Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

875 lines
33 KiB

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Copyright (C) 2017, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "../precomp.hpp"
#include "layers_common.hpp"
#include "../op_cuda.hpp"
#include "../op_inf_engine.hpp"
#include "../ie_ngraph.hpp"
#include "../op_webnn.hpp"
#include "../op_cann.hpp"
#include "../op_vkcom.hpp"
#include <opencv2/dnn/shape_utils.hpp>
#ifdef HAVE_OPENCL
#include "opencl_kernels_dnn.hpp"
using namespace cv::dnn::ocl4dnn;
#endif
#ifdef HAVE_CUDA
#include "../cuda4dnn/primitives/matmul.hpp"
#include "../cuda4dnn/primitives/inner_product.hpp"
using namespace cv::dnn::cuda4dnn;
#endif
namespace cv
{
namespace dnn
{
class FullyConnectedLayerImpl CV_FINAL : public InnerProductLayer
{
public:
enum { VEC_ALIGN = 8 };
#ifdef HAVE_OPENCL
Ptr<OCL4DNNInnerProduct<float> > innerProductOp;
std::vector<UMat> umat_blobs;
std::vector<UMat> half_blobs;
#endif
FullyConnectedLayerImpl(const LayerParams& params)
{
setParamsFrom(params);
transA = params.get<bool>("transA", false);
transB = params.get<bool>("transB", false);
bias = params.get<bool>("bias_term", true);
axis = params.get<int>("axis", 1);
isMatMul = params.get<bool>("is_matmul", false);
if (!blobs.empty())
{
CV_Assert(1 <= blobs.size() && blobs.size() <= 2);
int numOutput = params.get<int>("num_output");
int innerSize = (int)blobs[0].total() / numOutput;
CV_Assert(blobs[0].dims >= 2 && (size_t)(innerSize * numOutput) == blobs[0].total());
CV_Assert(!bias || (blobs.size() == 2 && (size_t)numOutput == blobs[1].total()));
blobs[0].copyTo(oriMat);
weightsMat = blobs[0] = blobs[0].reshape(1, numOutput);
int vecsize = weightsMat.cols;
if (vecsize % VEC_ALIGN != 0)
{
int vecsize_aligned = (int)alignSize(vecsize, VEC_ALIGN);
Mat weightsBuf(weightsMat.rows, vecsize_aligned, weightsMat.type());
Mat wpadding = weightsBuf.colRange(vecsize, vecsize_aligned);
wpadding.setTo(Scalar::all(0.));
weightsMat = weightsBuf.colRange(0, vecsize);
blobs[0].copyTo(weightsMat);
}
if (bias)
biasMat = blobs[1] = blobs[1].reshape(1, 1);
else if(isMatMul)
biasMat = Mat::zeros(1, oriMat.size[oriMat.dims - 2], weightsMat.type());
else
biasMat = Mat::zeros(1, numOutput, weightsMat.type());
transB = !transB;
}
}
bool getMemoryShapes(const std::vector<MatShape> &inputs,
const int requiredOutputs,
std::vector<MatShape> &outputs,
std::vector<MatShape> &) const CV_OVERRIDE
{
int numOutput, cAxis;
std::vector<MatShape> inputsTmp;
inputsTmp.assign(inputs.begin(), inputs.end());
if (blobs.empty())
{
CV_CheckEQ(inputsTmp.size(), (size_t)2, "");
if (transA)
{
CV_CheckEQ(inputsTmp[0].size(), (size_t)2, "");
std::swap(inputsTmp[0][0], inputsTmp[0][1]);
}
if (transB)
{
CV_CheckEQ(inputsTmp[1].size(), (size_t)2, "");
std::swap(inputsTmp[1][0], inputsTmp[1][1]);
}
numOutput = inputsTmp[1].back();
cAxis = inputsTmp[0].size() - 1;
int dims = inputsTmp[0].size();
CV_CheckEQ(inputsTmp[1].size(), (size_t)dims, "");
CV_CheckGE(dims, 2, "");
for (int i = 0; i < dims - 2; i++)
CV_CheckEQ(inputsTmp[0][i], inputsTmp[1][i], "");
CV_CheckEQ(inputsTmp[0].back(), inputsTmp[1][dims - 2], "");
}
else
{
CV_CheckEQ(inputsTmp.size(), (size_t)1, "");
CV_CheckEQ(blobs[0].dims, 2, "");
if(isMatMul)
numOutput = oriMat.size[oriMat.dims - 2];
else
numOutput = blobs[0].size[0];
CV_Assert(!bias || (size_t)numOutput == blobs[1].total());
cAxis = normalize_axis(axis, inputsTmp[0]);
}
MatShape outShape((!inputs[0].empty()) ? cAxis + 1 : cAxis);
for (int i = 0; i < cAxis; ++i)
outShape[i] = inputsTmp[0][i];
if (!inputs[0].empty())
outShape.back() = numOutput;
outputs.resize(1, outShape);
return false;
}
virtual bool supportBackend(int backendId) CV_OVERRIDE
{
bool tranAorB = transA || transB;
return backendId == DNN_BACKEND_OPENCV ||
backendId == DNN_BACKEND_CUDA ||
(backendId == DNN_BACKEND_WEBNN && axis == 1 && !tranAorB) ||
backendId == DNN_BACKEND_CANN ||
backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH ||
(backendId == DNN_BACKEND_VKCOM && haveVulkan() && !tranAorB);
}
virtual bool setActivation(const Ptr<ActivationLayer>& layer) CV_OVERRIDE
{
if (activ.empty() || layer.empty())
{
activ = layer;
return !activ.empty();
}
else
return false;
}
class FullyConnected : public ParallelLoopBody
{
public:
FullyConnected() : srcMat(0), weights(0), biasMat(0), activ(0), dstMat(0), nstripes(0), useAVX(false), useAVX2(false), useAVX512(false), useRVV(false), useLASX(false) {}
static void run(const Mat& srcMat, const Mat& weights, const Mat& biasMat,
Mat& dstMat, const ActivationLayer* activ, int nstripes)
{
CV_Assert( srcMat.dims == 2 && srcMat.cols == weights.cols &&
dstMat.rows == srcMat.rows && dstMat.cols == weights.rows &&
srcMat.type() == weights.type() && weights.type() == dstMat.type() &&
srcMat.type() == CV_32F &&
(biasMat.empty() || (biasMat.type() == srcMat.type() &&
biasMat.isContinuous() && (int)biasMat.total() == dstMat.cols)) );
FullyConnected p;
p.srcMat = &srcMat;
p.weights = &weights;
p.biasMat = &biasMat;
p.dstMat = &dstMat;
p.nstripes = nstripes;
p.activ = activ;
p.useAVX = checkHardwareSupport(CPU_AVX);
p.useAVX2 = checkHardwareSupport(CPU_AVX2);
p.useAVX512 = CV_CPU_HAS_SUPPORT_AVX512_SKX;
p.useRVV = checkHardwareSupport(CPU_RVV);
p.useLASX = checkHardwareSupport(CPU_LASX);
parallel_for_(Range(0, nstripes), p, nstripes);
}
void operator()(const Range& r) const CV_OVERRIDE
{
int valign = FullyConnectedLayerImpl::VEC_ALIGN;
int nsamples = srcMat->rows;
int nw0 = weights->rows;
int k, vecsize = srcMat->cols;
int vecsize_aligned = (int)alignSize(vecsize, VEC_ALIGN);
size_t total = (size_t)nsamples*nw0;
size_t stripeSize = (total + nstripes - 1)/nstripes;
size_t stripeStart = r.start*stripeSize;
size_t stripeEnd = r.end == nstripes ? total : std::min(r.end*stripeSize, total);
size_t wstep = weights->step1();
AutoBuffer<float> srcbuf(vecsize_aligned + valign);
float* sptr = alignPtr(srcbuf.data(), (int)(valign*sizeof(float)));
for( k = vecsize; k < vecsize_aligned; k++ )
sptr[k] = 0.f;
for( size_t ofs = stripeStart; ofs < stripeEnd; )
{
int sampleIdx = (int)(ofs / nw0);
int delta = (int)(ofs - (size_t)sampleIdx*nw0);
const float* sptr_ = srcMat->ptr<float>(sampleIdx);
const float* wptr = weights->ptr<float>(delta);
float* dptr = dstMat->ptr<float>(sampleIdx) + delta;
const float* biasptr = biasMat->ptr<float>() + delta;
int nw = std::min(nw0 - delta, (int)(stripeEnd - ofs));
memcpy(sptr, sptr_, vecsize*sizeof(sptr[0]));
#if CV_TRY_AVX512_SKX
if( useAVX512 )
opt_AVX512_SKX::fastGEMM1T( sptr, wptr, wstep, biasptr, dptr, nw, vecsize_aligned);
else
#endif
#if CV_TRY_AVX2
if( useAVX2 )
opt_AVX2::fastGEMM1T( sptr, wptr, wstep, biasptr, dptr, nw, vecsize_aligned);
else
#endif
#if CV_TRY_AVX
if( useAVX )
opt_AVX::fastGEMM1T( sptr, wptr, wstep, biasptr, dptr, nw, vecsize_aligned);
else
#endif
#if CV_TRY_RVV
if( useRVV )
opt_RVV::fastGEMM1T( sptr, wptr, wstep, biasptr, dptr, nw, vecsize);
else
#endif
#if CV_TRY_LASX
if( useLASX )
opt_LASX::fastGEMM1T( sptr, wptr, wstep, biasptr, dptr, nw, vecsize);
else
#endif
{
int i = 0;
#if CV_SIMD128
for( ; i <= nw - 4; i += 4, wptr += 4*wstep )
{
v_float32x4 vs0 = v_setall_f32(0.f);
v_float32x4 vs1 = v_setall_f32(0.f);
v_float32x4 vs2 = v_setall_f32(0.f);
v_float32x4 vs3 = v_setall_f32(0.f);
for( k = 0; k < vecsize; k += 4 )
{
v_float32x4 v = v_load_aligned(sptr + k);
vs0 = v_fma(v, v_load_aligned(wptr + k), vs0);
vs1 = v_fma(v, v_load_aligned(wptr + wstep + k), vs1);
vs2 = v_fma(v, v_load_aligned(wptr + wstep*2 + k), vs2);
vs3 = v_fma(v, v_load_aligned(wptr + wstep*3 + k), vs3);
}
v_float32x4 s = v_reduce_sum4(vs0, vs1, vs2, vs3);
s = v_add(s, v_load(biasptr + i));
v_store(dptr + i, s);
}
#endif
for( ; i < nw; i++, wptr += wstep )
{
float s0=biasptr[i];
for( k = 0; k < vecsize; k++ )
{
float v = sptr[k];
s0 += v*wptr[k];
}
dptr[i] = s0;
}
}
if(activ)
activ->forwardSlice(dptr, dptr, 1, 1, delta, delta + nw);
ofs += nw;
}
}
const Mat *srcMat, *weights, *biasMat;
const ActivationLayer* activ;
Mat* dstMat;
int nstripes;
bool useAVX;
bool useAVX2;
bool useAVX512;
bool useRVV;
bool useLASX;
};
#ifdef HAVE_OPENCL
virtual void finalize(InputArrayOfArrays, OutputArrayOfArrays) CV_OVERRIDE
{
innerProductOp.release();
umat_blobs.clear();
half_blobs.clear();
}
bool forward_ocl(InputArrayOfArrays inps, OutputArrayOfArrays outs, InputArrayOfArrays internals)
{
std::vector<UMat> inputs;
std::vector<UMat> outputs;
bool use_half = (inps.depth() == CV_16F);
inps.getUMatVector(inputs);
outs.getUMatVector(outputs);
if (inputs.size() == 2)
{
int dims = outputs[0].dims;
int m = inputs[0].size[dims - 2];
int n = inputs[0].size[dims - 1];
int k = inputs[1].size[dims - 1];
int rows = inputs[0].total() / (m * n);
MatShape sh_A = shape(rows, m * n);
MatShape sh_B = shape(rows, n * k);
MatShape sh_C = shape(rows, m * k);
UMat inp = inputs[0].reshape(1, sh_A.size(), &sh_A[0]);
UMat weight = inputs[1].reshape(1, sh_B.size(), &sh_B[0]);
UMat out = outputs[0].reshape(1, sh_C.size(), &sh_C[0]);
UMat A, B, C, A_fp32, B_fp32, C_fp32;
for (int i = 0; i < rows; ++i)
{
A = inp.row(i).reshape(1, m);
B = weight.row(i).reshape(1, n);
C = out.row(i).reshape(1, m);
if (use_half)
{
A.convertTo(A_fp32, CV_32F);
B.convertTo(B_fp32, CV_32F);
C.convertTo(C_fp32, CV_32F);
}
else
{
A_fp32 = A;
B_fp32 = B;
C_fp32 = C;
}
cv::gemm(A_fp32, B_fp32, 1, noArray(), 0, C_fp32);
if (use_half)
{
A_fp32.convertTo(A, CV_16F);
B_fp32.convertTo(B, CV_16F);
C_fp32.convertTo(C, CV_16F);
}
}
return true;
}
int axisCan = normalize_axis(axis, inputs[0].dims);
int numOutput = blobs[0].size[0];
int innerSize = blobs[0].size[1];
int outerSize = total(shape(inputs[0]), 0, axisCan);
bool ret = true;
if (innerProductOp.empty())
{
size_t n = blobs.size();
umat_blobs.resize(n);
for (int i = 0; i < n; i++) blobs[i].copyTo(umat_blobs[i]);
OCL4DNNInnerProductConfig config;
config.num_output = numOutput;
config.bias_term = bias;
config.M = outerSize;
config.K = innerSize;
config.use_half = use_half;
if (use_half)
{
half_blobs.resize(umat_blobs.size());
for (int i = 0; i < umat_blobs.size(); i++)
{
if (!umat_blobs[i].empty())
umat_blobs[i].convertTo(half_blobs[i], CV_16F);
}
}
innerProductOp = Ptr<OCL4DNNInnerProduct<float> >(new OCL4DNNInnerProduct<float>(config));
}
for (size_t i = 0; i < inputs.size(); i++)
{
MatShape inshape, outshape;
inshape = shape(outerSize, innerSize);
outshape = shape(outerSize, numOutput);
UMat srcMat, dstMat;
srcMat = inputs[i].reshape(1, inshape.size(), &inshape[0]);
dstMat = outputs[i].reshape(1, outshape.size(), &outshape[0]);
if (!innerProductOp->Forward(srcMat, (use_half) ? half_blobs[0] : umat_blobs[0],
(bias) ? (use_half ? half_blobs[1] : umat_blobs[1]) : UMat(),
dstMat))
{
ret = false;
break;
}
}
if (ret) return true;
UMat& weights = umat_blobs[0];
for (size_t i = 0; i < inputs.size(); i++)
{
MatShape inshape, outshape;
inshape = shape(outerSize, innerSize);
outshape = shape(outerSize, numOutput);
UMat srcMat, dstMat, srcMat_fp32, dstMat_fp32;
srcMat = inputs[i].reshape(1, inshape.size(), &inshape[0]);
dstMat = outputs[i].reshape(1, outshape.size(), &outshape[0]);
if (use_half)
{
srcMat.convertTo(srcMat_fp32, CV_32F);
dstMat.convertTo(dstMat_fp32, CV_32F);
}
else
{
srcMat_fp32 = srcMat;
dstMat_fp32 = dstMat;
}
cv::gemm(srcMat_fp32, weights, 1, noArray(), 0, dstMat_fp32, GEMM_2_T);
if (bias)
{
UMat biasOnesMat = UMat::ones(outerSize, 1, umat_blobs[0].type());
UMat& biases = umat_blobs[1];
cv::gemm(biasOnesMat, biases, 1, dstMat_fp32, 1, dstMat_fp32, 0);
}
if (use_half)
{
srcMat_fp32.convertTo(srcMat, CV_16F);
dstMat_fp32.convertTo(dstMat, CV_16F);
}
}
return true;
}
#endif
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE
{
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget) && !isMatMul,
forward_ocl(inputs_arr, outputs_arr, internals_arr))
if (inputs_arr.depth() == CV_16F)
{
forward_fallback(inputs_arr, outputs_arr, internals_arr);
return;
}
std::vector<Mat> input, output;
inputs_arr.getMatVector(input);
outputs_arr.getMatVector(output);
if (!blobs.empty())
{
int inp1Dim = input[0].dims;
if (isMatMul)
{
int matNum = input[0].total(0, inp1Dim - 2);
int rowMatMul = oriMat.size[oriMat.dims - 2];
Mat srcMatTmp = input[0].reshape(1, matNum);
Mat dstMatTmp = output[0].reshape(1, matNum);
int outerSize = input[0].size[inp1Dim - 2];
int rowStart = -rowMatMul;
for (int n = 0; n < matNum; ++n)
{
Mat srcMat = srcMatTmp.row(n).reshape(1, outerSize);
Mat dstMat = dstMatTmp.row(n).reshape(1, outerSize);
rowStart = (rowStart + rowMatMul) % weightsMat.rows;
Mat weiMat = weightsMat.rowRange(rowStart, rowStart + rowMatMul);
const int nstripes = getNumThreads();
FullyConnected::run(srcMat, weiMat, biasMat, dstMat, activ.get(), nstripes);
}
}
else
{
int axisCan = normalize_axis(axis, inp1Dim);
int outerSize = input[0].total(0, axisCan);
for (size_t i = 0; i < input.size(); i++)
{
Mat srcMat = input[i].reshape(1, outerSize);
Mat dstMat = output[i].reshape(1, outerSize);
const int nstripes = getNumThreads();
FullyConnected::run(srcMat, weightsMat, biasMat, dstMat, activ.get(), nstripes);
}
}
}
else
{
Mat input0 = input[0];
Mat input1 = input[1];
if (transA)
{
CV_Assert(input0.dims == 2);
input0 = input0.t();
}
if (transB)
{
CV_Assert(input1.dims == 2);
input1 = input1.t();
}
float* inpData = input0.ptr<float>();
float* weightData = input1.ptr<float>();
float* outData = output[0].ptr<float>();
int dims = output[0].dims;
int numSlice = output[0].total() / output[0].total(dims - 2);
int m = input0.size[dims - 2];
int n = input0.size[dims - 1];
int k = input1.size[dims - 1];
for (int i = 0; i < numSlice; i++)
{
Mat inpSlice(m, n, CV_32F, inpData);
Mat weightSlice(n, k, CV_32F, weightData);
Mat outSlice(m, k, CV_32F, outData);
outSlice = inpSlice * weightSlice;
inpData += inpSlice.total();
weightData += weightSlice.total();
outData += outSlice.total();
}
}
}
#ifdef HAVE_CUDA
Ptr<BackendNode> initCUDA(
void *context_,
const std::vector<Ptr<BackendWrapper>>& inputs,
const std::vector<Ptr<BackendWrapper>>& outputs
) override
{
auto biasMat_ = bias ? biasMat : Mat();
auto context = reinterpret_cast<csl::CSLContext*>(context_);
auto input_wrapper = inputs[0].dynamicCast<CUDABackendWrapper>();
if (weightsMat.empty() || isMatMul)
{
int inp2Dim;
// broadcast is not supported with CUDA
if(weightsMat.empty())
{
auto input_wrapper2 = inputs[1].dynamicCast<CUDABackendWrapper>();
inp2Dim = input_wrapper2->getRank();
}else
inp2Dim = oriMat.dims;
if(input_wrapper->getRank() == inp2Dim)
return make_cuda_node<cuda4dnn::MatMulOp>(preferableTarget, std::move(context->stream), std::move(context->cublas_handle), oriMat, biasMat_, transA, transB);
else {
CV_LOG_INFO(NULL, "DNN/CUDA: no implementation for MatMul with rank " << input_wrapper->getRank());
return Ptr<BackendNode>();
}
}
auto flatten_start_axis = normalize_axis(axis, input_wrapper->getRank());
return make_cuda_node<cuda4dnn::InnerProductOp>(preferableTarget, std::move(context->stream), std::move(context->cublas_handle), flatten_start_axis, weightsMat, biasMat_);
}
#endif
#ifdef HAVE_VULKAN
virtual Ptr<BackendNode> initVkCom(const std::vector<Ptr<BackendWrapper> > &inputs,
std::vector<Ptr<BackendWrapper> > &outputs) CV_OVERRIDE
{
auto biasMat_ = bias ? biasMat : Mat();
auto input_wrapper = inputs[0].dynamicCast<VkComBackendWrapper>();
CV_Assert((inputs.size() == 2 || inputs.size() == 1) && outputs.size() == 1);
std::vector<Mat> vkBlobs;
Ptr<vkcom::OpBase> op;
if (!biasMat_.empty() || !activ.empty())
{
return Ptr<BackendNode>();
}
Ptr<VkComBackendWrapper> outputWrap = outputs[0].dynamicCast<VkComBackendWrapper>();
CV_Assert(outputWrap);
// TODO: Currently, we only support the 2D MatMul. Need support the FC layer and bias case in the future.
if (inputs.size() == 2)
{
Ptr<VkComBackendWrapper> inputWrap0 = inputs[0].dynamicCast<VkComBackendWrapper>();
Ptr<VkComBackendWrapper> inputWrap1 = inputs[1].dynamicCast<VkComBackendWrapper>();
CV_Assert(inputWrap0 && inputWrap1);
MatShape inpShape0 = shape(*inputWrap0->getMat());
MatShape inpShape1 = shape(*inputWrap1->getMat());
MatShape outShape = shape(*outputWrap->getMat());
// TODO Currently, vulkan only support 2D matmul. Try to support 3D and 4D matmul.
if (inpShape0.size() != 2 || inpShape1.size() != 2)
return Ptr<BackendNode>();
op = (new vkcom::OpMatMul(vkBlobs, inpShape0[0], inpShape0[1], outShape[1]));
}
else
{
CV_Assert(!weightsMat.empty());
Mat wm;
weightsMat.copyTo(wm); // to handle the case of isContinuous() == false
wm = wm.reshape(1, blobs[0].dims, blobs[0].size);
vkBlobs.push_back(wm.t());
Ptr<VkComBackendWrapper> inputWrap = inputs[0].dynamicCast<VkComBackendWrapper>();
CV_Assert(inputWrap);
MatShape inpShape = shape(*inputWrap->getMat());
MatShape outShape = shape(*outputWrap->getMat());
MatShape wShape = shape(weightsMat);
// TODO Currently, vulkan only support 2D matmul. Try to support 3D and 4D matmul.
if (inpShape.size() != 2 || wShape.size() != 2)
return Ptr<BackendNode>();
// TODO: Currently, only focus on 2D MatMul.
CV_Assert(inpShape.size() == 2 && outShape.size() == 2 && wShape.size() == 2);
CV_Assert(inpShape[1] == outShape[0]);
op = (new vkcom::OpMatMul(vkBlobs, inpShape[0], inpShape[1], outShape[1]));
}
return Ptr<BackendNode>(new VkComBackendNode(inputs, op, outputs));
}
#endif
#ifdef HAVE_CANN
virtual Ptr<BackendNode> initCann(const std::vector<Ptr<BackendWrapper> > &inputs,
const std::vector<Ptr<BackendWrapper> > &outputs,
const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE
{
auto x1 = inputs[0].dynamicCast<CannBackendWrapper>();
auto x1_desc = x1->getTensorDesc();
auto op_x1 = nodes[0].dynamicCast<CannBackendNode>()->getOp();
auto output_desc = std::make_shared<ge::TensorDesc>(ge::Shape(), ge::FORMAT_NCHW, ge::DT_FLOAT);
auto op = std::make_shared<ge::op::MatMulV2>(name);
if (!blobs.empty()) // if B is const
{
// set attributes
op->set_attr_transpose_x1(false);
// weightMat always needs to be transposed, since CPU backend
// implementation is input * weight.im2row
op->set_attr_transpose_x2(true);
// set inputs
// set inputs : x2 (weight)
auto op_const_weight = std::make_shared<CannConstOp>(weightsMat.data, weightsMat.type(), shape(weightsMat), cv::format("%s_w", name.c_str()));
op->set_input_x2_by_name(*(op_const_weight->getOp()), "y");
op->update_input_desc_x2(*(op_const_weight->getTensorDesc()));
}
else
{
// A and B are variable inputs; non-const bias is not considered
CV_Assert(inputs.size() == 2);
CV_Assert(nodes.size() == 2);
// set attributes
op->set_attr_transpose_x1(transA);
op->set_attr_transpose_x2(transB);
// set inputs : x2 (weight)
auto op_x2 = nodes[1].dynamicCast<CannBackendNode>()->getOp();
auto x2_desc = inputs[1].dynamicCast<CannBackendWrapper>()->getTensorDesc();
op->set_input_x2_by_name(*op_x2, "y");
op->update_input_desc_x2(*x2_desc);
}
// set inputs
// set inputs : x1 (input)
op->set_input_x1_by_name(*op_x1, x1->name.c_str());
op->update_input_desc_x1(*x1_desc);
// set inputs : bias (bias)
auto bias_mat = bias ? biasMat : Mat::zeros(1, weightsMat.size[0], weightsMat.type());
std::vector<int> bias_shape{weightsMat.size[0]};
auto op_const_bias = std::make_shared<CannConstOp>(bias_mat.data, bias_mat.type(), bias_shape, cv::format("%s_b", name.c_str()));
op->set_input_bias(*(op_const_bias->getOp()));
op->update_input_desc_bias(*(op_const_bias->getTensorDesc()));
// set outputs
op->update_output_desc_y(*output_desc);
return Ptr<BackendNode>(new CannBackendNode(op));
}
#endif
#ifdef HAVE_DNN_NGRAPH
virtual Ptr<BackendNode> initNgraph(const std::vector<Ptr<BackendWrapper> >& inputs,
const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE
{
auto& ieInpNode = nodes[0].dynamicCast<InfEngineNgraphNode>()->node;
std::shared_ptr<ov::Node> matmul;
if (nodes.size() == 2)
{
auto& inp2 = nodes[1].dynamicCast<InfEngineNgraphNode>()->node;
matmul = std::make_shared<ov::op::v0::MatMul>(ieInpNode, inp2, transA, transB);
}
else
{
std::vector<int> shape(1 + normalize_axis(axis, ieInpNode.get_shape().size()), 0);
shape[shape.size() - 1] = -1;
auto inp = std::make_shared<ov::op::v1::Reshape>(
ieInpNode,
std::make_shared<ov::op::v0::Constant>(ov::element::i32, ov::Shape{shape.size()}, shape.data()),
true
);
std::vector<size_t> weight_shape;
if (isMatMul) {
weight_shape = getShape<size_t>(oriMat);
} else {
weight_shape = {(size_t)blobs[0].size[0], (size_t)blobs[0].size[1]};
}
auto ieWeights = std::make_shared<ov::op::v0::Constant>(ov::element::f32, weight_shape, blobs[0].data);
matmul = std::make_shared<ov::op::v0::MatMul>(inp, ieWeights, transA, transB);
}
if (bias) {
auto bias_node = std::make_shared<ov::op::v0::Constant>(ov::element::f32,
ov::Shape{(size_t)blobs[1].size[1]}, blobs[1].data);
matmul = std::make_shared<ov::op::v1::Add>(matmul, bias_node, ov::op::AutoBroadcastType::NUMPY);
}
return Ptr<BackendNode>(new InfEngineNgraphNode(matmul));
}
#endif // HAVE_DNN_NGRAPH
#ifdef HAVE_WEBNN
virtual Ptr<BackendNode> initWebnn(const std::vector<Ptr<BackendWrapper> >& inputs, const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE
{
Ptr<WebnnBackendNode> node = nodes[0].dynamicCast<WebnnBackendNode>();
auto& webnnInpOperand = node->operand;
auto& webnnGraphBuilder = node->net->builder;
ml::GemmOptions gemmOptions = {};
if (bias)
{
std::vector<int32_t> biasDims = {(int32_t)blobs[1].size[1]};
ml::Operand bias = webnn::BuildConstant(webnnGraphBuilder, biasDims, blobs[1].data, blobs[1].total()*blobs[1].elemSize(), ml::OperandType::Float32);
gemmOptions.c = bias;
}
ml::Operand result = nullptr;
if (nodes.size() == 2)
{
auto& inp2 = nodes[1].dynamicCast<WebnnBackendNode>()->operand;
result = webnnGraphBuilder.Gemm(webnnInpOperand, inp2, &gemmOptions);
}
else
{
std::vector<int32_t> input_shape(2, -1);
input_shape[1] = blobs[0].size[1];
ml::Operand webnnInpOperand_reshaped = webnnGraphBuilder.Reshape(webnnInpOperand, input_shape.data(), input_shape.size());
std::vector<int32_t> weight_shape = {(int32_t)blobs[0].size[0], (int32_t)blobs[0].size[1]};
// std::cout<<"weight size: "<<weight_shape[1]<<" "<<weight_shape[0]<<std::endl;
ml::Operand inp2 = webnn::BuildConstant(webnnGraphBuilder, weight_shape, blobs[0].data, blobs[0].total()*blobs[0].elemSize(), ml::OperandType::Float32);
gemmOptions.bTranspose = true;
result = webnnGraphBuilder.Gemm(webnnInpOperand_reshaped, inp2, &gemmOptions);
}
return Ptr<BackendNode>(new WebnnBackendNode(result));
}
#endif // HAVE_WEBNN
virtual int64 getFLOPS(const std::vector<MatShape> &inputs,
const std::vector<MatShape> &outputs) const CV_OVERRIDE
{
CV_UNUSED(inputs); // suppress unused variable warning
long flops = 0;
int innerSize = 0;
if (!blobs.empty())
{
innerSize = blobs[0].size[1];
}
else
{
CV_Assert(inputs.size() == 2);
if (transB)
innerSize = inputs[1][1];
else
innerSize = inputs[1][0];
}
for(int i = 0; i < outputs.size(); i++)
{
flops += CV_BIG_INT(3)*innerSize*total(outputs[i]);
}
return flops;
}
bool bias;
Mat weightsMat, biasMat, oriMat;
bool transA, transB;
bool isMatMul = false;
Ptr<ActivationLayer> activ;
};
Ptr<InnerProductLayer> InnerProductLayer::create(const LayerParams& params)
{
return Ptr<InnerProductLayer>(new FullyConnectedLayerImpl(params));
}
}
}