Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

283 lines
9.3 KiB

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2021 Intel Corporation
#include <ade/util/zip_range.hpp> // zip_range, indexed
#include "compiler/gmodel.hpp"
#include <opencv2/gapi/garg.hpp>
#include <opencv2/gapi/util/throw.hpp> // throw_error
#include <opencv2/gapi/python/python.hpp>
#include "api/gbackend_priv.hpp"
#include "backends/common/gbackend.hpp"
cv::gapi::python::GPythonKernel::GPythonKernel(cv::gapi::python::Impl runf,
cv::gapi::python::Setup setupf)
: run(runf), setup(setupf), is_stateful(setup != nullptr)
{
}
cv::gapi::python::GPythonFunctor::GPythonFunctor(const char* id,
const cv::gapi::python::GPythonFunctor::Meta& meta,
const cv::gapi::python::Impl& impl,
const cv::gapi::python::Setup& setup)
: gapi::GFunctor(id), impl_{GPythonKernel{impl, setup}, meta}
{
}
cv::GKernelImpl cv::gapi::python::GPythonFunctor::impl() const
{
return impl_;
}
cv::gapi::GBackend cv::gapi::python::GPythonFunctor::backend() const
{
return cv::gapi::python::backend();
}
namespace {
struct PythonUnit
{
static const char *name() { return "PythonUnit"; }
cv::gapi::python::GPythonKernel kernel;
};
using PythonModel = ade::TypedGraph
< cv::gimpl::Op
, PythonUnit
>;
using ConstPythonModel = ade::ConstTypedGraph
< cv::gimpl::Op
, PythonUnit
>;
class GPythonExecutable final: public cv::gimpl::GIslandExecutable
{
virtual void run(std::vector<InObj> &&,
std::vector<OutObj> &&) override;
virtual bool allocatesOutputs() const override { return true; }
// Return an empty RMat since we will reuse the input.
// There is no need to allocate and copy 4k image here.
virtual cv::RMat allocate(const cv::GMatDesc&) const override { return {}; }
virtual bool canReshape() const override { return true; }
virtual void handleNewStream() override;
virtual void reshape(ade::Graph&, const cv::GCompileArgs&) override {
// Do nothing here
}
public:
GPythonExecutable(const ade::Graph &,
const std::vector<ade::NodeHandle> &);
const ade::Graph& m_g;
cv::gimpl::GModel::ConstGraph m_gm;
cv::gapi::python::GPythonKernel m_kernel;
ade::NodeHandle m_op;
cv::GArg m_node_state;
cv::GTypesInfo m_out_info;
cv::GMetaArgs m_in_metas;
cv::gimpl::Mag m_res;
};
static cv::GArg packArg(cv::gimpl::Mag& m_res, const cv::GArg &arg)
{
// No API placeholders allowed at this point
// FIXME: this check has to be done somewhere in compilation stage.
GAPI_Assert( arg.kind != cv::detail::ArgKind::GMAT
&& arg.kind != cv::detail::ArgKind::GSCALAR
&& arg.kind != cv::detail::ArgKind::GARRAY
&& arg.kind != cv::detail::ArgKind::GOPAQUE
&& arg.kind != cv::detail::ArgKind::GFRAME);
if (arg.kind != cv::detail::ArgKind::GOBJREF)
{
// All other cases - pass as-is, with no transformations to GArg contents.
return arg;
}
GAPI_Assert(arg.kind == cv::detail::ArgKind::GOBJREF);
// Wrap associated CPU object (either host or an internal one)
// FIXME: object can be moved out!!! GExecutor faced that.
const cv::gimpl::RcDesc &ref = arg.get<cv::gimpl::RcDesc>();
switch (ref.shape)
{
case cv::GShape::GMAT: return cv::GArg(m_res.slot<cv::Mat>() [ref.id]);
case cv::GShape::GSCALAR: return cv::GArg(m_res.slot<cv::Scalar>()[ref.id]);
// Note: .at() is intentional for GArray and GOpaque as objects MUST be already there
// (and constructed by either bindIn/Out or resetInternal)
case cv::GShape::GARRAY: return cv::GArg(m_res.slot<cv::detail::VectorRef>().at(ref.id));
case cv::GShape::GOPAQUE: return cv::GArg(m_res.slot<cv::detail::OpaqueRef>().at(ref.id));
case cv::GShape::GFRAME: return cv::GArg(m_res.slot<cv::MediaFrame>().at(ref.id));
default:
cv::util::throw_error(std::logic_error("Unsupported GShape type"));
break;
}
}
static void writeBack(cv::GRunArg& arg, cv::GRunArgP& out)
{
switch (arg.index())
{
case cv::GRunArg::index_of<cv::Mat>():
{
auto& rmat = *cv::util::get<cv::RMat*>(out);
rmat = cv::make_rmat<cv::gimpl::RMatOnMat>(cv::util::get<cv::Mat>(arg));
break;
}
case cv::GRunArg::index_of<cv::Scalar>():
{
*cv::util::get<cv::Scalar*>(out) = cv::util::get<cv::Scalar>(arg);
break;
}
case cv::GRunArg::index_of<cv::detail::OpaqueRef>():
{
auto& oref = cv::util::get<cv::detail::OpaqueRef>(arg);
cv::util::get<cv::detail::OpaqueRef>(out).mov(oref);
break;
}
case cv::GRunArg::index_of<cv::detail::VectorRef>():
{
auto& vref = cv::util::get<cv::detail::VectorRef>(arg);
cv::util::get<cv::detail::VectorRef>(out).mov(vref);
break;
}
default:
GAPI_Assert(false && "Unsupported output type");
}
}
void GPythonExecutable::handleNewStream()
{
if (!m_kernel.is_stateful)
return;
m_node_state = m_kernel.setup(cv::gimpl::GModel::collectInputMeta(m_gm, m_op),
m_gm.metadata(m_op).get<cv::gimpl::Op>().args);
}
void GPythonExecutable::run(std::vector<InObj> &&input_objs,
std::vector<OutObj> &&output_objs)
{
const auto &op = m_gm.metadata(m_op).get<cv::gimpl::Op>();
for (auto& it : input_objs) cv::gimpl::magazine::bindInArg(m_res, it.first, it.second);
using namespace std::placeholders;
cv::GArgs inputs;
ade::util::transform(op.args,
std::back_inserter(inputs),
std::bind(&packArg, std::ref(m_res), _1));
cv::gapi::python::GPythonContext ctx{inputs, m_in_metas, m_out_info, /*state*/{}};
// NB: For stateful kernel add state to its execution context
if (m_kernel.is_stateful)
{
ctx.m_state = cv::optional<cv::GArg>(m_node_state);
}
auto outs = m_kernel.run(ctx);
for (auto&& it : ade::util::zip(outs, output_objs))
{
writeBack(std::get<0>(it), std::get<1>(it).second);
}
}
class GPythonBackendImpl final: public cv::gapi::GBackend::Priv
{
virtual void unpackKernel(ade::Graph &graph,
const ade::NodeHandle &op_node,
const cv::GKernelImpl &impl) override
{
PythonModel gm(graph);
const auto &kernel = cv::util::any_cast<cv::gapi::python::GPythonKernel>(impl.opaque);
gm.metadata(op_node).set(PythonUnit{kernel});
}
virtual EPtr compile(const ade::Graph &graph,
const cv::GCompileArgs &,
const std::vector<ade::NodeHandle> &nodes) const override
{
return EPtr{new GPythonExecutable(graph, nodes)};
}
virtual bool controlsMerge() const override
{
return true;
}
virtual bool allowsMerge(const cv::gimpl::GIslandModel::Graph &,
const ade::NodeHandle &,
const ade::NodeHandle &,
const ade::NodeHandle &) const override
{
return false;
}
};
GPythonExecutable::GPythonExecutable(const ade::Graph& g,
const std::vector<ade::NodeHandle>& nodes)
: m_g(g), m_gm(m_g)
{
using namespace cv::gimpl;
const auto is_op = [this](const ade::NodeHandle &nh)
{
return m_gm.metadata(nh).get<NodeType>().t == NodeType::OP;
};
auto it = std::find_if(nodes.begin(), nodes.end(), is_op);
GAPI_Assert(it != nodes.end() && "No operators found for this island?!");
ConstPythonModel cag(m_g);
m_op = *it;
m_kernel = cag.metadata(m_op).get<PythonUnit>().kernel;
// If kernel is stateful then prepare storage for its state.
if (m_kernel.is_stateful)
{
m_node_state = cv::GArg{ };
}
// Ensure this the only op in the graph
if (std::any_of(it+1, nodes.end(), is_op))
{
cv::util::throw_error
(std::logic_error
("Internal error: Python subgraph has multiple operations"));
}
m_out_info.reserve(m_op->outEdges().size());
for (const auto &e : m_op->outEdges())
{
const auto& out_data = m_gm.metadata(e->dstNode()).get<cv::gimpl::Data>();
m_out_info.push_back(cv::GTypeInfo{out_data.shape, out_data.kind, out_data.ctor});
}
const auto& op = m_gm.metadata(m_op).get<cv::gimpl::Op>();
m_in_metas.resize(op.args.size());
GAPI_Assert(m_op->inEdges().size() > 0);
for (const auto &in_eh : m_op->inEdges())
{
const auto& input_port = m_gm.metadata(in_eh).get<Input>().port;
const auto& input_nh = in_eh->srcNode();
const auto& input_meta = m_gm.metadata(input_nh).get<Data>().meta;
m_in_metas.at(input_port) = input_meta;
}
}
} // anonymous namespace
cv::gapi::GBackend cv::gapi::python::backend()
{
static cv::gapi::GBackend this_backend(std::make_shared<GPythonBackendImpl>());
return this_backend;
}