::check(); |
|
StaticAssert<sizeof(float) * 2 == sizeof(cufftComplex)>::check(); |
|
|
|
CV_Assert(image.type() == CV_32F); |
|
CV_Assert(templ.type() == CV_32F); |
|
|
|
buf.create(image.size(), templ.size()); |
|
result.create(buf.result_size, CV_32F); |
|
|
|
Size& block_size = buf.block_size; |
|
Size& dft_size = buf.dft_size; |
|
|
|
GpuMat& image_block = buf.image_block; |
|
GpuMat& templ_block = buf.templ_block; |
|
GpuMat& result_data = buf.result_data; |
|
|
|
GpuMat& image_spect = buf.image_spect; |
|
GpuMat& templ_spect = buf.templ_spect; |
|
GpuMat& result_spect = buf.result_spect; |
|
|
|
cufftHandle planR2C, planC2R; |
|
cufftSafeCall(cufftPlan2d(&planC2R, dft_size.height, dft_size.width, CUFFT_C2R)); |
|
cufftSafeCall(cufftPlan2d(&planR2C, dft_size.height, dft_size.width, CUFFT_R2C)); |
|
|
|
cufftSafeCall( cufftSetStream(planR2C, StreamAccessor::getStream(stream)) ); |
|
cufftSafeCall( cufftSetStream(planC2R, StreamAccessor::getStream(stream)) ); |
|
|
|
GpuMat templ_roi(templ.size(), CV_32F, templ.data, templ.step); |
|
copyMakeBorder(templ_roi, templ_block, 0, templ_block.rows - templ_roi.rows, 0, |
|
templ_block.cols - templ_roi.cols, 0, Scalar(), stream); |
|
|
|
cufftSafeCall(cufftExecR2C(planR2C, templ_block.ptr<cufftReal>(), |
|
templ_spect.ptr<cufftComplex>())); |
|
|
|
// Process all blocks of the result matrix |
|
for (int y = 0; y < result.rows; y += block_size.height) |
|
{ |
|
for (int x = 0; x < result.cols; x += block_size.width) |
|
{ |
|
Size image_roi_size(std::min(x + dft_size.width, image.cols) - x, |
|
std::min(y + dft_size.height, image.rows) - y); |
|
GpuMat image_roi(image_roi_size, CV_32F, (void*)(image.ptr<float>(y) + x), |
|
image.step); |
|
copyMakeBorder(image_roi, image_block, 0, image_block.rows - image_roi.rows, |
|
0, image_block.cols - image_roi.cols, 0, Scalar(), stream); |
|
|
|
cufftSafeCall(cufftExecR2C(planR2C, image_block.ptr<cufftReal>(), |
|
image_spect.ptr<cufftComplex>())); |
|
mulAndScaleSpectrums(image_spect, templ_spect, result_spect, 0, |
|
1.f / dft_size.area(), ccorr, stream); |
|
cufftSafeCall(cufftExecC2R(planC2R, result_spect.ptr<cufftComplex>(), |
|
result_data.ptr<cufftReal>())); |
|
|
|
Size result_roi_size(std::min(x + block_size.width, result.cols) - x, |
|
std::min(y + block_size.height, result.rows) - y); |
|
GpuMat result_roi(result_roi_size, result.type(), |
|
(void*)(result.ptr<float>(y) + x), result.step); |
|
GpuMat result_block(result_roi_size, result_data.type(), |
|
result_data.ptr(), result_data.step); |
|
|
|
if (stream) |
|
stream.enqueueCopy(result_block, result_roi); |
|
else |
|
result_block.copyTo(result_roi); |
|
} |
|
} |
|
|
|
cufftSafeCall(cufftDestroy(planR2C)); |
|
cufftSafeCall(cufftDestroy(planC2R)); |
|
#endif |
|
} |
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////// |
|
// Canny |
|
|
|
void cv::gpu::CannyBuf::create(const Size& image_size, int apperture_size) |
|
{ |
|
if (apperture_size > 0) |
|
{ |
|
ensureSizeIsEnough(image_size, CV_32SC1, dx); |
|
ensureSizeIsEnough(image_size, CV_32SC1, dy); |
|
|
|
if (apperture_size != 3) |
|
{ |
|
filterDX = createDerivFilter_GPU(CV_8UC1, CV_32S, 1, 0, apperture_size, BORDER_REPLICATE); |
|
filterDY = createDerivFilter_GPU(CV_8UC1, CV_32S, 0, 1, apperture_size, BORDER_REPLICATE); |
|
} |
|
} |
|
|
|
ensureSizeIsEnough(image_size, CV_32FC1, mag); |
|
ensureSizeIsEnough(image_size, CV_32SC1, map); |
|
|
|
ensureSizeIsEnough(1, image_size.area(), CV_16UC2, st1); |
|
ensureSizeIsEnough(1, image_size.area(), CV_16UC2, st2); |
|
} |
|
|
|
void cv::gpu::CannyBuf::release() |
|
{ |
|
dx.release(); |
|
dy.release(); |
|
mag.release(); |
|
map.release(); |
|
st1.release(); |
|
st2.release(); |
|
} |
|
|
|
namespace canny |
|
{ |
|
void calcMagnitude(PtrStepSzb srcWhole, int xoff, int yoff, PtrStepSzi dx, PtrStepSzi dy, PtrStepSzf mag, bool L2Grad); |
|
void calcMagnitude(PtrStepSzi dx, PtrStepSzi dy, PtrStepSzf mag, bool L2Grad); |
|
|
|
void calcMap(PtrStepSzi dx, PtrStepSzi dy, PtrStepSzf mag, PtrStepSzi map, float low_thresh, float high_thresh); |
|
|
|
void edgesHysteresisLocal(PtrStepSzi map, ushort2* st1); |
|
|
|
void edgesHysteresisGlobal(PtrStepSzi map, ushort2* st1, ushort2* st2); |
|
|
|
void getEdges(PtrStepSzi map, PtrStepSzb dst); |
|
} |
|
|
|
namespace |
|
{ |
|
void CannyCaller(const GpuMat& dx, const GpuMat& dy, CannyBuf& buf, GpuMat& dst, float low_thresh, float high_thresh) |
|
{ |
|
using namespace canny; |
|
|
|
buf.map.setTo(Scalar::all(0)); |
|
calcMap(dx, dy, buf.mag, buf.map, low_thresh, high_thresh); |
|
|
|
edgesHysteresisLocal(buf.map, buf.st1.ptr<ushort2>()); |
|
|
|
edgesHysteresisGlobal(buf.map, buf.st1.ptr<ushort2>(), buf.st2.ptr<ushort2>()); |
|
|
|
getEdges(buf.map, dst); |
|
} |
|
} |
|
|
|
void cv::gpu::Canny(const GpuMat& src, GpuMat& dst, double low_thresh, double high_thresh, int apperture_size, bool L2gradient) |
|
{ |
|
CannyBuf buf; |
|
Canny(src, buf, dst, low_thresh, high_thresh, apperture_size, L2gradient); |
|
} |
|
|
|
void cv::gpu::Canny(const GpuMat& src, CannyBuf& buf, GpuMat& dst, double low_thresh, double high_thresh, int apperture_size, bool L2gradient) |
|
{ |
|
using namespace canny; |
|
|
|
CV_Assert(src.type() == CV_8UC1); |
|
|
|
if (!deviceSupports(SHARED_ATOMICS)) |
|
CV_Error(CV_StsNotImplemented, "The device doesn't support shared atomics"); |
|
|
|
if( low_thresh > high_thresh ) |
|
std::swap( low_thresh, high_thresh); |
|
|
|
dst.create(src.size(), CV_8U); |
|
buf.create(src.size(), apperture_size); |
|
|
|
if (apperture_size == 3) |
|
{ |
|
Size wholeSize; |
|
Point ofs; |
|
src.locateROI(wholeSize, ofs); |
|
GpuMat srcWhole(wholeSize, src.type(), src.datastart, src.step); |
|
|
|
calcMagnitude(srcWhole, ofs.x, ofs.y, buf.dx, buf.dy, buf.mag, L2gradient); |
|
} |
|
else |
|
{ |
|
buf.filterDX->apply(src, buf.dx, Rect(0, 0, src.cols, src.rows)); |
|
buf.filterDY->apply(src, buf.dy, Rect(0, 0, src.cols, src.rows)); |
|
|
|
calcMagnitude(buf.dx, buf.dy, buf.mag, L2gradient); |
|
} |
|
|
|
CannyCaller(buf.dx, buf.dy, buf, dst, static_cast<float>(low_thresh), static_cast<float>(high_thresh)); |
|
} |
|
|
|
void cv::gpu::Canny(const GpuMat& dx, const GpuMat& dy, GpuMat& dst, double low_thresh, double high_thresh, bool L2gradient) |
|
{ |
|
CannyBuf buf; |
|
Canny(dx, dy, buf, dst, low_thresh, high_thresh, L2gradient); |
|
} |
|
|
|
void cv::gpu::Canny(const GpuMat& dx, const GpuMat& dy, CannyBuf& buf, GpuMat& dst, double low_thresh, double high_thresh, bool L2gradient) |
|
{ |
|
using namespace canny; |
|
|
|
CV_Assert(TargetArchs::builtWith(SHARED_ATOMICS) && DeviceInfo().supports(SHARED_ATOMICS)); |
|
CV_Assert(dx.type() == CV_32SC1 && dy.type() == CV_32SC1 && dx.size() == dy.size()); |
|
|
|
if( low_thresh > high_thresh ) |
|
std::swap( low_thresh, high_thresh); |
|
|
|
dst.create(dx.size(), CV_8U); |
|
buf.create(dx.size(), -1); |
|
|
|
calcMagnitude(dx, dy, buf.mag, L2gradient); |
|
|
|
CannyCaller(dx, dy, buf, dst, static_cast<float>(low_thresh), static_cast<float>(high_thresh)); |
|
} |
|
|
|
//////////////////////////////////////////////////////////////////////// |
|
// CLAHE |
|
|
|
namespace clahe |
|
{ |
|
void calcLut(PtrStepSzb src, PtrStepb lut, int tilesX, int tilesY, int2 tileSize, int clipLimit, float lutScale, cudaStream_t stream); |
|
void transform(PtrStepSzb src, PtrStepSzb dst, PtrStepb lut, int tilesX, int tilesY, int2 tileSize, cudaStream_t stream); |
|
} |
|
|
|
namespace |
|
{ |
|
class CLAHE_Impl : public cv::gpu::CLAHE |
|
{ |
|
public: |
|
CLAHE_Impl(double clipLimit = 40.0, int tilesX = 8, int tilesY = 8); |
|
|
|
cv::AlgorithmInfo* info() const; |
|
|
|
void apply(cv::InputArray src, cv::OutputArray dst); |
|
void apply(InputArray src, OutputArray dst, Stream& stream); |
|
|
|
void setClipLimit(double clipLimit); |
|
double getClipLimit() const; |
|
|
|
void setTilesGridSize(cv::Size tileGridSize); |
|
cv::Size getTilesGridSize() const; |
|
|
|
void collectGarbage(); |
|
|
|
private: |
|
double clipLimit_; |
|
int tilesX_; |
|
int tilesY_; |
|
|
|
GpuMat srcExt_; |
|
GpuMat lut_; |
|
}; |
|
|
|
CLAHE_Impl::CLAHE_Impl(double clipLimit, int tilesX, int tilesY) : |
|
clipLimit_(clipLimit), tilesX_(tilesX), tilesY_(tilesY) |
|
{ |
|
} |
|
|
|
CV_INIT_ALGORITHM(CLAHE_Impl, "CLAHE_GPU", |
|
obj.info()->addParam(obj, "clipLimit", obj.clipLimit_); |
|
obj.info()->addParam(obj, "tilesX", obj.tilesX_); |
|
obj.info()->addParam(obj, "tilesY", obj.tilesY_)) |
|
|
|
void CLAHE_Impl::apply(cv::InputArray _src, cv::OutputArray _dst) |
|
{ |
|
apply(_src, _dst, Stream::Null()); |
|
} |
|
|
|
void CLAHE_Impl::apply(InputArray _src, OutputArray _dst, Stream& s) |
|
{ |
|
GpuMat src = _src.getGpuMat(); |
|
|
|
CV_Assert( src.type() == CV_8UC1 ); |
|
|
|
_dst.create( src.size(), src.type() ); |
|
GpuMat dst = _dst.getGpuMat(); |
|
|
|
const int histSize = 256; |
|
|
|
ensureSizeIsEnough(tilesX_ * tilesY_, histSize, CV_8UC1, lut_); |
|
|
|
cudaStream_t stream = StreamAccessor::getStream(s); |
|
|
|
cv::Size tileSize; |
|
GpuMat srcForLut; |
|
|
|
if (src.cols % tilesX_ == 0 && src.rows % tilesY_ == 0) |
|
{ |
|
tileSize = cv::Size(src.cols / tilesX_, src.rows / tilesY_); |
|
srcForLut = src; |
|
} |
|
else |
|
{ |
|
cv::gpu::copyMakeBorder(src, srcExt_, 0, tilesY_ - (src.rows % tilesY_), 0, tilesX_ - (src.cols % tilesX_), cv::BORDER_REFLECT_101, cv::Scalar(), s); |
|
|
|
tileSize = cv::Size(srcExt_.cols / tilesX_, srcExt_.rows / tilesY_); |
|
srcForLut = srcExt_; |
|
} |
|
|
|
const int tileSizeTotal = tileSize.area(); |
|
const float lutScale = static_cast<float>(histSize - 1) / tileSizeTotal; |
|
|
|
int clipLimit = 0; |
|
if (clipLimit_ > 0.0) |
|
{ |
|
clipLimit = static_cast<int>(clipLimit_ * tileSizeTotal / histSize); |
|
clipLimit = std::max(clipLimit, 1); |
|
} |
|
|
|
clahe::calcLut(srcForLut, lut_, tilesX_, tilesY_, make_int2(tileSize.width, tileSize.height), clipLimit, lutScale, stream); |
|
|
|
clahe::transform(src, dst, lut_, tilesX_, tilesY_, make_int2(tileSize.width, tileSize.height), stream); |
|
} |
|
|
|
void CLAHE_Impl::setClipLimit(double clipLimit) |
|
{ |
|
clipLimit_ = clipLimit; |
|
} |
|
|
|
double CLAHE_Impl::getClipLimit() const |
|
{ |
|
return clipLimit_; |
|
} |
|
|
|
void CLAHE_Impl::setTilesGridSize(cv::Size tileGridSize) |
|
{ |
|
tilesX_ = tileGridSize.width; |
|
tilesY_ = tileGridSize.height; |
|
} |
|
|
|
cv::Size CLAHE_Impl::getTilesGridSize() const |
|
{ |
|
return cv::Size(tilesX_, tilesY_); |
|
} |
|
|
|
void CLAHE_Impl::collectGarbage() |
|
{ |
|
srcExt_.release(); |
|
lut_.release(); |
|
} |
|
} |
|
|
|
cv::Ptr<cv::gpu::CLAHE> cv::gpu::createCLAHE(double clipLimit, cv::Size tileGridSize) |
|
{ |
|
return new CLAHE_Impl(clipLimit, tileGridSize.width, tileGridSize.height); |
|
} |
|
|
|
#endif /* !defined (HAVE_CUDA) */
|
|
|