mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1880 lines
56 KiB
1880 lines
56 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// Intel License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of Intel Corporation may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
#include "precomp.hpp" |
|
|
|
typedef struct _CvRGBf |
|
{ float blue; |
|
float green; |
|
float red; |
|
} |
|
_CvRGBf; |
|
|
|
typedef struct _CvRect16u |
|
{ |
|
ushort x1, y1, x2, y2; |
|
} |
|
_CvRect16u; |
|
|
|
typedef struct _CvPyramid |
|
{ |
|
float c; |
|
struct _CvPyramid *p; |
|
int a; |
|
_CvRect16u rect; /* ROI for the connected component */ |
|
} _CvPyramid; |
|
|
|
/* element of base layer */ |
|
typedef struct _CvPyramidBase |
|
{ |
|
float c; |
|
struct _CvPyramid *p; |
|
} |
|
_CvPyramidBase; |
|
|
|
typedef struct _CvPyramidC3 |
|
{ |
|
_CvRGBf c; |
|
struct _CvPyramidC3 *p; |
|
int a; |
|
_CvRect16u rect; /* ROI for the connected component */ |
|
} _CvPyramidC3; |
|
|
|
/* element of base layer */ |
|
typedef struct _CvPyramidBaseC3 |
|
{ |
|
_CvRGBf c; |
|
struct _CvPyramidC3 *p; |
|
} |
|
_CvPyramidBaseC3; |
|
|
|
typedef struct _CvListNode |
|
{ |
|
struct _CvListNode* next; |
|
void* data; |
|
} |
|
_CvListNode; |
|
|
|
|
|
static CvStatus icvSegmentClusterC1( CvSeq* cmp_seq, CvSeq* res_seq, |
|
double threshold, |
|
_CvPyramid* first_level_end, |
|
CvSize first_level_size ); |
|
|
|
static CvStatus icvSegmentClusterC3( CvSeq* cmp_seq, CvSeq* res_seq, |
|
double threshold, |
|
_CvPyramidC3* first_level_end, |
|
CvSize first_level_size ); |
|
|
|
typedef void (CV_CDECL * CvWriteNodeFunction)(void* seq,void* node); |
|
|
|
static CvStatus icvUpdatePyrLinks_8u_C1 |
|
(int layer, void *layer_data, CvSize size, void *parent_layer, |
|
void *_writer, float threshold, int is_last_iter, void *_stub, CvWriteNodeFunction /*func*/); |
|
|
|
static CvStatus icvUpdatePyrLinks_8u_C3 |
|
(int layer, void *layer_data, CvSize size, void *parent_layer, |
|
void *_writer, float threshold, int is_last_iter, void *_stub, CvWriteNodeFunction /*func*/); |
|
|
|
static void icvMaxRoi( _CvRect16u *max_rect, _CvRect16u* cur_rect ); |
|
static void icvMaxRoi1( _CvRect16u *max_rect, int x, int y ); |
|
|
|
|
|
#define _CV_CHECK( icvFun ) \ |
|
{ \ |
|
if( icvFun != CV_OK ) \ |
|
goto M_END; \ |
|
} |
|
|
|
|
|
#define _CV_MAX3( a, b, c) ((a)>(b) ? ((a)>(c) ? (a) : (c)) : ((b)>(c) ? (b) : (c))) |
|
|
|
/*#define _CV_RGB_DIST(a, b) _CV_MAX3((float)fabs((a).red - (b).red), \ |
|
(float)fabs((a).green - (b).green), \ |
|
(float)fabs((a).blue - (b).blue))*/ |
|
|
|
#define _CV_NEXT_BASE_C1(p,n) (_CvPyramid*)((char*)(p) + (n)*sizeof(_CvPyramidBase)) |
|
#define _CV_NEXT_BASE_C3(p,n) (_CvPyramidC3*)((char*)(p) + (n)*sizeof(_CvPyramidBaseC3)) |
|
|
|
|
|
CV_INLINE float icvRGBDist_Max( const _CvRGBf& a, const _CvRGBf& b ) |
|
{ |
|
float tr = (float)fabs(a.red - b.red); |
|
float tg = (float)fabs(a.green - b.green); |
|
float tb = (float)fabs(a.blue - b.blue); |
|
|
|
return _CV_MAX3( tr, tg, tb ); |
|
} |
|
|
|
CV_INLINE float icvRGBDist_Sum( const _CvRGBf& a, const _CvRGBf& b ) |
|
{ |
|
float tr = (float)fabs(a.red - b.red); |
|
float tg = (float)fabs(a.green - b.green); |
|
float tb = (float)fabs(a.blue - b.blue); |
|
|
|
return (tr + tg + tb); |
|
} |
|
|
|
#if 1 |
|
#define _CV_RGB_DIST icvRGBDist_Max |
|
#define _CV_RGB_THRESH_SCALE 1 |
|
#else |
|
#define _CV_RGB_DIST icvRGBDist_Sum |
|
#define _CV_RGB_THRESH_SCALE 3 |
|
#endif |
|
|
|
#define _CV_INV_TAB_SIZE 32 |
|
|
|
static const float icvInvTab[ /*_CV_INV_TAB_SIZE*/ ] = |
|
{ |
|
1.00000000f, 0.50000000f, 0.33333333f, 0.25000000f, 0.20000000f, 0.16666667f, |
|
0.14285714f, 0.12500000f, 0.11111111f, 0.10000000f, 0.09090909f, 0.08333333f, |
|
0.07692308f, 0.07142857f, 0.06666667f, 0.06250000f, 0.05882353f, 0.05555556f, |
|
0.05263158f, 0.05000000f, 0.04761905f, 0.04545455f, 0.04347826f, 0.04166667f, |
|
0.04000000f, 0.03846154f, 0.03703704f, 0.03571429f, 0.03448276f, 0.03333333f, |
|
0.03225806f, 0.03125000f |
|
}; |
|
|
|
static void |
|
icvWritePyrNode( void *elem, void *writer ) |
|
{ |
|
CV_WRITE_SEQ_ELEM( *(_CvListNode *) elem, *(CvSeqWriter *) writer ); |
|
} |
|
|
|
|
|
static CvStatus |
|
icvPyrSegmentation8uC1R( uchar * src_image, int src_step, |
|
uchar * dst_image, int dst_step, |
|
CvSize roi, int filter, |
|
CvSeq ** dst_comp, CvMemStorage * storage, |
|
int level, int threshold1, int threshold2 ) |
|
{ |
|
int i, j, l; |
|
int step; |
|
const int max_iter = 3; /* maximum number of iterations */ |
|
int cur_iter = 0; /* current iteration */ |
|
|
|
_CvPyramid *pyram[16]; /* pointers to the pyramid down up to level */ |
|
|
|
float *pyramida = 0; |
|
_CvPyramid stub; |
|
|
|
_CvPyramid *p_cur; |
|
_CvPyramidBase *p_base; |
|
_CvListNode cmp_node; |
|
|
|
CvSeq *cmp_seq = 0; |
|
CvSeq *res_seq = 0; |
|
CvMemStorage *temp_storage = 0; |
|
CvSize size; |
|
CvStatus status; |
|
CvSeqWriter writer; |
|
|
|
int buffer_size; |
|
char *buffer = 0; |
|
|
|
status = CV_OK; |
|
|
|
/* clear pointer to resultant sequence */ |
|
if( dst_comp ) |
|
*dst_comp = 0; |
|
|
|
/* check args */ |
|
if( !src_image || !dst_image || !storage || !dst_comp ) |
|
return CV_NULLPTR_ERR; |
|
if( roi.width <= 0 || roi.height <= 0 || src_step < roi.width || dst_step < roi.width ) |
|
return CV_BADSIZE_ERR; |
|
if( filter != CV_GAUSSIAN_5x5 ) |
|
return CV_BADRANGE_ERR; |
|
if( threshold1 < 0 || threshold2 < 0 ) |
|
return CV_BADRANGE_ERR; |
|
if( level <= 0 ) |
|
return CV_BADRANGE_ERR; |
|
|
|
if( ((roi.width | roi.height) & ((1 << level) - 1)) != 0 ) |
|
return CV_BADCOEF_ERR; |
|
|
|
temp_storage = cvCreateChildMemStorage( storage ); |
|
|
|
/* sequence for temporary components */ |
|
cmp_seq = cvCreateSeq( 0, sizeof( CvSeq ), sizeof( _CvListNode ), temp_storage ); |
|
assert( cmp_seq != 0 ); |
|
|
|
res_seq = cvCreateSeq( CV_SEQ_CONNECTED_COMP, sizeof( CvSeq ), |
|
sizeof( CvConnectedComp ), storage ); |
|
assert( res_seq != 0 ); |
|
|
|
/* calculate buffer size */ |
|
buffer_size = roi.width * roi.height * (sizeof( float ) + sizeof( _CvPyramidBase )); |
|
|
|
for( l = 1; l <= level; l++ ) |
|
buffer_size += ((roi.width >> l) + 1) * ((roi.height >> l) + 1) * sizeof(_CvPyramid); |
|
|
|
/* allocate buffer */ |
|
buffer = (char *) cvAlloc( buffer_size ); |
|
if( !buffer ) |
|
{ |
|
status = CV_OUTOFMEM_ERR; |
|
goto M_END; |
|
} |
|
|
|
pyramida = (float *) buffer; |
|
|
|
/* initialization pyramid-linking properties down up to level */ |
|
step = roi.width * sizeof( float ); |
|
|
|
{ |
|
CvMat _src; |
|
CvMat _pyramida; |
|
cvInitMatHeader( &_src, roi.height, roi.width, CV_8UC1, src_image, src_step ); |
|
cvInitMatHeader( &_pyramida, roi.height, roi.width, CV_32FC1, pyramida, step ); |
|
cvConvert( &_src, &_pyramida ); |
|
/*_CV_CHECK( icvCvtTo_32f_C1R( src_image, src_step, pyramida, step, roi, CV_8UC1 ));*/ |
|
} |
|
p_base = (_CvPyramidBase *) (buffer + step * roi.height); |
|
pyram[0] = (_CvPyramid *) p_base; |
|
|
|
/* fill base level of pyramid */ |
|
for( i = 0; i < roi.height; i++ ) |
|
{ |
|
for( j = 0; j < roi.width; j++, p_base++ ) |
|
{ |
|
p_base->c = pyramida[i * roi.width + j]; |
|
p_base->p = &stub; |
|
} |
|
} |
|
|
|
p_cur = (_CvPyramid *) p_base; |
|
size = roi; |
|
|
|
/* calculate initial pyramid */ |
|
for( l = 1; l <= level; l++ ) |
|
{ |
|
CvSize dst_size = { size.width/2+1, size.height/2+1 }; |
|
CvMat prev_level = cvMat( size.height, size.width, CV_32FC1 ); |
|
CvMat next_level = cvMat( dst_size.height, dst_size.width, CV_32FC1 ); |
|
|
|
cvSetData( &prev_level, pyramida, step ); |
|
cvSetData( &next_level, pyramida, step ); |
|
cvPyrDown( &prev_level, &next_level ); |
|
|
|
//_CV_CHECK( icvPyrDown_Gauss5x5_32f_C1R( pyramida, step, pyramida, step, size, buff )); |
|
//_CV_CHECK( icvPyrDownBorder_32f_CnR( pyramida, step, size, pyramida, step, dst_size, 1 )); |
|
pyram[l] = p_cur; |
|
|
|
size.width = dst_size.width - 1; |
|
size.height = dst_size.height - 1; |
|
|
|
/* fill layer #l */ |
|
for( i = 0; i <= size.height; i++ ) |
|
{ |
|
for( j = 0; j <= size.width; j++, p_cur++ ) |
|
{ |
|
p_cur->c = pyramida[i * roi.width + j]; |
|
p_cur->p = &stub; |
|
p_cur->a = 0; |
|
p_cur->rect.x2 = 0; |
|
} |
|
} |
|
} |
|
|
|
cvStartAppendToSeq( cmp_seq, &writer ); |
|
|
|
/* do several iterations to determine son-father links */ |
|
for( cur_iter = 0; cur_iter < max_iter; cur_iter++ ) |
|
{ |
|
int is_last_iter = cur_iter == max_iter - 1; |
|
|
|
size = roi; |
|
|
|
/* build son-father links down up to level */ |
|
for( l = 0; l < level; l++ ) |
|
{ |
|
icvUpdatePyrLinks_8u_C1( l, pyram[l], size, pyram[l + 1], &writer, |
|
(float) threshold1, is_last_iter, &stub, |
|
icvWritePyrNode ); |
|
|
|
/* clear last border row */ |
|
if( l > 0 ) |
|
{ |
|
p_cur = pyram[l] + (size.width + 1) * size.height; |
|
for( j = 0; j <= size.width; j++ ) |
|
p_cur[j].c = 0; |
|
} |
|
|
|
size.width >>= 1; |
|
size.height >>= 1; |
|
} |
|
|
|
/* clear the old c value for the last level */ |
|
p_cur = pyram[level]; |
|
for( i = 0; i <= size.height; i++, p_cur += size.width + 1 ) |
|
for( j = 0; j <= size.width; j++ ) |
|
p_cur[j].c = 0; |
|
|
|
size = roi; |
|
step = roi.width; |
|
|
|
/* calculate average c value for the 0 < l <=level */ |
|
for( l = 0; l < level; l++, step = (step >> 1) + 1 ) |
|
{ |
|
_CvPyramid *p_prev, *p_row_prev; |
|
|
|
stub.c = 0; |
|
|
|
/* calculate average c value for the next level */ |
|
if( l == 0 ) |
|
{ |
|
p_base = (_CvPyramidBase *) pyram[0]; |
|
for( i = 0; i < roi.height; i++, p_base += size.width ) |
|
{ |
|
for( j = 0; j < size.width; j += 2 ) |
|
{ |
|
_CvPyramid *p1 = p_base[j].p; |
|
_CvPyramid *p2 = p_base[j + 1].p; |
|
|
|
p1->c += p_base[j].c; |
|
p2->c += p_base[j + 1].c; |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
p_cur = pyram[l]; |
|
for( i = 0; i < size.height; i++, p_cur += size.width + 1 ) |
|
{ |
|
for( j = 0; j < size.width; j += 2 ) |
|
{ |
|
_CvPyramid *p1 = p_cur[j].p; |
|
_CvPyramid *p2 = p_cur[j + 1].p; |
|
|
|
float t0 = (float) p_cur[j].a * p_cur[j].c; |
|
float t1 = (float) p_cur[j + 1].a * p_cur[j + 1].c; |
|
|
|
p1->c += t0; |
|
p2->c += t1; |
|
|
|
if( !is_last_iter ) |
|
p_cur[j].a = p_cur[j + 1].a = 0; |
|
} |
|
if( !is_last_iter ) |
|
p_cur[size.width].a = 0; |
|
} |
|
if( !is_last_iter ) |
|
{ |
|
for( j = 0; j <= size.width; j++ ) |
|
{ |
|
p_cur[j].a = 0; |
|
} |
|
} |
|
} |
|
|
|
/* assign random values of the next level null c */ |
|
p_cur = pyram[l + 1]; |
|
p_row_prev = p_prev = pyram[l]; |
|
|
|
size.width >>= 1; |
|
size.height >>= 1; |
|
|
|
for( i = 0; i <= size.height; i++, p_cur += size.width + 1 ) |
|
{ |
|
if( i < size.height || !is_last_iter ) |
|
{ |
|
for( j = 0; j < size.width; j++ ) |
|
{ |
|
int a = p_cur[j].a; |
|
|
|
if( a != 0 ) |
|
{ |
|
if( a <= _CV_INV_TAB_SIZE ) |
|
{ |
|
p_cur[j].c *= icvInvTab[a - 1]; |
|
} |
|
else |
|
{ |
|
p_cur[j].c /= a; |
|
} |
|
} |
|
else |
|
{ |
|
p_cur[j].c = p_prev->c; |
|
} |
|
|
|
if( l == 0 ) |
|
p_prev = _CV_NEXT_BASE_C1(p_prev,2); |
|
else |
|
p_prev += 2; |
|
} |
|
|
|
if( p_cur[size.width].a == 0 ) |
|
{ |
|
p_cur[size.width].c = p_prev[(l != 0) - 1].c; |
|
} |
|
else |
|
{ |
|
p_cur[size.width].c /= p_cur[size.width].a; |
|
if( is_last_iter ) |
|
{ |
|
cmp_node.data = p_cur + size.width; |
|
CV_WRITE_SEQ_ELEM( cmp_node, writer ); |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
for( j = 0; j <= size.width; j++ ) |
|
{ |
|
int a = p_cur[j].a; |
|
|
|
if( a != 0 ) |
|
{ |
|
if( a <= _CV_INV_TAB_SIZE ) |
|
{ |
|
p_cur[j].c *= icvInvTab[a - 1]; |
|
} |
|
else |
|
{ |
|
p_cur[j].c /= a; |
|
} |
|
|
|
cmp_node.data = p_cur + j; |
|
CV_WRITE_SEQ_ELEM( cmp_node, writer ); |
|
} |
|
else |
|
{ |
|
p_cur[j].c = p_prev->c; |
|
} |
|
|
|
if( l == 0 ) |
|
{ |
|
p_prev = _CV_NEXT_BASE_C1(p_prev, (j * 2 < step - 2 ? 2 : 1)); |
|
} |
|
else |
|
{ |
|
p_prev++; |
|
} |
|
} |
|
} |
|
|
|
if( l + 1 == level && !is_last_iter ) |
|
for( j = 0; j <= size.width; j++ ) |
|
p_cur[j].a = 0; |
|
|
|
if( !(i & 1) ) |
|
{ |
|
p_prev = p_row_prev; |
|
} |
|
else |
|
{ |
|
p_prev = (_CvPyramid*)((char*)p_row_prev + step * |
|
(l == 0 ? sizeof(_CvPyramidBase) : sizeof(_CvPyramid))); |
|
} |
|
} |
|
} |
|
} /* end of the iteration process */ |
|
|
|
/* construct a connected components */ |
|
size.width = roi.width >> level; |
|
size.height = roi.height >> level; |
|
|
|
p_cur = pyram[level]; |
|
|
|
for( i = 0; i < size.height; i++, p_cur += size.width + 1 ) |
|
{ |
|
for( j = 0; j < size.width; j++ ) |
|
{ |
|
if( p_cur[j].a != 0 ) |
|
{ |
|
cmp_node.data = p_cur + j; |
|
CV_WRITE_SEQ_ELEM( cmp_node, writer ); |
|
} |
|
} |
|
} |
|
|
|
cvEndWriteSeq( &writer ); |
|
|
|
/* clusterization segmented components and construction |
|
output connected components */ |
|
icvSegmentClusterC1( cmp_seq, res_seq, threshold2, pyram[1], roi ); |
|
|
|
/* convert (inplace) resultant segment values to int (top level) */ |
|
|
|
/* propagate segment values top down */ |
|
for( l = level - 1; l >= 0; l-- ) |
|
{ |
|
p_cur = pyram[l]; |
|
|
|
size.width <<= 1; |
|
size.height <<= 1; |
|
|
|
if( l == 0 ) |
|
{ |
|
size.width--; |
|
size.height--; |
|
} |
|
|
|
for( i = 0; i <= size.height; i++ ) |
|
{ |
|
for( j = 0; j <= size.width; j++ ) |
|
{ |
|
_CvPyramid *p = p_cur->p; |
|
|
|
assert( p != 0 ); |
|
if( p != &stub ) |
|
p_cur->c = p->c; |
|
|
|
if( l == 0 ) |
|
{ |
|
Cv32suf _c; |
|
/* copy the segmented values to destination image */ |
|
_c.f = p_cur->c; dst_image[j] = (uchar)_c.i; |
|
p_cur = _CV_NEXT_BASE_C1(p_cur, 1); |
|
} |
|
else |
|
{ |
|
p_cur++; |
|
} |
|
} |
|
if( l == 0 ) |
|
dst_image += dst_step; |
|
} |
|
} |
|
M_END: |
|
|
|
cvFree( &buffer ); |
|
cvReleaseMemStorage( &temp_storage ); |
|
|
|
if( status == CV_OK ) |
|
*dst_comp = res_seq; |
|
|
|
return status; |
|
} |
|
|
|
|
|
|
|
/****************************************************************************************\ |
|
color!!! image segmentation by pyramid-linking |
|
\****************************************************************************************/ |
|
static CvStatus |
|
icvPyrSegmentation8uC3R( uchar * src_image, int src_step, |
|
uchar * dst_image, int dst_step, |
|
CvSize roi, int filter, |
|
CvSeq ** dst_comp, CvMemStorage * storage, |
|
int level, int threshold1, int threshold2 ) |
|
{ |
|
int i, j, l; |
|
|
|
int step; |
|
const int max_iter = 3; /* maximum number of iterations */ |
|
int cur_iter = 0; /* current iteration */ |
|
|
|
_CvPyramidC3 *pyram[16]; /* pointers to the pyramid down up to level */ |
|
|
|
float *pyramida = 0; |
|
_CvPyramidC3 stub; |
|
|
|
_CvPyramidC3 *p_cur; |
|
_CvPyramidBaseC3 *p_base; |
|
_CvListNode cmp_node; |
|
|
|
CvSeq *cmp_seq = 0; |
|
CvSeq *res_seq = 0; |
|
CvMemStorage *temp_storage = 0; |
|
CvSize size; |
|
CvStatus status; |
|
CvSeqWriter writer; |
|
|
|
int buffer_size; |
|
char *buffer = 0; |
|
|
|
status = CV_OK; |
|
|
|
threshold1 *= _CV_RGB_THRESH_SCALE; |
|
threshold2 *= _CV_RGB_THRESH_SCALE; |
|
|
|
/* clear pointer to resultant sequence */ |
|
if( dst_comp ) |
|
*dst_comp = 0; |
|
|
|
/* check args */ |
|
if( !src_image || !dst_image || !storage || !dst_comp ) |
|
return CV_NULLPTR_ERR; |
|
if( roi.width <= 0 || roi.height <= 0 || |
|
src_step < roi.width * 3 || dst_step < roi.width * 3 ) return CV_BADSIZE_ERR; |
|
if( filter != CV_GAUSSIAN_5x5 ) |
|
return CV_BADRANGE_ERR; |
|
if( threshold1 < 0 || threshold2 < 0 ) |
|
return CV_BADRANGE_ERR; |
|
if( level <= 0 ) |
|
return CV_BADRANGE_ERR; |
|
|
|
if( ((roi.width | roi.height) & ((1 << level) - 1)) != 0 ) |
|
return CV_BADCOEF_ERR; |
|
|
|
temp_storage = cvCreateChildMemStorage( storage ); |
|
|
|
/* sequence for temporary components */ |
|
cmp_seq = cvCreateSeq( 0, sizeof( CvSeq ), sizeof( _CvListNode ), temp_storage ); |
|
assert( cmp_seq != 0 ); |
|
|
|
res_seq = cvCreateSeq( CV_SEQ_CONNECTED_COMP, sizeof( CvSeq ), |
|
sizeof( CvConnectedComp ), storage ); |
|
assert( res_seq != 0 ); |
|
|
|
/* calculate buffer size */ |
|
buffer_size = roi.width * roi.height * (sizeof( _CvRGBf ) + sizeof( _CvPyramidBaseC3 )); |
|
|
|
for( l = 1; l <= level; l++ ) |
|
buffer_size += ((roi.width >> l) + 1) * ((roi.height >> l) + 1) * sizeof(_CvPyramidC3); |
|
|
|
/* allocate buffer */ |
|
buffer = (char *) cvAlloc( buffer_size ); |
|
if( !buffer ) |
|
{ |
|
status = CV_OUTOFMEM_ERR; |
|
goto M_END; |
|
} |
|
|
|
pyramida = (float *) buffer; |
|
|
|
/* initialization pyramid-linking properties down up to level */ |
|
step = roi.width * sizeof( _CvRGBf ); |
|
|
|
{ |
|
CvMat _src; |
|
CvMat _pyramida; |
|
cvInitMatHeader( &_src, roi.height, roi.width, CV_8UC3, src_image, src_step ); |
|
cvInitMatHeader( &_pyramida, roi.height, roi.width, CV_32FC3, pyramida, step ); |
|
cvConvert( &_src, &_pyramida ); |
|
/*_CV_CHECK( icvCvtTo_32f_C1R( src_image, src_step, pyramida, step, |
|
cvSize( roi.width * 3, roi.height ), CV_8UC1 ));*/ |
|
} |
|
|
|
p_base = (_CvPyramidBaseC3 *) (buffer + step * roi.height); |
|
pyram[0] = (_CvPyramidC3 *) p_base; |
|
|
|
/* fill base level of pyramid */ |
|
for( i = 0; i < roi.height; i++ ) |
|
{ |
|
for( j = 0; j < roi.width; j++, p_base++ ) |
|
{ |
|
p_base->c = ((_CvRGBf *) pyramida)[i * roi.width + j]; |
|
p_base->p = &stub; |
|
} |
|
} |
|
|
|
p_cur = (_CvPyramidC3 *) p_base; |
|
size = roi; |
|
|
|
/* calculate initial pyramid */ |
|
for( l = 1; l <= level; l++ ) |
|
{ |
|
CvSize dst_size = { size.width/2 + 1, size.height/2 + 1 }; |
|
CvMat prev_level = cvMat( size.height, size.width, CV_32FC3 ); |
|
CvMat next_level = cvMat( dst_size.height, dst_size.width, CV_32FC3 ); |
|
|
|
cvSetData( &prev_level, pyramida, step ); |
|
cvSetData( &next_level, pyramida, step ); |
|
cvPyrDown( &prev_level, &next_level ); |
|
|
|
//_CV_CHECK( icvPyrDown_Gauss5x5_32f_C3R( pyramida, step, pyramida, step, size, buff )); |
|
//_CV_CHECK( icvPyrDownBorder_32f_CnR( pyramida, step, size, pyramida, step, dst_size, 3 )); |
|
pyram[l] = p_cur; |
|
|
|
size.width = dst_size.width - 1; |
|
size.height = dst_size.height - 1; |
|
|
|
/* fill layer #l */ |
|
for( i = 0; i <= size.height; i++ ) |
|
{ |
|
assert( (char*)p_cur - buffer < buffer_size ); |
|
for( j = 0; j <= size.width; j++, p_cur++ ) |
|
{ |
|
p_cur->c = ((_CvRGBf *) pyramida)[i * roi.width + j]; |
|
p_cur->p = &stub; |
|
p_cur->a = 0; |
|
p_cur->rect.x2 = 0; |
|
} |
|
} |
|
} |
|
|
|
cvStartAppendToSeq( cmp_seq, &writer ); |
|
|
|
/* do several iterations to determine son-father links */ |
|
for( cur_iter = 0; cur_iter < max_iter; cur_iter++ ) |
|
{ |
|
int is_last_iter = cur_iter == max_iter - 1; |
|
|
|
size = roi; |
|
|
|
/* build son-father links down up to level */ |
|
for( l = 0; l < level; l++ ) |
|
{ |
|
icvUpdatePyrLinks_8u_C3( l, pyram[l], size, pyram[l + 1], &writer, |
|
(float) threshold1, is_last_iter, &stub, |
|
icvWritePyrNode ); |
|
|
|
/* clear last border row */ |
|
if( l > 0 ) |
|
{ |
|
p_cur = pyram[l] + (size.width + 1) * size.height; |
|
for( j = 0; j <= size.width; j++ ) |
|
p_cur[j].c.blue = p_cur[j].c.green = p_cur[j].c.red = 0; |
|
} |
|
|
|
size.width >>= 1; |
|
size.height >>= 1; |
|
} |
|
|
|
/* clear the old c value for the last level */ |
|
p_cur = pyram[level]; |
|
for( i = 0; i <= size.height; i++, p_cur += size.width + 1 ) |
|
for( j = 0; j <= size.width; j++ ) |
|
p_cur[j].c.blue = p_cur[j].c.green = p_cur[j].c.red = 0; |
|
|
|
size = roi; |
|
step = roi.width; |
|
|
|
/* calculate average c value for the 0 < l <=level */ |
|
for( l = 0; l < level; l++, step = (step >> 1) + 1 ) |
|
{ |
|
_CvPyramidC3 *p_prev, *p_row_prev; |
|
|
|
stub.c.blue = stub.c.green = stub.c.red = 0; |
|
|
|
/* calculate average c value for the next level */ |
|
if( l == 0 ) |
|
{ |
|
p_base = (_CvPyramidBaseC3 *) pyram[0]; |
|
for( i = 0; i < roi.height; i++, p_base += size.width ) |
|
{ |
|
for( j = 0; j < size.width; j++ ) |
|
{ |
|
_CvPyramidC3 *p = p_base[j].p; |
|
|
|
p->c.blue += p_base[j].c.blue; |
|
p->c.green += p_base[j].c.green; |
|
p->c.red += p_base[j].c.red; |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
p_cur = pyram[l]; |
|
for( i = 0; i < size.height; i++, p_cur += size.width + 1 ) |
|
{ |
|
for( j = 0; j < size.width; j++ ) |
|
{ |
|
_CvPyramidC3 *p = p_cur[j].p; |
|
float a = (float) p_cur[j].a; |
|
|
|
p->c.blue += a * p_cur[j].c.blue; |
|
p->c.green += a * p_cur[j].c.green; |
|
p->c.red += a * p_cur[j].c.red; |
|
|
|
if( !is_last_iter ) |
|
p_cur[j].a = 0; |
|
} |
|
if( !is_last_iter ) |
|
p_cur[size.width].a = 0; |
|
} |
|
if( !is_last_iter ) |
|
{ |
|
for( j = 0; j <= size.width; j++ ) |
|
{ |
|
p_cur[j].a = 0; |
|
} |
|
} |
|
} |
|
|
|
/* assign random values of the next level null c */ |
|
p_cur = pyram[l + 1]; |
|
p_row_prev = p_prev = pyram[l]; |
|
|
|
size.width >>= 1; |
|
size.height >>= 1; |
|
|
|
for( i = 0; i <= size.height; i++, p_cur += size.width + 1 ) |
|
{ |
|
if( i < size.height || !is_last_iter ) |
|
{ |
|
for( j = 0; j < size.width; j++ ) |
|
{ |
|
int a = p_cur[j].a; |
|
|
|
if( a != 0 ) |
|
{ |
|
float inv_a; |
|
|
|
if( a <= _CV_INV_TAB_SIZE ) |
|
{ |
|
inv_a = icvInvTab[a - 1]; |
|
} |
|
else |
|
{ |
|
inv_a = 1.f / a; |
|
} |
|
p_cur[j].c.blue *= inv_a; |
|
p_cur[j].c.green *= inv_a; |
|
p_cur[j].c.red *= inv_a; |
|
} |
|
else |
|
{ |
|
p_cur[j].c = p_prev->c; |
|
} |
|
|
|
if( l == 0 ) |
|
p_prev = _CV_NEXT_BASE_C3( p_prev, 2 ); |
|
else |
|
p_prev += 2; |
|
} |
|
|
|
if( p_cur[size.width].a == 0 ) |
|
{ |
|
p_cur[size.width].c = p_prev[(l != 0) - 1].c; |
|
} |
|
else |
|
{ |
|
p_cur[size.width].c.blue /= p_cur[size.width].a; |
|
p_cur[size.width].c.green /= p_cur[size.width].a; |
|
p_cur[size.width].c.red /= p_cur[size.width].a; |
|
if( is_last_iter ) |
|
{ |
|
cmp_node.data = p_cur + size.width; |
|
CV_WRITE_SEQ_ELEM( cmp_node, writer ); |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
for( j = 0; j <= size.width; j++ ) |
|
{ |
|
int a = p_cur[j].a; |
|
|
|
if( a != 0 ) |
|
{ |
|
float inv_a; |
|
|
|
if( a <= _CV_INV_TAB_SIZE ) |
|
{ |
|
inv_a = icvInvTab[a - 1]; |
|
} |
|
else |
|
{ |
|
inv_a = 1.f / a; |
|
} |
|
p_cur[j].c.blue *= inv_a; |
|
p_cur[j].c.green *= inv_a; |
|
p_cur[j].c.red *= inv_a; |
|
|
|
cmp_node.data = p_cur + j; |
|
CV_WRITE_SEQ_ELEM( cmp_node, writer ); |
|
} |
|
else |
|
{ |
|
p_cur[j].c = p_prev->c; |
|
} |
|
|
|
if( l == 0 ) |
|
{ |
|
p_prev = _CV_NEXT_BASE_C3( p_prev, (j * 2 < step - 2 ? 2 : 1)); |
|
} |
|
else |
|
{ |
|
p_prev++; |
|
} |
|
} |
|
} |
|
|
|
if( l + 1 == level && !is_last_iter ) |
|
for( j = 0; j <= size.width; j++ ) |
|
p_cur[j].a = 0; |
|
|
|
if( !(i & 1) ) |
|
{ |
|
p_prev = p_row_prev; |
|
} |
|
else |
|
{ |
|
p_prev = (_CvPyramidC3*)((char*)p_row_prev + step * |
|
(l == 0 ? sizeof( _CvPyramidBaseC3 ) : sizeof( _CvPyramidC3 ))); |
|
} |
|
} |
|
} |
|
} /* end of the iteration process */ |
|
|
|
/* construct a connected components */ |
|
size.width = roi.width >> level; |
|
size.height = roi.height >> level; |
|
|
|
p_cur = pyram[level]; |
|
|
|
for( i = 0; i < size.height; i++, p_cur += size.width + 1 ) |
|
{ |
|
for( j = 0; j < size.width; j++ ) |
|
{ |
|
if( p_cur[j].a != 0 ) |
|
{ |
|
cmp_node.data = p_cur + j; |
|
CV_WRITE_SEQ_ELEM( cmp_node, writer ); |
|
} |
|
} |
|
} |
|
|
|
cvEndWriteSeq( &writer ); |
|
|
|
/* clusterization segmented components and construction |
|
output connected components */ |
|
icvSegmentClusterC3( cmp_seq, res_seq, threshold2, pyram[1], roi ); |
|
|
|
/* convert (inplace) resultant segment values to int (top level) */ |
|
|
|
/* propagate segment values top down */ |
|
for( l = level - 1; l >= 0; l-- ) |
|
{ |
|
p_cur = pyram[l]; |
|
|
|
size.width <<= 1; |
|
size.height <<= 1; |
|
|
|
if( l == 0 ) |
|
{ |
|
size.width--; |
|
size.height--; |
|
} |
|
|
|
for( i = 0; i <= size.height; i++ ) |
|
{ |
|
for( j = 0; j <= size.width; j++ ) |
|
{ |
|
_CvPyramidC3 *p = p_cur->p; |
|
|
|
assert( p != 0 ); |
|
if( p != &stub ) |
|
{ |
|
p_cur->c = p->c; |
|
} |
|
|
|
if( l == 0 ) |
|
{ |
|
Cv32suf _c; |
|
/* copy the segmented values to destination image */ |
|
_c.f = p_cur->c.blue; dst_image[j*3] = (uchar)_c.i; |
|
_c.f = p_cur->c.green; dst_image[j*3+1] = (uchar)_c.i; |
|
_c.f = p_cur->c.red; dst_image[j*3+2] = (uchar)_c.i; |
|
p_cur = _CV_NEXT_BASE_C3(p_cur,1); |
|
} |
|
else |
|
{ |
|
p_cur++; |
|
} |
|
} |
|
if( l == 0 ) |
|
dst_image += dst_step; |
|
} |
|
} |
|
|
|
M_END: |
|
|
|
cvFree( &buffer ); |
|
cvReleaseMemStorage( &temp_storage ); |
|
|
|
if( status == CV_OK ) |
|
*dst_comp = res_seq; |
|
|
|
return status; |
|
} |
|
|
|
|
|
static CvStatus icvUpdatePyrLinks_8u_C1 |
|
(int layer, void *layer_data, CvSize size, void *parent_layer, |
|
void *_writer, float threshold, int is_last_iter, void *_stub, CvWriteNodeFunction /*func*/) |
|
{ |
|
int i, j; |
|
_CvListNode cmp_node; |
|
|
|
_CvPyramid *stub = (_CvPyramid *) _stub; |
|
_CvPyramid *p_cur = (_CvPyramid *) layer_data; |
|
_CvPyramid *p_next1 = (_CvPyramid *) parent_layer; |
|
_CvPyramid *p_next3 = p_next1 + (size.width >> 1) + 1; |
|
|
|
CvSeqWriter & writer = *(CvSeqWriter *) _writer; |
|
|
|
for( i = 0; i < size.height; i++ ) |
|
{ |
|
for( j = 0; j < size.width; j += 2 ) |
|
{ |
|
float c0, c1, c2, c3, c4; |
|
_CvPyramid *p; |
|
|
|
/* son-father threshold linking for the current node establish */ |
|
c0 = p_cur->c; |
|
|
|
/* find pointer for the first pixel */ |
|
c1 = (float) fabs( c0 - p_next1[0].c ); |
|
c2 = (float) fabs( c0 - p_next1[1].c ); |
|
c3 = (float) fabs( c0 - p_next3[0].c ); |
|
c4 = (float) fabs( c0 - p_next3[1].c ); |
|
|
|
p = p_next1; |
|
|
|
if( c1 > c2 ) |
|
{ |
|
p = p_next1 + 1; |
|
c1 = c2; |
|
} |
|
if( c1 > c3 ) |
|
{ |
|
p = p_next3; |
|
c1 = c3; |
|
} |
|
if( c1 > c4 ) |
|
{ |
|
p = p_next3 + 1; |
|
c1 = c4; |
|
} |
|
|
|
if( c1 <= threshold ) |
|
{ |
|
p_cur->p = p; |
|
|
|
if( layer == 0 ) |
|
{ |
|
p->a++; |
|
p_cur = (_CvPyramid*)((char*)p_cur + sizeof(_CvPyramidBase)); |
|
if( is_last_iter ) |
|
icvMaxRoi1( &(p->rect), j, i ); |
|
} |
|
else |
|
{ |
|
int a = p_cur->a; |
|
|
|
p->a += a; |
|
p_cur->c = 0; |
|
p_cur++; |
|
if( is_last_iter && a != 0 ) |
|
icvMaxRoi( &(p->rect), &(p_cur[-1].rect) ); |
|
} |
|
} |
|
else |
|
{ |
|
p_cur->p = stub; |
|
if( is_last_iter ) |
|
{ |
|
cmp_node.data = p_cur; |
|
CV_WRITE_SEQ_ELEM( cmp_node, writer ); |
|
} |
|
if( layer == 0 ) |
|
{ |
|
p_cur = _CV_NEXT_BASE_C1(p_cur,1); |
|
} |
|
else |
|
{ |
|
p_cur->c = 0; |
|
p_cur++; |
|
} |
|
} |
|
|
|
/* find pointer for the second pixel */ |
|
c0 = p_cur->c; |
|
|
|
c1 = (float) fabs( c0 - p_next1[0].c ); |
|
c2 = (float) fabs( c0 - p_next1[1].c ); |
|
c3 = (float) fabs( c0 - p_next3[0].c ); |
|
c4 = (float) fabs( c0 - p_next3[1].c ); |
|
|
|
p = p_next1; |
|
p_next1++; |
|
|
|
if( c1 > c2 ) |
|
{ |
|
p = p_next1; |
|
c1 = c2; |
|
} |
|
if( c1 > c3 ) |
|
{ |
|
p = p_next3; |
|
c1 = c3; |
|
} |
|
|
|
p_next3++; |
|
if( c1 > c4 ) |
|
{ |
|
p = p_next3; |
|
c1 = c4; |
|
} |
|
|
|
if( c1 <= threshold ) |
|
{ |
|
p_cur->p = p; |
|
|
|
if( layer == 0 ) |
|
{ |
|
p->a++; |
|
p_cur = _CV_NEXT_BASE_C1(p_cur,1); |
|
if( is_last_iter ) |
|
icvMaxRoi1( &(p->rect), j + 1, i ); |
|
} |
|
else |
|
{ |
|
int a = p_cur->a; |
|
|
|
p->a += a; |
|
p_cur->c = 0; |
|
p_cur++; |
|
if( is_last_iter && a != 0 ) |
|
icvMaxRoi( &(p->rect), &(p_cur[-1].rect) ); |
|
} |
|
} |
|
else |
|
{ |
|
p_cur->p = stub; |
|
if( is_last_iter ) |
|
{ |
|
cmp_node.data = p_cur; |
|
CV_WRITE_SEQ_ELEM( cmp_node, writer ); |
|
} |
|
if( layer == 0 ) |
|
{ |
|
p_cur = _CV_NEXT_BASE_C1(p_cur,1); |
|
} |
|
else |
|
{ |
|
p_cur->c = 0; |
|
p_cur++; |
|
} |
|
} |
|
} |
|
|
|
/* clear c's */ |
|
if( layer > 0 ) |
|
{ |
|
p_cur->c = 0; |
|
p_cur++; |
|
} |
|
|
|
if( !(i & 1) ) |
|
{ |
|
p_next1 -= size.width >> 1; |
|
p_next3 -= size.width >> 1; |
|
} |
|
else |
|
{ |
|
p_next1++; |
|
p_next3++; |
|
} |
|
} |
|
|
|
return CV_OK; |
|
} |
|
|
|
|
|
static CvStatus icvUpdatePyrLinks_8u_C3 |
|
(int layer, void *layer_data, CvSize size, void *parent_layer, |
|
void *_writer, float threshold, int is_last_iter, void *_stub, CvWriteNodeFunction /*func*/) |
|
{ |
|
int i, j; |
|
_CvListNode cmp_node; |
|
|
|
_CvPyramidC3 *stub = (_CvPyramidC3 *) _stub; |
|
_CvPyramidC3 *p_cur = (_CvPyramidC3 *) layer_data; |
|
_CvPyramidC3 *p_next1 = (_CvPyramidC3 *) parent_layer; |
|
_CvPyramidC3 *p_next3 = p_next1 + (size.width >> 1) + 1; |
|
|
|
CvSeqWriter & writer = *(CvSeqWriter *) _writer; |
|
|
|
for( i = 0; i < size.height; i++ ) |
|
{ |
|
for( j = 0; j < size.width; j += 2 ) |
|
{ |
|
float c1, c2, c3, c4; |
|
_CvPyramidC3 *p; |
|
|
|
/* find pointer for the first pixel */ |
|
c1 = _CV_RGB_DIST( p_cur->c, p_next1[0].c ); |
|
c2 = _CV_RGB_DIST( p_cur->c, p_next1[1].c ); |
|
c3 = _CV_RGB_DIST( p_cur->c, p_next3[0].c ); |
|
c4 = _CV_RGB_DIST( p_cur->c, p_next3[1].c ); |
|
|
|
p = p_next1; |
|
|
|
if( c1 > c2 ) |
|
{ |
|
p = p_next1 + 1; |
|
c1 = c2; |
|
} |
|
if( c1 > c3 ) |
|
{ |
|
p = p_next3; |
|
c1 = c3; |
|
} |
|
if( c1 > c4 ) |
|
{ |
|
p = p_next3 + 1; |
|
c1 = c4; |
|
} |
|
|
|
if( c1 < threshold ) |
|
{ |
|
p_cur->p = p; |
|
|
|
if( layer == 0 ) |
|
{ |
|
p->a++; |
|
p_cur = _CV_NEXT_BASE_C3(p_cur,1); |
|
if( is_last_iter ) |
|
icvMaxRoi1( &(p->rect), j, i ); |
|
} |
|
else |
|
{ |
|
int a = p_cur->a; |
|
|
|
p->a += a; |
|
p_cur->c.blue = p_cur->c.green = p_cur->c.red = 0; |
|
p_cur++; |
|
if( is_last_iter && a != 0 ) |
|
icvMaxRoi( &(p->rect), &(p_cur[-1].rect) ); |
|
} |
|
} |
|
else |
|
{ |
|
p_cur->p = stub; |
|
if( is_last_iter /* && ( == 0 || p_cur->a != 0) */ ) |
|
{ |
|
cmp_node.data = p_cur; |
|
CV_WRITE_SEQ_ELEM( cmp_node, writer ); |
|
} |
|
|
|
if( layer == 0 ) |
|
{ |
|
p_cur = _CV_NEXT_BASE_C3(p_cur,1); |
|
} |
|
else |
|
{ |
|
p_cur->c.blue = p_cur->c.green = p_cur->c.red = 0; |
|
p_cur++; |
|
} |
|
} |
|
|
|
/* find pointer for the second pixel */ |
|
c1 = _CV_RGB_DIST( p_cur->c, p_next1[0].c ); |
|
c2 = _CV_RGB_DIST( p_cur->c, p_next1[1].c ); |
|
c3 = _CV_RGB_DIST( p_cur->c, p_next3[0].c ); |
|
c4 = _CV_RGB_DIST( p_cur->c, p_next3[1].c ); |
|
|
|
p = p_next1; |
|
p_next1++; |
|
|
|
if( c1 > c2 ) |
|
{ |
|
p = p_next1; |
|
c1 = c2; |
|
} |
|
if( c1 > c3 ) |
|
{ |
|
p = p_next3; |
|
c1 = c3; |
|
} |
|
|
|
p_next3++; |
|
if( c1 > c4 ) |
|
{ |
|
p = p_next3; |
|
c1 = c4; |
|
} |
|
|
|
if( c1 < threshold ) |
|
{ |
|
p_cur->p = p; |
|
|
|
if( layer == 0 ) |
|
{ |
|
p->a++; |
|
p_cur = _CV_NEXT_BASE_C3(p_cur,1); |
|
if( is_last_iter ) |
|
icvMaxRoi1( &(p->rect), j + 1, i ); |
|
} |
|
else |
|
{ |
|
int a = p_cur->a; |
|
|
|
p->a += a; |
|
p_cur->c.blue = p_cur->c.green = p_cur->c.red = 0; |
|
p_cur++; |
|
if( is_last_iter && a != 0 ) |
|
icvMaxRoi( &(p->rect), &(p_cur[-1].rect) ); |
|
} |
|
} |
|
else |
|
{ |
|
p_cur->p = stub; |
|
if( is_last_iter /* && ( == 0 || p_cur->a != 0) */ ) |
|
{ |
|
cmp_node.data = p_cur; |
|
CV_WRITE_SEQ_ELEM( cmp_node, writer ); |
|
} |
|
if( layer == 0 ) |
|
{ |
|
p_cur = _CV_NEXT_BASE_C3(p_cur,1); |
|
} |
|
else |
|
{ |
|
p_cur->c.blue = p_cur->c.green = p_cur->c.red = 0; |
|
p_cur++; |
|
} |
|
} |
|
} |
|
|
|
/* clear c's */ |
|
if( layer > 0 ) |
|
{ |
|
p_cur->c.blue = p_cur->c.green = p_cur->c.red = 0; |
|
p_cur++; |
|
} |
|
|
|
if( !(i & 1) ) |
|
{ |
|
p_next1 -= size.width >> 1; |
|
p_next3 -= size.width >> 1; |
|
} |
|
else |
|
{ |
|
p_next1++; |
|
p_next3++; |
|
} |
|
} |
|
|
|
return CV_OK; |
|
} |
|
|
|
|
|
|
|
/****************************************************************************************\ |
|
|
|
clusterization segmented components |
|
|
|
\****************************************************************************************/ |
|
static void |
|
icvExpandBaseLevelC1( _CvPyramid * base_p, _CvPyramid * p, _CvPyramidBase * start, int width ) |
|
{ |
|
int x = (int)((_CvPyramidBase *) base_p - start); |
|
int y = x / width; |
|
|
|
x -= y * width; |
|
p->a = 1; |
|
p->rect.x1 = (ushort) x; |
|
p->rect.y1 = (ushort) y; |
|
p->rect.x2 = (ushort) (x + 1); |
|
p->rect.y2 = (ushort) (y + 1); |
|
p->c = base_p->c; |
|
} |
|
|
|
CvStatus |
|
icvSegmentClusterC1( CvSeq * cmp_seq, CvSeq * res_seq, |
|
double threshold, _CvPyramid * first_level_end, CvSize first_level_size ) |
|
{ |
|
const double eps = 1.; |
|
CvSeqWriter writer; |
|
CvSeqReader reader; |
|
_CvPyramid temp_cmp; |
|
_CvPyramidBase *first_level_start = (_CvPyramidBase *) first_level_end - |
|
first_level_size.width * first_level_size.height; |
|
int c, i, count = cmp_seq->total; |
|
|
|
cvStartReadSeq( cmp_seq, &reader, 0 ); |
|
cvStartAppendToSeq( res_seq, &writer ); |
|
|
|
if( threshold < eps ) |
|
{ |
|
/* if threshold is too small then simply copy all |
|
the components to the output sequence */ |
|
for( i = 0; i < count; i++ ) |
|
{ |
|
CvConnectedComp comp; |
|
_CvPyramid *cmp = (_CvPyramid *) (((_CvListNode *) reader.ptr)->data); |
|
Cv32suf _c; |
|
|
|
if( cmp < first_level_end ) |
|
{ |
|
icvExpandBaseLevelC1( cmp, &temp_cmp, first_level_start, |
|
first_level_size.width ); |
|
cmp = &temp_cmp; |
|
} |
|
|
|
_c.i = cvRound( cmp->c ); |
|
cmp->c = _c.f; |
|
comp.value = cvRealScalar(_c.i); |
|
comp.area = cmp->a; |
|
comp.rect.x = cmp->rect.x1; |
|
comp.rect.y = cmp->rect.y1; |
|
comp.rect.width = cmp->rect.x2 - cmp->rect.x1; |
|
comp.rect.height = cmp->rect.y2 - cmp->rect.y1; |
|
comp.contour = 0; |
|
|
|
CV_WRITE_SEQ_ELEM( comp, writer ); |
|
CV_NEXT_SEQ_ELEM( sizeof( _CvListNode ), reader ); |
|
} |
|
} |
|
else |
|
{ |
|
_CvListNode stub_node; |
|
_CvListNode *prev = &stub_node; |
|
|
|
stub_node.next = 0; |
|
|
|
for( i = 0; i < count; i++ ) |
|
{ |
|
_CvListNode *node = (_CvListNode *) reader.ptr; |
|
|
|
prev->next = node; |
|
prev = node; |
|
CV_NEXT_SEQ_ELEM( sizeof( _CvListNode ), reader ); |
|
} |
|
prev->next = 0; |
|
prev = stub_node.next; |
|
|
|
while( prev ) |
|
{ |
|
_CvListNode *node = prev->next; |
|
_CvListNode *acc = prev; |
|
_CvPyramid *cmp = (_CvPyramid *) (acc->data); |
|
CvConnectedComp comp; |
|
float c0 = cmp->c; |
|
|
|
if( cmp < first_level_end ) |
|
{ |
|
icvExpandBaseLevelC1( cmp, &temp_cmp, first_level_start, |
|
first_level_size.width ); |
|
} |
|
else |
|
{ |
|
temp_cmp = *cmp; |
|
temp_cmp.c *= temp_cmp.a; |
|
} |
|
|
|
acc->next = 0; |
|
stub_node.next = 0; |
|
prev = &stub_node; |
|
|
|
while( node ) |
|
{ |
|
cmp = (_CvPyramid *) (node->data); |
|
if( fabs( c0 - cmp->c ) < threshold ) |
|
{ |
|
_CvPyramid temp; |
|
|
|
/* exclude from global list and add to list of joint component */ |
|
prev->next = node->next; |
|
node->next = acc; |
|
acc = node; |
|
|
|
if( cmp < first_level_end ) |
|
{ |
|
icvExpandBaseLevelC1( cmp, &temp, first_level_start, |
|
first_level_size.width ); |
|
cmp = &temp; |
|
} |
|
|
|
temp_cmp.a += cmp->a; |
|
temp_cmp.c += cmp->c * cmp->a; |
|
icvMaxRoi( &(temp_cmp.rect), &(cmp->rect) ); |
|
} |
|
else |
|
{ |
|
if( prev == &stub_node ) |
|
{ |
|
stub_node.next = node; |
|
} |
|
prev = node; |
|
} |
|
node = prev->next; |
|
} |
|
|
|
if( temp_cmp.a != 0 ) |
|
{ |
|
c = cvRound( temp_cmp.c / temp_cmp.a ); |
|
} |
|
else |
|
{ |
|
c = cvRound( c0 ); |
|
} |
|
node = acc; |
|
|
|
while( node ) |
|
{ |
|
Cv32suf _c; |
|
cmp = (_CvPyramid *) (node->data); |
|
_c.i = c; cmp->c = _c.f; |
|
node = node->next; |
|
} |
|
|
|
comp.value = cvRealScalar(c); |
|
comp.area = temp_cmp.a; |
|
comp.rect.x = temp_cmp.rect.x1; |
|
comp.rect.y = temp_cmp.rect.y1; |
|
comp.rect.width = temp_cmp.rect.x2 - temp_cmp.rect.x1; |
|
comp.rect.height = temp_cmp.rect.y2 - temp_cmp.rect.y1; |
|
comp.contour = 0; |
|
|
|
CV_WRITE_SEQ_ELEM( comp, writer ); |
|
prev = stub_node.next; |
|
} |
|
} |
|
|
|
cvEndWriteSeq( &writer ); |
|
return CV_OK; |
|
} |
|
|
|
/****************************************************************************************\ |
|
|
|
clusterization segmented components |
|
|
|
\****************************************************************************************/ |
|
static void |
|
icvExpandBaseLevelC3( _CvPyramidC3 * base_p, _CvPyramidC3 * p, |
|
_CvPyramidBaseC3 * start, int width ) |
|
{ |
|
int x = (int)((_CvPyramidBaseC3 *) base_p - start); |
|
int y = x / width; |
|
|
|
x -= y * width; |
|
p->a = 1; |
|
p->rect.x1 = (ushort) x; |
|
p->rect.y1 = (ushort) y; |
|
p->rect.x2 = (ushort) (x + 1); |
|
p->rect.y2 = (ushort) (y + 1); |
|
p->c = base_p->c; |
|
} |
|
|
|
CvStatus |
|
icvSegmentClusterC3( CvSeq * cmp_seq, CvSeq * res_seq, |
|
double threshold, |
|
_CvPyramidC3 * first_level_end, CvSize first_level_size ) |
|
{ |
|
const double eps = 1.; |
|
CvSeqWriter writer; |
|
CvSeqReader reader; |
|
_CvPyramidC3 temp_cmp; |
|
_CvPyramidBaseC3 *first_level_start = (_CvPyramidBaseC3 *) first_level_end - |
|
first_level_size.width * first_level_size.height; |
|
int i, count = cmp_seq->total; |
|
int c_blue, c_green, c_red; |
|
|
|
cvStartReadSeq( cmp_seq, &reader, 0 ); |
|
cvStartAppendToSeq( res_seq, &writer ); |
|
|
|
if( threshold < eps ) |
|
{ |
|
/* if threshold is too small then simply copy all |
|
the components to the output sequence */ |
|
for( i = 0; i < count; i++ ) |
|
{ |
|
CvConnectedComp comp; |
|
_CvPyramidC3 *cmp = (_CvPyramidC3 *) (((_CvListNode *) reader.ptr)->data); |
|
Cv32suf _c; |
|
|
|
if( cmp < first_level_end ) |
|
{ |
|
icvExpandBaseLevelC3( cmp, &temp_cmp, first_level_start, |
|
first_level_size.width ); |
|
cmp = &temp_cmp; |
|
} |
|
|
|
c_blue = cvRound( cmp->c.blue ); |
|
c_green = cvRound( cmp->c.green ); |
|
c_red = cvRound( cmp->c.red ); |
|
_c.i = c_blue; cmp->c.blue = _c.f; |
|
_c.i = c_green; cmp->c.green = _c.f; |
|
_c.i = c_red; cmp->c.red = _c.f; |
|
comp.value = cvScalar( c_blue, c_green, c_red ); |
|
comp.area = cmp->a; |
|
comp.rect.x = cmp->rect.x1; |
|
comp.rect.y = cmp->rect.y1; |
|
comp.rect.width = cmp->rect.x2 - cmp->rect.x1; |
|
comp.rect.height = cmp->rect.y2 - cmp->rect.y1; |
|
comp.contour = 0; |
|
|
|
CV_WRITE_SEQ_ELEM( comp, writer ); |
|
CV_NEXT_SEQ_ELEM( sizeof( _CvListNode ), reader ); |
|
} |
|
} |
|
else |
|
{ |
|
_CvListNode stub_node; |
|
_CvListNode *prev = &stub_node; |
|
|
|
stub_node.next = 0; |
|
|
|
for( i = 0; i < count; i++ ) |
|
{ |
|
_CvListNode *node = (_CvListNode *) reader.ptr; |
|
|
|
prev->next = node; |
|
prev = node; |
|
CV_NEXT_SEQ_ELEM( sizeof( _CvListNode ), reader ); |
|
} |
|
prev->next = 0; |
|
prev = stub_node.next; |
|
|
|
while( prev ) |
|
{ |
|
_CvListNode *node = prev->next; |
|
_CvListNode *acc = prev; |
|
_CvPyramidC3 *cmp = (_CvPyramidC3 *) (acc->data); |
|
CvConnectedComp comp; |
|
_CvRGBf c0 = cmp->c; |
|
|
|
if( cmp < first_level_end ) |
|
{ |
|
icvExpandBaseLevelC3( cmp, &temp_cmp, first_level_start, |
|
first_level_size.width ); |
|
} |
|
else |
|
{ |
|
temp_cmp = *cmp; |
|
temp_cmp.c.blue *= temp_cmp.a; |
|
temp_cmp.c.green *= temp_cmp.a; |
|
temp_cmp.c.red *= temp_cmp.a; |
|
} |
|
|
|
acc->next = 0; |
|
stub_node.next = 0; |
|
prev = &stub_node; |
|
|
|
while( node ) |
|
{ |
|
cmp = (_CvPyramidC3 *) (node->data); |
|
if( _CV_RGB_DIST( c0, cmp->c ) < threshold ) |
|
{ |
|
_CvPyramidC3 temp; |
|
|
|
/* exclude from global list and add to list of joint component */ |
|
prev->next = node->next; |
|
node->next = acc; |
|
acc = node; |
|
|
|
if( cmp < first_level_end ) |
|
{ |
|
icvExpandBaseLevelC3( cmp, &temp, first_level_start, |
|
first_level_size.width ); |
|
cmp = &temp; |
|
} |
|
|
|
temp_cmp.a += cmp->a; |
|
temp_cmp.c.blue += cmp->c.blue * cmp->a; |
|
temp_cmp.c.green += cmp->c.green * cmp->a; |
|
temp_cmp.c.red += cmp->c.red * cmp->a; |
|
icvMaxRoi( &(temp_cmp.rect), &(cmp->rect) ); |
|
} |
|
else |
|
{ |
|
if( prev == &stub_node ) |
|
{ |
|
stub_node.next = node; |
|
} |
|
prev = node; |
|
} |
|
node = prev->next; |
|
} |
|
|
|
if( temp_cmp.a != 0 ) |
|
{ |
|
c_blue = cvRound( temp_cmp.c.blue / temp_cmp.a ); |
|
c_green = cvRound( temp_cmp.c.green / temp_cmp.a ); |
|
c_red = cvRound( temp_cmp.c.red / temp_cmp.a ); |
|
} |
|
else |
|
{ |
|
c_blue = cvRound( c0.blue ); |
|
c_green = cvRound( c0.green ); |
|
c_red = cvRound( c0.red ); |
|
} |
|
node = acc; |
|
|
|
while( node ) |
|
{ |
|
Cv32suf _c; |
|
cmp = (_CvPyramidC3 *) (node->data); |
|
_c.i = c_blue; cmp->c.blue = _c.f; |
|
_c.i = c_green; cmp->c.green = _c.f; |
|
_c.i = c_red; cmp->c.red = _c.f; |
|
node = node->next; |
|
} |
|
|
|
comp.value = cvScalar( c_blue, c_green, c_red ); |
|
comp.area = temp_cmp.a; |
|
comp.rect.x = temp_cmp.rect.x1; |
|
comp.rect.y = temp_cmp.rect.y1; |
|
comp.rect.width = temp_cmp.rect.x2 - temp_cmp.rect.x1; |
|
comp.rect.height = temp_cmp.rect.y2 - temp_cmp.rect.y1; |
|
comp.contour = 0; |
|
|
|
CV_WRITE_SEQ_ELEM( comp, writer ); |
|
prev = stub_node.next; |
|
} |
|
} |
|
|
|
cvEndWriteSeq( &writer ); |
|
return CV_OK; |
|
} |
|
|
|
/****************************************************************************************\ |
|
|
|
definition of the maximum roi size |
|
|
|
\****************************************************************************************/ |
|
void |
|
icvMaxRoi( _CvRect16u * max_rect, _CvRect16u * cur_rect ) |
|
{ |
|
if( max_rect->x2 == 0 ) |
|
*max_rect = *cur_rect; |
|
else |
|
{ |
|
if( max_rect->x1 > cur_rect->x1 ) |
|
max_rect->x1 = cur_rect->x1; |
|
if( max_rect->y1 > cur_rect->y1 ) |
|
max_rect->y1 = cur_rect->y1; |
|
|
|
if( max_rect->x2 < cur_rect->x2 ) |
|
max_rect->x2 = cur_rect->x2; |
|
if( max_rect->y2 < cur_rect->y2 ) |
|
max_rect->y2 = cur_rect->y2; |
|
} |
|
} |
|
|
|
void |
|
icvMaxRoi1( _CvRect16u * max_rect, int x, int y ) |
|
{ |
|
if( max_rect->x2 == 0 ) |
|
{ |
|
max_rect->x1 = (ushort) x; |
|
max_rect->y1 = (ushort) y; |
|
|
|
++x; |
|
++y; |
|
|
|
max_rect->x2 = (ushort) x; |
|
max_rect->y2 = (ushort) y; |
|
} |
|
else |
|
{ |
|
if( max_rect->x1 > x ) |
|
max_rect->x1 = (ushort) x; |
|
if( max_rect->y1 > y ) |
|
max_rect->y1 = (ushort) y; |
|
|
|
++x; |
|
++y; |
|
|
|
if( max_rect->x2 < x ) |
|
max_rect->x2 = (ushort) x; |
|
if( max_rect->y2 < y ) |
|
max_rect->y2 = (ushort) y; |
|
} |
|
} |
|
|
|
|
|
/*F/////////////////////////////////////////////////////////////////////////////////////// |
|
// Name: cvPyrSegmentation |
|
// Purpose: |
|
// segments an image using pyramid-linking technique |
|
// Context: |
|
// Parameters: |
|
// src - source image |
|
// dst - destination image |
|
// comp - pointer to returned connected component sequence |
|
// storage - where the sequence is stored |
|
// level - maximal pyramid level |
|
// threshold1 - first threshold, affecting on detalization level when pyramid |
|
// is built. |
|
// threshold2 - second threshold - affects on final components merging. |
|
// Returns: |
|
// Notes: |
|
// Source and destination image must be equal types and channels |
|
//F*/ |
|
CV_IMPL void |
|
cvPyrSegmentation( IplImage * src, |
|
IplImage * dst, |
|
CvMemStorage * storage, |
|
CvSeq ** comp, int level, double threshold1, double threshold2 ) |
|
{ |
|
CvSize src_size, dst_size; |
|
uchar *src_data = 0; |
|
uchar *dst_data = 0; |
|
int src_step = 0, dst_step = 0; |
|
int thresh1 = cvRound( threshold1 ); |
|
int thresh2 = cvRound( threshold2 ); |
|
|
|
if( src->depth != IPL_DEPTH_8U ) |
|
CV_Error( CV_BadDepth, cvUnsupportedFormat ); |
|
|
|
if( src->depth != dst->depth || src->nChannels != dst->nChannels ) |
|
CV_Error( CV_StsBadArg, "src and dst have different formats" ); |
|
|
|
cvGetRawData( src, &src_data, &src_step, &src_size ); |
|
cvGetRawData( dst, &dst_data, &dst_step, &dst_size ); |
|
|
|
if( src_size.width != dst_size.width || |
|
src_size.height != dst_size.height ) |
|
CV_Error( CV_StsBadArg, "src and dst have different ROIs" ); |
|
|
|
switch (src->nChannels) |
|
{ |
|
case 1: |
|
IPPI_CALL( icvPyrSegmentation8uC1R( src_data, src_step, |
|
dst_data, dst_step, |
|
src_size, |
|
CV_GAUSSIAN_5x5, |
|
comp, storage, level, thresh1, thresh2 )); |
|
break; |
|
case 3: |
|
IPPI_CALL( icvPyrSegmentation8uC3R( src_data, src_step, |
|
dst_data, dst_step, |
|
src_size, |
|
CV_GAUSSIAN_5x5, |
|
comp, storage, level, thresh1, thresh2 )); |
|
break; |
|
default: |
|
CV_Error( CV_BadNumChannels, cvUnsupportedFormat ); |
|
} |
|
} |
|
|
|
|
|
/* End of file. */
|
|
|