mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1065 lines
41 KiB
1065 lines
41 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "test_precomp.hpp" |
|
#include <opencv2/ts/cuda_test.hpp> // EXPECT_MAT_NEAR |
|
#include "../src/fisheye.hpp" |
|
#include "opencv2/videoio.hpp" |
|
|
|
namespace opencv_test { namespace { |
|
|
|
class fisheyeTest : public ::testing::Test { |
|
|
|
protected: |
|
const static cv::Size imageSize; |
|
const static cv::Matx33d K; |
|
const static cv::Vec4d D; |
|
const static cv::Matx33d R; |
|
const static cv::Vec3d T; |
|
std::string datasets_repository_path; |
|
|
|
virtual void SetUp() { |
|
datasets_repository_path = combine(cvtest::TS::ptr()->get_data_path(), "cv/cameracalibration/fisheye"); |
|
} |
|
|
|
protected: |
|
std::string combine(const std::string& _item1, const std::string& _item2); |
|
static void merge4(const cv::Mat& tl, const cv::Mat& tr, const cv::Mat& bl, const cv::Mat& br, cv::Mat& merged); |
|
}; |
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// |
|
/// TESTS:: |
|
|
|
TEST_F(fisheyeTest, projectPoints) |
|
{ |
|
double cols = this->imageSize.width, |
|
rows = this->imageSize.height; |
|
|
|
const int N = 20; |
|
cv::Mat distorted0(1, N*N, CV_64FC2), undist1, undist2, distorted1, distorted2; |
|
undist2.create(distorted0.size(), CV_MAKETYPE(distorted0.depth(), 3)); |
|
cv::Vec2d* pts = distorted0.ptr<cv::Vec2d>(); |
|
|
|
cv::Vec2d c(this->K(0, 2), this->K(1, 2)); |
|
for(int y = 0, k = 0; y < N; ++y) |
|
for(int x = 0; x < N; ++x) |
|
{ |
|
cv::Vec2d point(x*cols/(N-1.f), y*rows/(N-1.f)); |
|
pts[k++] = (point - c) * 0.85 + c; |
|
} |
|
|
|
cv::fisheye::undistortPoints(distorted0, undist1, this->K, this->D); |
|
|
|
cv::Vec2d* u1 = undist1.ptr<cv::Vec2d>(); |
|
cv::Vec3d* u2 = undist2.ptr<cv::Vec3d>(); |
|
for(int i = 0; i < (int)distorted0.total(); ++i) |
|
u2[i] = cv::Vec3d(u1[i][0], u1[i][1], 1.0); |
|
|
|
cv::fisheye::distortPoints(undist1, distorted1, this->K, this->D); |
|
cv::fisheye::projectPoints(undist2, distorted2, cv::Vec3d::all(0), cv::Vec3d::all(0), this->K, this->D); |
|
|
|
EXPECT_MAT_NEAR(distorted0, distorted1, 1e-10); |
|
EXPECT_MAT_NEAR(distorted0, distorted2, 1e-10); |
|
} |
|
|
|
TEST_F(fisheyeTest, distortUndistortPoints) |
|
{ |
|
int width = imageSize.width; |
|
int height = imageSize.height; |
|
|
|
/* Create test points */ |
|
std::vector<cv::Point2d> points0Vector; |
|
cv::Mat principalPoints = (cv::Mat_<double>(5, 2) << K(0, 2), K(1, 2), // (cx, cy) |
|
/* Image corners */ |
|
0, 0, |
|
0, height, |
|
width, 0, |
|
width, height |
|
); |
|
|
|
/* Random points inside image */ |
|
cv::Mat xy[2] = {}; |
|
xy[0].create(100, 1, CV_64F); |
|
theRNG().fill(xy[0], cv::RNG::UNIFORM, 0, width); // x |
|
xy[1].create(100, 1, CV_64F); |
|
theRNG().fill(xy[1], cv::RNG::UNIFORM, 0, height); // y |
|
|
|
cv::Mat randomPoints; |
|
merge(xy, 2, randomPoints); |
|
|
|
cv::Mat points0; |
|
cv::vconcat(principalPoints.reshape(2), randomPoints, points0); |
|
|
|
/* Test with random D set */ |
|
for (size_t i = 0; i < 10; ++i) { |
|
cv::Mat distortion(1, 4, CV_64F); |
|
theRNG().fill(distortion, cv::RNG::UNIFORM, -0.00001, 0.00001); |
|
|
|
/* Distort -> Undistort */ |
|
cv::Mat distortedPoints; |
|
cv::fisheye::distortPoints(points0, distortedPoints, K, distortion); |
|
cv::Mat undistortedPoints; |
|
cv::fisheye::undistortPoints(distortedPoints, undistortedPoints, K, distortion); |
|
|
|
EXPECT_MAT_NEAR(points0, undistortedPoints, 1e-8); |
|
|
|
/* Undistort -> Distort */ |
|
cv::fisheye::undistortPoints(points0, undistortedPoints, K, distortion); |
|
cv::fisheye::distortPoints(undistortedPoints, distortedPoints, K, distortion); |
|
|
|
EXPECT_MAT_NEAR(points0, distortedPoints, 1e-8); |
|
} |
|
} |
|
|
|
TEST_F(fisheyeTest, undistortImage) |
|
{ |
|
cv::Matx33d theK = this->K; |
|
cv::Mat theD = cv::Mat(this->D); |
|
std::string file = combine(datasets_repository_path, "/calib-3_stereo_from_JY/left/stereo_pair_014.jpg"); |
|
cv::Matx33d newK = theK; |
|
cv::Mat distorted = cv::imread(file), undistorted; |
|
{ |
|
newK(0, 0) = 100; |
|
newK(1, 1) = 100; |
|
cv::fisheye::undistortImage(distorted, undistorted, theK, theD, newK); |
|
cv::Mat correct = cv::imread(combine(datasets_repository_path, "new_f_100.png")); |
|
if (correct.empty()) |
|
CV_Assert(cv::imwrite(combine(datasets_repository_path, "new_f_100.png"), undistorted)); |
|
else |
|
EXPECT_MAT_NEAR(correct, undistorted, 1e-10); |
|
} |
|
{ |
|
double balance = 1.0; |
|
cv::fisheye::estimateNewCameraMatrixForUndistortRectify(theK, theD, distorted.size(), cv::noArray(), newK, balance); |
|
cv::fisheye::undistortImage(distorted, undistorted, theK, theD, newK); |
|
cv::Mat correct = cv::imread(combine(datasets_repository_path, "balance_1.0.png")); |
|
if (correct.empty()) |
|
CV_Assert(cv::imwrite(combine(datasets_repository_path, "balance_1.0.png"), undistorted)); |
|
else |
|
EXPECT_MAT_NEAR(correct, undistorted, 1e-10); |
|
} |
|
|
|
{ |
|
double balance = 0.0; |
|
cv::fisheye::estimateNewCameraMatrixForUndistortRectify(theK, theD, distorted.size(), cv::noArray(), newK, balance); |
|
cv::fisheye::undistortImage(distorted, undistorted, theK, theD, newK); |
|
cv::Mat correct = cv::imread(combine(datasets_repository_path, "balance_0.0.png")); |
|
if (correct.empty()) |
|
CV_Assert(cv::imwrite(combine(datasets_repository_path, "balance_0.0.png"), undistorted)); |
|
else |
|
EXPECT_MAT_NEAR(correct, undistorted, 1e-10); |
|
} |
|
} |
|
|
|
TEST_F(fisheyeTest, undistortAndDistortImage) |
|
{ |
|
cv::Matx33d K_src = this->K; |
|
cv::Mat D_src = cv::Mat(this->D); |
|
std::string file = combine(datasets_repository_path, "/calib-3_stereo_from_JY/left/stereo_pair_014.jpg"); |
|
cv::Matx33d K_dst = K_src; |
|
cv::Mat image = cv::imread(file), image_projected; |
|
cv::Vec4d D_dst_vec (-1.0, 0.0, 0.0, 0.0); |
|
cv::Mat D_dst = cv::Mat(D_dst_vec); |
|
|
|
int imageWidth = (int)this->imageSize.width; |
|
int imageHeight = (int)this->imageSize.height; |
|
|
|
cv::Mat imagePoints(imageHeight, imageWidth, CV_32FC2), undPoints, distPoints; |
|
cv::Vec2f* pts = imagePoints.ptr<cv::Vec2f>(); |
|
|
|
for(int y = 0, k = 0; y < imageHeight; ++y) |
|
{ |
|
for(int x = 0; x < imageWidth; ++x) |
|
{ |
|
cv::Vec2f point((float)x, (float)y); |
|
pts[k++] = point; |
|
} |
|
} |
|
|
|
cv::fisheye::undistortPoints(imagePoints, undPoints, K_dst, D_dst); |
|
cv::fisheye::distortPoints(undPoints, distPoints, K_src, D_src); |
|
cv::remap(image, image_projected, distPoints, cv::noArray(), cv::INTER_LINEAR); |
|
|
|
float dx, dy, r_sq; |
|
float R_MAX = 250; |
|
float imageCenterX = (float)imageWidth / 2; |
|
float imageCenterY = (float)imageHeight / 2; |
|
|
|
cv::Mat undPointsGt(imageHeight, imageWidth, CV_32FC2); |
|
cv::Mat imageGt(imageHeight, imageWidth, CV_8UC3); |
|
|
|
for(int y = 0; y < imageHeight; ++y) |
|
{ |
|
for(int x = 0; x < imageWidth; ++x) |
|
{ |
|
dx = x - imageCenterX; |
|
dy = y - imageCenterY; |
|
r_sq = dy * dy + dx * dx; |
|
|
|
Vec2f & und_vec = undPoints.at<Vec2f>(y,x); |
|
Vec3b & pixel = image_projected.at<Vec3b>(y,x); |
|
|
|
Vec2f & undist_vec_gt = undPointsGt.at<Vec2f>(y,x); |
|
Vec3b & pixel_gt = imageGt.at<Vec3b>(y,x); |
|
|
|
if (r_sq > R_MAX * R_MAX) |
|
{ |
|
|
|
undist_vec_gt[0] = -1e6; |
|
undist_vec_gt[1] = -1e6; |
|
|
|
pixel_gt[0] = 0; |
|
pixel_gt[1] = 0; |
|
pixel_gt[2] = 0; |
|
} |
|
else |
|
{ |
|
undist_vec_gt[0] = und_vec[0]; |
|
undist_vec_gt[1] = und_vec[1]; |
|
|
|
pixel_gt[0] = pixel[0]; |
|
pixel_gt[1] = pixel[1]; |
|
pixel_gt[2] = pixel[2]; |
|
} |
|
|
|
} |
|
} |
|
|
|
EXPECT_MAT_NEAR(undPoints, undPointsGt, 1e-10); |
|
EXPECT_MAT_NEAR(image_projected, imageGt, 1e-10); |
|
|
|
Vec2f dist_point_1 = distPoints.at<Vec2f>(400, 640); |
|
Vec2f dist_point_1_gt(640.044f, 400.041f); |
|
|
|
Vec2f dist_point_2 = distPoints.at<Vec2f>(400, 440); |
|
Vec2f dist_point_2_gt(409.731f, 403.029f); |
|
|
|
Vec2f dist_point_3 = distPoints.at<Vec2f>(200, 640); |
|
Vec2f dist_point_3_gt(643.341f, 168.896f); |
|
|
|
Vec2f dist_point_4 = distPoints.at<Vec2f>(300, 480); |
|
Vec2f dist_point_4_gt(463.402f, 290.317f); |
|
|
|
Vec2f dist_point_5 = distPoints.at<Vec2f>(550, 750); |
|
Vec2f dist_point_5_gt(797.51f, 611.637f); |
|
|
|
EXPECT_MAT_NEAR(dist_point_1, dist_point_1_gt, 1e-2); |
|
EXPECT_MAT_NEAR(dist_point_2, dist_point_2_gt, 1e-2); |
|
EXPECT_MAT_NEAR(dist_point_3, dist_point_3_gt, 1e-2); |
|
EXPECT_MAT_NEAR(dist_point_4, dist_point_4_gt, 1e-2); |
|
EXPECT_MAT_NEAR(dist_point_5, dist_point_5_gt, 1e-2); |
|
|
|
CV_Assert(cv::imwrite(combine(datasets_repository_path, "new_distortion.png"), image_projected)); |
|
} |
|
|
|
TEST_F(fisheyeTest, jacobians) |
|
{ |
|
int n = 10; |
|
cv::Mat X(1, n, CV_64FC3); |
|
cv::Mat om(3, 1, CV_64F), theT(3, 1, CV_64F); |
|
cv::Mat f(2, 1, CV_64F), c(2, 1, CV_64F); |
|
cv::Mat k(4, 1, CV_64F); |
|
double alpha; |
|
|
|
cv::RNG r; |
|
|
|
r.fill(X, cv::RNG::NORMAL, 2, 1); |
|
X = cv::abs(X) * 10; |
|
|
|
r.fill(om, cv::RNG::NORMAL, 0, 1); |
|
om = cv::abs(om); |
|
|
|
r.fill(theT, cv::RNG::NORMAL, 0, 1); |
|
theT = cv::abs(theT); theT.at<double>(2) = 4; theT *= 10; |
|
|
|
r.fill(f, cv::RNG::NORMAL, 0, 1); |
|
f = cv::abs(f) * 1000; |
|
|
|
r.fill(c, cv::RNG::NORMAL, 0, 1); |
|
c = cv::abs(c) * 1000; |
|
|
|
r.fill(k, cv::RNG::NORMAL, 0, 1); |
|
k*= 0.5; |
|
|
|
alpha = 0.01*r.gaussian(1); |
|
|
|
cv::Mat x1, x2, xpred; |
|
cv::Matx33d theK(f.at<double>(0), alpha * f.at<double>(0), c.at<double>(0), |
|
0, f.at<double>(1), c.at<double>(1), |
|
0, 0, 1); |
|
|
|
cv::Mat jacobians; |
|
cv::fisheye::projectPoints(X, x1, om, theT, theK, k, alpha, jacobians); |
|
|
|
//test on T: |
|
cv::Mat dT(3, 1, CV_64FC1); |
|
r.fill(dT, cv::RNG::NORMAL, 0, 1); |
|
dT *= 1e-9*cv::norm(theT); |
|
cv::Mat T2 = theT + dT; |
|
cv::fisheye::projectPoints(X, x2, om, T2, theK, k, alpha, cv::noArray()); |
|
xpred = x1 + cv::Mat(jacobians.colRange(11,14) * dT).reshape(2, 1); |
|
CV_Assert (cv::norm(x2 - xpred) < 1e-10); |
|
|
|
//test on om: |
|
cv::Mat dom(3, 1, CV_64FC1); |
|
r.fill(dom, cv::RNG::NORMAL, 0, 1); |
|
dom *= 1e-9*cv::norm(om); |
|
cv::Mat om2 = om + dom; |
|
cv::fisheye::projectPoints(X, x2, om2, theT, theK, k, alpha, cv::noArray()); |
|
xpred = x1 + cv::Mat(jacobians.colRange(8,11) * dom).reshape(2, 1); |
|
CV_Assert (cv::norm(x2 - xpred) < 1e-10); |
|
|
|
//test on f: |
|
cv::Mat df(2, 1, CV_64FC1); |
|
r.fill(df, cv::RNG::NORMAL, 0, 1); |
|
df *= 1e-9*cv::norm(f); |
|
cv::Matx33d K2 = theK + cv::Matx33d(df.at<double>(0), df.at<double>(0) * alpha, 0, 0, df.at<double>(1), 0, 0, 0, 0); |
|
cv::fisheye::projectPoints(X, x2, om, theT, K2, k, alpha, cv::noArray()); |
|
xpred = x1 + cv::Mat(jacobians.colRange(0,2) * df).reshape(2, 1); |
|
CV_Assert (cv::norm(x2 - xpred) < 1e-10); |
|
|
|
//test on c: |
|
cv::Mat dc(2, 1, CV_64FC1); |
|
r.fill(dc, cv::RNG::NORMAL, 0, 1); |
|
dc *= 1e-9*cv::norm(c); |
|
K2 = theK + cv::Matx33d(0, 0, dc.at<double>(0), 0, 0, dc.at<double>(1), 0, 0, 0); |
|
cv::fisheye::projectPoints(X, x2, om, theT, K2, k, alpha, cv::noArray()); |
|
xpred = x1 + cv::Mat(jacobians.colRange(2,4) * dc).reshape(2, 1); |
|
CV_Assert (cv::norm(x2 - xpred) < 1e-10); |
|
|
|
//test on k: |
|
cv::Mat dk(4, 1, CV_64FC1); |
|
r.fill(dk, cv::RNG::NORMAL, 0, 1); |
|
dk *= 1e-9*cv::norm(k); |
|
cv::Mat k2 = k + dk; |
|
cv::fisheye::projectPoints(X, x2, om, theT, theK, k2, alpha, cv::noArray()); |
|
xpred = x1 + cv::Mat(jacobians.colRange(4,8) * dk).reshape(2, 1); |
|
CV_Assert (cv::norm(x2 - xpred) < 1e-10); |
|
|
|
//test on alpha: |
|
cv::Mat dalpha(1, 1, CV_64FC1); |
|
r.fill(dalpha, cv::RNG::NORMAL, 0, 1); |
|
dalpha *= 1e-9*cv::norm(f); |
|
double alpha2 = alpha + dalpha.at<double>(0); |
|
K2 = theK + cv::Matx33d(0, f.at<double>(0) * dalpha.at<double>(0), 0, 0, 0, 0, 0, 0, 0); |
|
cv::fisheye::projectPoints(X, x2, om, theT, theK, k, alpha2, cv::noArray()); |
|
xpred = x1 + cv::Mat(jacobians.col(14) * dalpha).reshape(2, 1); |
|
CV_Assert (cv::norm(x2 - xpred) < 1e-10); |
|
} |
|
|
|
TEST_F(fisheyeTest, Calibration) |
|
{ |
|
const int n_images = 34; |
|
|
|
std::vector<std::vector<cv::Point2d> > imagePoints(n_images); |
|
std::vector<std::vector<cv::Point3d> > objectPoints(n_images); |
|
|
|
const std::string folder = combine(datasets_repository_path, "calib-3_stereo_from_JY"); |
|
cv::FileStorage fs_left(combine(folder, "left.xml"), cv::FileStorage::READ); |
|
CV_Assert(fs_left.isOpened()); |
|
for(int i = 0; i < n_images; ++i) |
|
fs_left[cv::format("image_%d", i )] >> imagePoints[i]; |
|
fs_left.release(); |
|
|
|
cv::FileStorage fs_object(combine(folder, "object.xml"), cv::FileStorage::READ); |
|
CV_Assert(fs_object.isOpened()); |
|
for(int i = 0; i < n_images; ++i) |
|
fs_object[cv::format("image_%d", i )] >> objectPoints[i]; |
|
fs_object.release(); |
|
|
|
int flag = 0; |
|
flag |= cv::fisheye::CALIB_RECOMPUTE_EXTRINSIC; |
|
flag |= cv::fisheye::CALIB_CHECK_COND; |
|
flag |= cv::fisheye::CALIB_FIX_SKEW; |
|
|
|
cv::Matx33d theK; |
|
cv::Vec4d theD; |
|
|
|
cv::fisheye::calibrate(objectPoints, imagePoints, imageSize, theK, theD, |
|
cv::noArray(), cv::noArray(), flag, cv::TermCriteria(3, 20, 1e-6)); |
|
|
|
EXPECT_MAT_NEAR(theK, this->K, 1e-10); |
|
EXPECT_MAT_NEAR(theD, this->D, 1e-10); |
|
} |
|
|
|
TEST_F(fisheyeTest, CalibrationWithFixedFocalLength) |
|
{ |
|
const int n_images = 34; |
|
|
|
std::vector<std::vector<cv::Point2d> > imagePoints(n_images); |
|
std::vector<std::vector<cv::Point3d> > objectPoints(n_images); |
|
|
|
const std::string folder =combine(datasets_repository_path, "calib-3_stereo_from_JY"); |
|
cv::FileStorage fs_left(combine(folder, "left.xml"), cv::FileStorage::READ); |
|
CV_Assert(fs_left.isOpened()); |
|
for(int i = 0; i < n_images; ++i) |
|
fs_left[cv::format("image_%d", i )] >> imagePoints[i]; |
|
fs_left.release(); |
|
|
|
cv::FileStorage fs_object(combine(folder, "object.xml"), cv::FileStorage::READ); |
|
CV_Assert(fs_object.isOpened()); |
|
for(int i = 0; i < n_images; ++i) |
|
fs_object[cv::format("image_%d", i )] >> objectPoints[i]; |
|
fs_object.release(); |
|
|
|
int flag = 0; |
|
flag |= cv::fisheye::CALIB_RECOMPUTE_EXTRINSIC; |
|
flag |= cv::fisheye::CALIB_CHECK_COND; |
|
flag |= cv::fisheye::CALIB_FIX_SKEW; |
|
flag |= cv::fisheye::CALIB_FIX_FOCAL_LENGTH; |
|
flag |= cv::fisheye::CALIB_USE_INTRINSIC_GUESS; |
|
|
|
cv::Matx33d theK = this->K; |
|
const cv::Matx33d newK( |
|
558.478088, 0.000000, 620.458461, |
|
0.000000, 560.506767, 381.939362, |
|
0.000000, 0.000000, 1.000000); |
|
|
|
cv::Vec4d theD; |
|
const cv::Vec4d newD(-0.001461, -0.003298, 0.006057, -0.003742); |
|
|
|
cv::fisheye::calibrate(objectPoints, imagePoints, imageSize, theK, theD, |
|
cv::noArray(), cv::noArray(), flag, cv::TermCriteria(3, 20, 1e-6)); |
|
|
|
// ensure that CALIB_FIX_FOCAL_LENGTH works and focal lenght has not changed |
|
EXPECT_EQ(theK(0,0), K(0,0)); |
|
EXPECT_EQ(theK(1,1), K(1,1)); |
|
|
|
EXPECT_MAT_NEAR(theK, newK, 1e-6); |
|
EXPECT_MAT_NEAR(theD, newD, 1e-6); |
|
} |
|
|
|
TEST_F(fisheyeTest, Homography) |
|
{ |
|
const int n_images = 1; |
|
|
|
std::vector<std::vector<cv::Point2d> > imagePoints(n_images); |
|
std::vector<std::vector<cv::Point3d> > objectPoints(n_images); |
|
|
|
const std::string folder = combine(datasets_repository_path, "calib-3_stereo_from_JY"); |
|
cv::FileStorage fs_left(combine(folder, "left.xml"), cv::FileStorage::READ); |
|
CV_Assert(fs_left.isOpened()); |
|
for(int i = 0; i < n_images; ++i) |
|
fs_left[cv::format("image_%d", i )] >> imagePoints[i]; |
|
fs_left.release(); |
|
|
|
cv::FileStorage fs_object(combine(folder, "object.xml"), cv::FileStorage::READ); |
|
CV_Assert(fs_object.isOpened()); |
|
for(int i = 0; i < n_images; ++i) |
|
fs_object[cv::format("image_%d", i )] >> objectPoints[i]; |
|
fs_object.release(); |
|
|
|
cv::internal::IntrinsicParams param; |
|
param.Init(cv::Vec2d(cv::max(imageSize.width, imageSize.height) / CV_PI, cv::max(imageSize.width, imageSize.height) / CV_PI), |
|
cv::Vec2d(imageSize.width / 2.0 - 0.5, imageSize.height / 2.0 - 0.5)); |
|
|
|
cv::Mat _imagePoints (imagePoints[0]); |
|
cv::Mat _objectPoints(objectPoints[0]); |
|
|
|
cv::Mat imagePointsNormalized = NormalizePixels(_imagePoints, param).reshape(1).t(); |
|
_objectPoints = _objectPoints.reshape(1).t(); |
|
cv::Mat objectPointsMean, covObjectPoints; |
|
|
|
int Np = imagePointsNormalized.cols; |
|
cv::calcCovarMatrix(_objectPoints, covObjectPoints, objectPointsMean, cv::COVAR_NORMAL | cv::COVAR_COLS); |
|
cv::SVD svd(covObjectPoints); |
|
cv::Mat theR(svd.vt); |
|
|
|
if (cv::norm(theR(cv::Rect(2, 0, 1, 2))) < 1e-6) |
|
theR = cv::Mat::eye(3,3, CV_64FC1); |
|
if (cv::determinant(theR) < 0) |
|
theR = -theR; |
|
|
|
cv::Mat theT = -theR * objectPointsMean; |
|
cv::Mat X_new = theR * _objectPoints + theT * cv::Mat::ones(1, Np, CV_64FC1); |
|
cv::Mat H = cv::internal::ComputeHomography(imagePointsNormalized, X_new.rowRange(0, 2)); |
|
|
|
cv::Mat M = cv::Mat::ones(3, X_new.cols, CV_64FC1); |
|
X_new.rowRange(0, 2).copyTo(M.rowRange(0, 2)); |
|
cv::Mat mrep = H * M; |
|
|
|
cv::divide(mrep, cv::Mat::ones(3,1, CV_64FC1) * mrep.row(2).clone(), mrep); |
|
|
|
cv::Mat merr = (mrep.rowRange(0, 2) - imagePointsNormalized).t(); |
|
|
|
cv::Vec2d std_err; |
|
cv::meanStdDev(merr.reshape(2), cv::noArray(), std_err); |
|
std_err *= sqrt((double)merr.reshape(2).total() / (merr.reshape(2).total() - 1)); |
|
|
|
cv::Vec2d correct_std_err(0.00516740156010384, 0.00644205331553901); |
|
EXPECT_MAT_NEAR(std_err, correct_std_err, 1e-12); |
|
} |
|
|
|
TEST_F(fisheyeTest, EstimateUncertainties) |
|
{ |
|
const int n_images = 34; |
|
|
|
std::vector<std::vector<cv::Point2d> > imagePoints(n_images); |
|
std::vector<std::vector<cv::Point3d> > objectPoints(n_images); |
|
|
|
const std::string folder =combine(datasets_repository_path, "calib-3_stereo_from_JY"); |
|
cv::FileStorage fs_left(combine(folder, "left.xml"), cv::FileStorage::READ); |
|
CV_Assert(fs_left.isOpened()); |
|
for(int i = 0; i < n_images; ++i) |
|
fs_left[cv::format("image_%d", i )] >> imagePoints[i]; |
|
fs_left.release(); |
|
|
|
cv::FileStorage fs_object(combine(folder, "object.xml"), cv::FileStorage::READ); |
|
CV_Assert(fs_object.isOpened()); |
|
for(int i = 0; i < n_images; ++i) |
|
fs_object[cv::format("image_%d", i )] >> objectPoints[i]; |
|
fs_object.release(); |
|
|
|
int flag = 0; |
|
flag |= cv::fisheye::CALIB_RECOMPUTE_EXTRINSIC; |
|
flag |= cv::fisheye::CALIB_CHECK_COND; |
|
flag |= cv::fisheye::CALIB_FIX_SKEW; |
|
|
|
cv::Matx33d theK; |
|
cv::Vec4d theD; |
|
std::vector<cv::Vec3d> rvec; |
|
std::vector<cv::Vec3d> tvec; |
|
|
|
cv::fisheye::calibrate(objectPoints, imagePoints, imageSize, theK, theD, |
|
rvec, tvec, flag, cv::TermCriteria(3, 20, 1e-6)); |
|
|
|
cv::internal::IntrinsicParams param, errors; |
|
cv::Vec2d err_std; |
|
double thresh_cond = 1e6; |
|
int check_cond = 1; |
|
param.Init(cv::Vec2d(theK(0,0), theK(1,1)), cv::Vec2d(theK(0,2), theK(1, 2)), theD); |
|
param.isEstimate = std::vector<uchar>(9, 1); |
|
param.isEstimate[4] = 0; |
|
|
|
errors.isEstimate = param.isEstimate; |
|
|
|
double rms; |
|
|
|
cv::internal::EstimateUncertainties(objectPoints, imagePoints, param, rvec, tvec, |
|
errors, err_std, thresh_cond, check_cond, rms); |
|
|
|
EXPECT_MAT_NEAR(errors.f, cv::Vec2d(1.29837104202046, 1.31565641071524), 1e-10); |
|
EXPECT_MAT_NEAR(errors.c, cv::Vec2d(0.890439368129246, 0.816096854937896), 1e-10); |
|
EXPECT_MAT_NEAR(errors.k, cv::Vec4d(0.00516248605191506, 0.0168181467500934, 0.0213118690274604, 0.00916010877545648), 1e-10); |
|
EXPECT_MAT_NEAR(err_std, cv::Vec2d(0.187475975266883, 0.185678953263995), 1e-10); |
|
CV_Assert(fabs(rms - 0.263782587133546) < 1e-10); |
|
CV_Assert(errors.alpha == 0); |
|
} |
|
|
|
TEST_F(fisheyeTest, stereoRectify) |
|
{ |
|
// For consistency purposes |
|
CV_StaticAssert( |
|
static_cast<int>(cv::CALIB_ZERO_DISPARITY) == static_cast<int>(cv::fisheye::CALIB_ZERO_DISPARITY), |
|
"For the purpose of continuity the following should be true: cv::CALIB_ZERO_DISPARITY == cv::fisheye::CALIB_ZERO_DISPARITY" |
|
); |
|
|
|
const std::string folder = combine(datasets_repository_path, "calib-3_stereo_from_JY"); |
|
|
|
cv::Size calibration_size = this->imageSize, requested_size = calibration_size; |
|
cv::Matx33d K1 = this->K, K2 = K1; |
|
cv::Mat D1 = cv::Mat(this->D), D2 = D1; |
|
|
|
cv::Vec3d theT = this->T; |
|
cv::Matx33d theR = this->R; |
|
|
|
double balance = 0.0, fov_scale = 1.1; |
|
cv::Mat R1, R2, P1, P2, Q; |
|
cv::fisheye::stereoRectify(K1, D1, K2, D2, calibration_size, theR, theT, R1, R2, P1, P2, Q, |
|
cv::fisheye::CALIB_ZERO_DISPARITY, requested_size, balance, fov_scale); |
|
|
|
// Collected with these CMake flags: -DWITH_IPP=OFF -DCV_ENABLE_INTRINSICS=OFF -DCV_DISABLE_OPTIMIZATION=ON -DCMAKE_BUILD_TYPE=Debug |
|
cv::Matx33d R1_ref( |
|
0.9992853269091279, 0.03779164101000276, -0.0007920188690205426, |
|
-0.03778569762983931, 0.9992646472015868, 0.006511981857667881, |
|
0.001037534936357442, -0.006477400933964018, 0.9999784831677112 |
|
); |
|
cv::Matx33d R2_ref( |
|
0.9994868963898833, -0.03197579751378937, -0.001868774538573449, |
|
0.03196298186616116, 0.9994677442608699, -0.0065265589947392, |
|
0.002076471801477729, 0.006463478587068991, 0.9999769555891836 |
|
); |
|
cv::Matx34d P1_ref( |
|
420.8551870450913, 0, 586.501617798451, 0, |
|
0, 420.8551870450913, 374.7667511986098, 0, |
|
0, 0, 1, 0 |
|
); |
|
cv::Matx34d P2_ref( |
|
420.8551870450913, 0, 586.501617798451, -41.77758076597302, |
|
0, 420.8551870450913, 374.7667511986098, 0, |
|
0, 0, 1, 0 |
|
); |
|
cv::Matx44d Q_ref( |
|
1, 0, 0, -586.501617798451, |
|
0, 1, 0, -374.7667511986098, |
|
0, 0, 0, 420.8551870450913, |
|
0, 0, 10.07370889670733, -0 |
|
); |
|
|
|
const double eps = 1e-10; |
|
EXPECT_MAT_NEAR(R1_ref, R1, eps); |
|
EXPECT_MAT_NEAR(R2_ref, R2, eps); |
|
EXPECT_MAT_NEAR(P1_ref, P1, eps); |
|
EXPECT_MAT_NEAR(P2_ref, P2, eps); |
|
EXPECT_MAT_NEAR(Q_ref, Q, eps); |
|
|
|
if (::testing::Test::HasFailure()) |
|
{ |
|
std::cout << "Actual values are:" << std::endl |
|
<< "R1 =" << std::endl << R1 << std::endl |
|
<< "R2 =" << std::endl << R2 << std::endl |
|
<< "P1 =" << std::endl << P1 << std::endl |
|
<< "P2 =" << std::endl << P2 << std::endl |
|
<< "Q =" << std::endl << Q << std::endl; |
|
} |
|
|
|
if (cvtest::debugLevel == 0) |
|
return; |
|
// DEBUG code is below |
|
|
|
cv::Mat lmapx, lmapy, rmapx, rmapy; |
|
//rewrite for fisheye |
|
cv::fisheye::initUndistortRectifyMap(K1, D1, R1, P1, requested_size, CV_32F, lmapx, lmapy); |
|
cv::fisheye::initUndistortRectifyMap(K2, D2, R2, P2, requested_size, CV_32F, rmapx, rmapy); |
|
|
|
cv::Mat l, r, lundist, rundist; |
|
for (int i = 0; i < 34; ++i) |
|
{ |
|
SCOPED_TRACE(cv::format("image %d", i)); |
|
l = imread(combine(folder, cv::format("left/stereo_pair_%03d.jpg", i)), cv::IMREAD_COLOR); |
|
r = imread(combine(folder, cv::format("right/stereo_pair_%03d.jpg", i)), cv::IMREAD_COLOR); |
|
ASSERT_FALSE(l.empty()); |
|
ASSERT_FALSE(r.empty()); |
|
|
|
int ndisp = 128; |
|
cv::rectangle(l, cv::Rect(255, 0, 829, l.rows-1), cv::Scalar(0, 0, 255)); |
|
cv::rectangle(r, cv::Rect(255, 0, 829, l.rows-1), cv::Scalar(0, 0, 255)); |
|
cv::rectangle(r, cv::Rect(255-ndisp, 0, 829+ndisp ,l.rows-1), cv::Scalar(0, 0, 255)); |
|
cv::remap(l, lundist, lmapx, lmapy, cv::INTER_LINEAR); |
|
cv::remap(r, rundist, rmapx, rmapy, cv::INTER_LINEAR); |
|
|
|
for (int ii = 0; ii < lundist.rows; ii += 20) |
|
{ |
|
cv::line(lundist, cv::Point(0, ii), cv::Point(lundist.cols, ii), cv::Scalar(0, 255, 0)); |
|
cv::line(rundist, cv::Point(0, ii), cv::Point(lundist.cols, ii), cv::Scalar(0, 255, 0)); |
|
} |
|
|
|
cv::Mat rectification; |
|
merge4(l, r, lundist, rundist, rectification); |
|
|
|
cv::imwrite(cv::format("fisheye_rectification_AB_%03d.png", i), rectification); |
|
} |
|
} |
|
|
|
TEST_F(fisheyeTest, stereoCalibrate) |
|
{ |
|
const int n_images = 34; |
|
|
|
const std::string folder = combine(datasets_repository_path, "calib-3_stereo_from_JY"); |
|
|
|
std::vector<std::vector<cv::Point2d> > leftPoints(n_images); |
|
std::vector<std::vector<cv::Point2d> > rightPoints(n_images); |
|
std::vector<std::vector<cv::Point3d> > objectPoints(n_images); |
|
|
|
cv::FileStorage fs_left(combine(folder, "left.xml"), cv::FileStorage::READ); |
|
CV_Assert(fs_left.isOpened()); |
|
for(int i = 0; i < n_images; ++i) |
|
fs_left[cv::format("image_%d", i )] >> leftPoints[i]; |
|
fs_left.release(); |
|
|
|
cv::FileStorage fs_right(combine(folder, "right.xml"), cv::FileStorage::READ); |
|
CV_Assert(fs_right.isOpened()); |
|
for(int i = 0; i < n_images; ++i) |
|
fs_right[cv::format("image_%d", i )] >> rightPoints[i]; |
|
fs_right.release(); |
|
|
|
cv::FileStorage fs_object(combine(folder, "object.xml"), cv::FileStorage::READ); |
|
CV_Assert(fs_object.isOpened()); |
|
for(int i = 0; i < n_images; ++i) |
|
fs_object[cv::format("image_%d", i )] >> objectPoints[i]; |
|
fs_object.release(); |
|
|
|
cv::Matx33d K1, K2, theR; |
|
cv::Vec3d theT; |
|
cv::Vec4d D1, D2; |
|
|
|
int flag = 0; |
|
flag |= cv::fisheye::CALIB_RECOMPUTE_EXTRINSIC; |
|
flag |= cv::fisheye::CALIB_CHECK_COND; |
|
flag |= cv::fisheye::CALIB_FIX_SKEW; |
|
|
|
cv::fisheye::stereoCalibrate(objectPoints, leftPoints, rightPoints, |
|
K1, D1, K2, D2, imageSize, theR, theT, flag, |
|
cv::TermCriteria(3, 12, 0)); |
|
|
|
cv::Matx33d R_correct( 0.9975587205950972, 0.06953016383322372, 0.006492709911733523, |
|
-0.06956823121068059, 0.9975601387249519, 0.005833595226966235, |
|
-0.006071257768382089, -0.006271040135405457, 0.9999619062167968); |
|
cv::Vec3d T_correct(-0.099402724724121, 0.00270812139265413, 0.00129330292472699); |
|
cv::Matx33d K1_correct (561.195925927249, 0, 621.282400272412, |
|
0, 562.849402029712, 380.555455380889, |
|
0, 0, 1); |
|
|
|
cv::Matx33d K2_correct (560.395452535348, 0, 678.971652040359, |
|
0, 561.90171021422, 380.401340535339, |
|
0, 0, 1); |
|
|
|
cv::Vec4d D1_correct (-7.44253716539556e-05, -0.00702662033932424, 0.00737569823650885, -0.00342230256441771); |
|
cv::Vec4d D2_correct (-0.0130785435677431, 0.0284434505383497, -0.0360333869900506, 0.0144724062347222); |
|
|
|
EXPECT_MAT_NEAR(theR, R_correct, 1e-10); |
|
EXPECT_MAT_NEAR(theT, T_correct, 1e-10); |
|
|
|
EXPECT_MAT_NEAR(K1, K1_correct, 1e-10); |
|
EXPECT_MAT_NEAR(K2, K2_correct, 1e-10); |
|
|
|
EXPECT_MAT_NEAR(D1, D1_correct, 1e-10); |
|
EXPECT_MAT_NEAR(D2, D2_correct, 1e-10); |
|
|
|
} |
|
|
|
TEST_F(fisheyeTest, stereoCalibrateFixIntrinsic) |
|
{ |
|
const int n_images = 34; |
|
|
|
const std::string folder = combine(datasets_repository_path, "calib-3_stereo_from_JY"); |
|
|
|
std::vector<std::vector<cv::Point2d> > leftPoints(n_images); |
|
std::vector<std::vector<cv::Point2d> > rightPoints(n_images); |
|
std::vector<std::vector<cv::Point3d> > objectPoints(n_images); |
|
|
|
cv::FileStorage fs_left(combine(folder, "left.xml"), cv::FileStorage::READ); |
|
CV_Assert(fs_left.isOpened()); |
|
for(int i = 0; i < n_images; ++i) |
|
fs_left[cv::format("image_%d", i )] >> leftPoints[i]; |
|
fs_left.release(); |
|
|
|
cv::FileStorage fs_right(combine(folder, "right.xml"), cv::FileStorage::READ); |
|
CV_Assert(fs_right.isOpened()); |
|
for(int i = 0; i < n_images; ++i) |
|
fs_right[cv::format("image_%d", i )] >> rightPoints[i]; |
|
fs_right.release(); |
|
|
|
cv::FileStorage fs_object(combine(folder, "object.xml"), cv::FileStorage::READ); |
|
CV_Assert(fs_object.isOpened()); |
|
for(int i = 0; i < n_images; ++i) |
|
fs_object[cv::format("image_%d", i )] >> objectPoints[i]; |
|
fs_object.release(); |
|
|
|
cv::Matx33d theR; |
|
cv::Vec3d theT; |
|
|
|
int flag = 0; |
|
flag |= cv::fisheye::CALIB_RECOMPUTE_EXTRINSIC; |
|
flag |= cv::fisheye::CALIB_CHECK_COND; |
|
flag |= cv::fisheye::CALIB_FIX_SKEW; |
|
flag |= cv::fisheye::CALIB_FIX_INTRINSIC; |
|
|
|
cv::Matx33d K1 (561.195925927249, 0, 621.282400272412, |
|
0, 562.849402029712, 380.555455380889, |
|
0, 0, 1); |
|
|
|
cv::Matx33d K2 (560.395452535348, 0, 678.971652040359, |
|
0, 561.90171021422, 380.401340535339, |
|
0, 0, 1); |
|
|
|
cv::Vec4d D1 (-7.44253716539556e-05, -0.00702662033932424, 0.00737569823650885, -0.00342230256441771); |
|
cv::Vec4d D2 (-0.0130785435677431, 0.0284434505383497, -0.0360333869900506, 0.0144724062347222); |
|
|
|
cv::fisheye::stereoCalibrate(objectPoints, leftPoints, rightPoints, |
|
K1, D1, K2, D2, imageSize, theR, theT, flag, |
|
cv::TermCriteria(3, 12, 0)); |
|
|
|
cv::Matx33d R_correct( 0.9975587205950972, 0.06953016383322372, 0.006492709911733523, |
|
-0.06956823121068059, 0.9975601387249519, 0.005833595226966235, |
|
-0.006071257768382089, -0.006271040135405457, 0.9999619062167968); |
|
cv::Vec3d T_correct(-0.099402724724121, 0.00270812139265413, 0.00129330292472699); |
|
|
|
|
|
EXPECT_MAT_NEAR(theR, R_correct, 1e-10); |
|
EXPECT_MAT_NEAR(theT, T_correct, 1e-10); |
|
} |
|
|
|
TEST_F(fisheyeTest, CalibrationWithDifferentPointsNumber) |
|
{ |
|
const int n_images = 2; |
|
|
|
std::vector<std::vector<cv::Point2d> > imagePoints(n_images); |
|
std::vector<std::vector<cv::Point3d> > objectPoints(n_images); |
|
|
|
std::vector<cv::Point2d> imgPoints1(10); |
|
std::vector<cv::Point2d> imgPoints2(15); |
|
|
|
std::vector<cv::Point3d> objectPoints1(imgPoints1.size()); |
|
std::vector<cv::Point3d> objectPoints2(imgPoints2.size()); |
|
|
|
for (size_t i = 0; i < imgPoints1.size(); i++) |
|
{ |
|
imgPoints1[i] = cv::Point2d((double)i, (double)i); |
|
objectPoints1[i] = cv::Point3d((double)i, (double)i, 10.0); |
|
} |
|
|
|
for (size_t i = 0; i < imgPoints2.size(); i++) |
|
{ |
|
imgPoints2[i] = cv::Point2d(i + 0.5, i + 0.5); |
|
objectPoints2[i] = cv::Point3d(i + 0.5, i + 0.5, 10.0); |
|
} |
|
|
|
imagePoints[0] = imgPoints1; |
|
imagePoints[1] = imgPoints2; |
|
objectPoints[0] = objectPoints1; |
|
objectPoints[1] = objectPoints2; |
|
|
|
cv::Matx33d theK = cv::Matx33d::eye(); |
|
cv::Vec4d theD; |
|
|
|
int flag = 0; |
|
flag |= cv::fisheye::CALIB_RECOMPUTE_EXTRINSIC; |
|
flag |= cv::fisheye::CALIB_USE_INTRINSIC_GUESS; |
|
flag |= cv::fisheye::CALIB_FIX_SKEW; |
|
|
|
cv::fisheye::calibrate(objectPoints, imagePoints, cv::Size(100, 100), theK, theD, |
|
cv::noArray(), cv::noArray(), flag, cv::TermCriteria(3, 20, 1e-6)); |
|
} |
|
|
|
TEST_F(fisheyeTest, stereoCalibrateWithPerViewTransformations) |
|
{ |
|
const int n_images = 34; |
|
|
|
const std::string folder = combine(datasets_repository_path, "calib-3_stereo_from_JY"); |
|
|
|
std::vector<std::vector<cv::Point2d> > leftPoints(n_images); |
|
std::vector<std::vector<cv::Point2d> > rightPoints(n_images); |
|
std::vector<std::vector<cv::Point3d> > objectPoints(n_images); |
|
|
|
cv::FileStorage fs_left(combine(folder, "left.xml"), cv::FileStorage::READ); |
|
CV_Assert(fs_left.isOpened()); |
|
for(int i = 0; i < n_images; ++i) |
|
fs_left[cv::format("image_%d", i )] >> leftPoints[i]; |
|
fs_left.release(); |
|
|
|
cv::FileStorage fs_right(combine(folder, "right.xml"), cv::FileStorage::READ); |
|
CV_Assert(fs_right.isOpened()); |
|
for(int i = 0; i < n_images; ++i) |
|
fs_right[cv::format("image_%d", i )] >> rightPoints[i]; |
|
fs_right.release(); |
|
|
|
cv::FileStorage fs_object(combine(folder, "object.xml"), cv::FileStorage::READ); |
|
CV_Assert(fs_object.isOpened()); |
|
for(int i = 0; i < n_images; ++i) |
|
fs_object[cv::format("image_%d", i )] >> objectPoints[i]; |
|
fs_object.release(); |
|
|
|
cv::Matx33d K1, K2, theR; |
|
cv::Vec3d theT; |
|
cv::Vec4d D1, D2; |
|
|
|
std::vector<cv::Mat> rvecs, tvecs; |
|
|
|
int flag = 0; |
|
flag |= cv::fisheye::CALIB_RECOMPUTE_EXTRINSIC; |
|
flag |= cv::fisheye::CALIB_CHECK_COND; |
|
flag |= cv::fisheye::CALIB_FIX_SKEW; |
|
|
|
double rmsErrorStereoCalib = cv::fisheye::stereoCalibrate(objectPoints, leftPoints, rightPoints, |
|
K1, D1, K2, D2, imageSize, theR, theT, rvecs, tvecs, flag, |
|
cv::TermCriteria(3, 12, 0)); |
|
|
|
std::vector<cv::Point2d> reprojectedImgPts[2] = {std::vector<cv::Point2d>(n_images), std::vector<cv::Point2d>(n_images)}; |
|
size_t totalPoints = 0; |
|
double totalMSError[2] = { 0, 0 }; |
|
for( size_t i = 0; i < n_images; i++ ) |
|
{ |
|
cv::Matx33d viewRotMat1, viewRotMat2; |
|
cv::Vec3d viewT1, viewT2; |
|
cv::Mat rVec; |
|
cv::Rodrigues( rvecs[i], rVec ); |
|
rVec.convertTo(viewRotMat1, CV_64F); |
|
tvecs[i].convertTo(viewT1, CV_64F); |
|
|
|
viewRotMat2 = theR * viewRotMat1; |
|
cv::Vec3d T2t = theR * viewT1; |
|
viewT2 = T2t + theT; |
|
|
|
cv::Vec3d viewRotVec1, viewRotVec2; |
|
cv::Rodrigues(viewRotMat1, viewRotVec1); |
|
cv::Rodrigues(viewRotMat2, viewRotVec2); |
|
|
|
double alpha1 = K1(0, 1) / K1(0, 0); |
|
double alpha2 = K2(0, 1) / K2(0, 0); |
|
cv::fisheye::projectPoints(objectPoints[i], reprojectedImgPts[0], viewRotVec1, viewT1, K1, D1, alpha1); |
|
cv::fisheye::projectPoints(objectPoints[i], reprojectedImgPts[1], viewRotVec2, viewT2, K2, D2, alpha2); |
|
|
|
double viewMSError[2] = { |
|
cv::norm(leftPoints[i], reprojectedImgPts[0], cv::NORM_L2SQR), |
|
cv::norm(rightPoints[i], reprojectedImgPts[1], cv::NORM_L2SQR) |
|
}; |
|
|
|
size_t n = objectPoints[i].size(); |
|
totalMSError[0] += viewMSError[0]; |
|
totalMSError[1] += viewMSError[1]; |
|
totalPoints += n; |
|
} |
|
double rmsErrorFromReprojectedImgPts = std::sqrt((totalMSError[0] + totalMSError[1]) / (2 * totalPoints)); |
|
|
|
cv::Matx33d R_correct( 0.9975587205950972, 0.06953016383322372, 0.006492709911733523, |
|
-0.06956823121068059, 0.9975601387249519, 0.005833595226966235, |
|
-0.006071257768382089, -0.006271040135405457, 0.9999619062167968); |
|
cv::Vec3d T_correct(-0.099402724724121, 0.00270812139265413, 0.00129330292472699); |
|
cv::Matx33d K1_correct (561.195925927249, 0, 621.282400272412, |
|
0, 562.849402029712, 380.555455380889, |
|
0, 0, 1); |
|
|
|
cv::Matx33d K2_correct (560.395452535348, 0, 678.971652040359, |
|
0, 561.90171021422, 380.401340535339, |
|
0, 0, 1); |
|
|
|
cv::Vec4d D1_correct (-7.44253716539556e-05, -0.00702662033932424, 0.00737569823650885, -0.00342230256441771); |
|
cv::Vec4d D2_correct (-0.0130785435677431, 0.0284434505383497, -0.0360333869900506, 0.0144724062347222); |
|
|
|
EXPECT_MAT_NEAR(theR, R_correct, 1e-10); |
|
EXPECT_MAT_NEAR(theT, T_correct, 1e-10); |
|
|
|
EXPECT_MAT_NEAR(K1, K1_correct, 1e-10); |
|
EXPECT_MAT_NEAR(K2, K2_correct, 1e-10); |
|
|
|
EXPECT_MAT_NEAR(D1, D1_correct, 1e-10); |
|
EXPECT_MAT_NEAR(D2, D2_correct, 1e-10); |
|
|
|
EXPECT_NEAR(rmsErrorStereoCalib, rmsErrorFromReprojectedImgPts, 1e-4); |
|
} |
|
|
|
TEST_F(fisheyeTest, estimateNewCameraMatrixForUndistortRectify) |
|
{ |
|
cv::Size size(1920, 1080); |
|
|
|
cv::Mat K_fullhd(3, 3, cv::DataType<double>::type); |
|
K_fullhd.at<double>(0, 0) = 600.44477382; |
|
K_fullhd.at<double>(0, 1) = 0.0; |
|
K_fullhd.at<double>(0, 2) = 992.06425788; |
|
|
|
K_fullhd.at<double>(1, 0) = 0.0; |
|
K_fullhd.at<double>(1, 1) = 578.99298055; |
|
K_fullhd.at<double>(1, 2) = 549.26826242; |
|
|
|
K_fullhd.at<double>(2, 0) = 0.0; |
|
K_fullhd.at<double>(2, 1) = 0.0; |
|
K_fullhd.at<double>(2, 2) = 1.0; |
|
|
|
cv::Mat K_new_truth(3, 3, cv::DataType<double>::type); |
|
|
|
K_new_truth.at<double>(0, 0) = 387.4809086880343; |
|
K_new_truth.at<double>(0, 1) = 0.0; |
|
K_new_truth.at<double>(0, 2) = 1036.669802754649; |
|
|
|
K_new_truth.at<double>(1, 0) = 0.0; |
|
K_new_truth.at<double>(1, 1) = 373.6375700303157; |
|
K_new_truth.at<double>(1, 2) = 538.8373261247601; |
|
|
|
K_new_truth.at<double>(2, 0) = 0.0; |
|
K_new_truth.at<double>(2, 1) = 0.0; |
|
K_new_truth.at<double>(2, 2) = 1.0; |
|
|
|
cv::Mat D_fullhd(4, 1, cv::DataType<double>::type); |
|
D_fullhd.at<double>(0, 0) = -0.05090103223466704; |
|
D_fullhd.at<double>(1, 0) = 0.030944413642173308; |
|
D_fullhd.at<double>(2, 0) = -0.021509225493198905; |
|
D_fullhd.at<double>(3, 0) = 0.0043378096628297145; |
|
cv::Mat E = cv::Mat::eye(3, 3, cv::DataType<double>::type); |
|
|
|
cv::Mat K_new(3, 3, cv::DataType<double>::type); |
|
|
|
cv::fisheye::estimateNewCameraMatrixForUndistortRectify(K_fullhd, D_fullhd, size, E, K_new, 0.0, size); |
|
|
|
EXPECT_MAT_NEAR(K_new, K_new_truth, 1e-6); |
|
} |
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// |
|
/// fisheyeTest:: |
|
|
|
const cv::Size fisheyeTest::imageSize(1280, 800); |
|
|
|
const cv::Matx33d fisheyeTest::K(558.478087865323, 0, 620.458515360843, |
|
0, 560.506767351568, 381.939424848348, |
|
0, 0, 1); |
|
|
|
const cv::Vec4d fisheyeTest::D(-0.0014613319981768, -0.00329861110580401, 0.00605760088590183, -0.00374209380722371); |
|
|
|
|
|
const cv::Matx33d fisheyeTest::R ( 9.9756700084424932e-01, 6.9698277640183867e-02, 1.4929569991321144e-03, |
|
-6.9711825162322980e-02, 9.9748249845531767e-01, 1.2997180766418455e-02, |
|
-5.8331736398316541e-04,-1.3069635393884985e-02, 9.9991441852366736e-01); |
|
|
|
const cv::Vec3d fisheyeTest::T(-9.9217369356044638e-02, 3.1741831972356663e-03, 1.8551007952921010e-04); |
|
|
|
std::string fisheyeTest::combine(const std::string& _item1, const std::string& _item2) |
|
{ |
|
std::string item1 = _item1, item2 = _item2; |
|
std::replace(item1.begin(), item1.end(), '\\', '/'); |
|
std::replace(item2.begin(), item2.end(), '\\', '/'); |
|
|
|
if (item1.empty()) |
|
return item2; |
|
|
|
if (item2.empty()) |
|
return item1; |
|
|
|
char last = item1[item1.size()-1]; |
|
return item1 + (last != '/' ? "/" : "") + item2; |
|
} |
|
|
|
void fisheyeTest::merge4(const cv::Mat& tl, const cv::Mat& tr, const cv::Mat& bl, const cv::Mat& br, cv::Mat& merged) |
|
{ |
|
int type = tl.type(); |
|
cv::Size sz = tl.size(); |
|
ASSERT_EQ(type, tr.type()); ASSERT_EQ(type, bl.type()); ASSERT_EQ(type, br.type()); |
|
ASSERT_EQ(sz.width, tr.cols); ASSERT_EQ(sz.width, bl.cols); ASSERT_EQ(sz.width, br.cols); |
|
ASSERT_EQ(sz.height, tr.rows); ASSERT_EQ(sz.height, bl.rows); ASSERT_EQ(sz.height, br.rows); |
|
|
|
merged.create(cv::Size(sz.width * 2, sz.height * 2), type); |
|
tl.copyTo(merged(cv::Rect(0, 0, sz.width, sz.height))); |
|
tr.copyTo(merged(cv::Rect(sz.width, 0, sz.width, sz.height))); |
|
bl.copyTo(merged(cv::Rect(0, sz.height, sz.width, sz.height))); |
|
br.copyTo(merged(cv::Rect(sz.width, sz.height, sz.width, sz.height))); |
|
} |
|
|
|
}} // namespace
|
|
|