Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
283 lines
9.3 KiB
283 lines
9.3 KiB
// This file is part of OpenCV project. |
|
// It is subject to the license terms in the LICENSE file found in the top-level directory |
|
// of this distribution and at http://opencv.org/license.html. |
|
// |
|
// Copyright (C) 2021 Intel Corporation |
|
|
|
#include <ade/util/zip_range.hpp> // zip_range, indexed |
|
|
|
#include "compiler/gmodel.hpp" |
|
#include <opencv2/gapi/garg.hpp> |
|
#include <opencv2/gapi/util/throw.hpp> // throw_error |
|
#include <opencv2/gapi/python/python.hpp> |
|
|
|
#include "api/gbackend_priv.hpp" |
|
#include "backends/common/gbackend.hpp" |
|
|
|
cv::gapi::python::GPythonKernel::GPythonKernel(cv::gapi::python::Impl runf, |
|
cv::gapi::python::Setup setupf) |
|
: run(runf), setup(setupf), is_stateful(setup != nullptr) |
|
{ |
|
} |
|
|
|
cv::gapi::python::GPythonFunctor::GPythonFunctor(const char* id, |
|
const cv::gapi::python::GPythonFunctor::Meta& meta, |
|
const cv::gapi::python::Impl& impl, |
|
const cv::gapi::python::Setup& setup) |
|
: gapi::GFunctor(id), impl_{GPythonKernel{impl, setup}, meta} |
|
{ |
|
} |
|
|
|
cv::GKernelImpl cv::gapi::python::GPythonFunctor::impl() const |
|
{ |
|
return impl_; |
|
} |
|
|
|
cv::gapi::GBackend cv::gapi::python::GPythonFunctor::backend() const |
|
{ |
|
return cv::gapi::python::backend(); |
|
} |
|
|
|
namespace { |
|
|
|
struct PythonUnit |
|
{ |
|
static const char *name() { return "PythonUnit"; } |
|
cv::gapi::python::GPythonKernel kernel; |
|
}; |
|
|
|
using PythonModel = ade::TypedGraph |
|
< cv::gimpl::Op |
|
, PythonUnit |
|
>; |
|
|
|
using ConstPythonModel = ade::ConstTypedGraph |
|
< cv::gimpl::Op |
|
, PythonUnit |
|
>; |
|
|
|
class GPythonExecutable final: public cv::gimpl::GIslandExecutable |
|
{ |
|
virtual void run(std::vector<InObj> &&, |
|
std::vector<OutObj> &&) override; |
|
|
|
virtual bool allocatesOutputs() const override { return true; } |
|
// Return an empty RMat since we will reuse the input. |
|
// There is no need to allocate and copy 4k image here. |
|
virtual cv::RMat allocate(const cv::GMatDesc&) const override { return {}; } |
|
|
|
virtual bool canReshape() const override { return true; } |
|
virtual void handleNewStream() override; |
|
virtual void reshape(ade::Graph&, const cv::GCompileArgs&) override { |
|
// Do nothing here |
|
} |
|
|
|
public: |
|
GPythonExecutable(const ade::Graph &, |
|
const std::vector<ade::NodeHandle> &); |
|
|
|
const ade::Graph& m_g; |
|
cv::gimpl::GModel::ConstGraph m_gm; |
|
cv::gapi::python::GPythonKernel m_kernel; |
|
ade::NodeHandle m_op; |
|
cv::GArg m_node_state; |
|
|
|
cv::GTypesInfo m_out_info; |
|
cv::GMetaArgs m_in_metas; |
|
cv::gimpl::Mag m_res; |
|
}; |
|
|
|
static cv::GArg packArg(cv::gimpl::Mag& m_res, const cv::GArg &arg) |
|
{ |
|
// No API placeholders allowed at this point |
|
// FIXME: this check has to be done somewhere in compilation stage. |
|
GAPI_Assert( arg.kind != cv::detail::ArgKind::GMAT |
|
&& arg.kind != cv::detail::ArgKind::GSCALAR |
|
&& arg.kind != cv::detail::ArgKind::GARRAY |
|
&& arg.kind != cv::detail::ArgKind::GOPAQUE |
|
&& arg.kind != cv::detail::ArgKind::GFRAME); |
|
|
|
if (arg.kind != cv::detail::ArgKind::GOBJREF) |
|
{ |
|
// All other cases - pass as-is, with no transformations to GArg contents. |
|
return arg; |
|
} |
|
GAPI_Assert(arg.kind == cv::detail::ArgKind::GOBJREF); |
|
|
|
// Wrap associated CPU object (either host or an internal one) |
|
// FIXME: object can be moved out!!! GExecutor faced that. |
|
const cv::gimpl::RcDesc &ref = arg.get<cv::gimpl::RcDesc>(); |
|
switch (ref.shape) |
|
{ |
|
case cv::GShape::GMAT: return cv::GArg(m_res.slot<cv::Mat>() [ref.id]); |
|
case cv::GShape::GSCALAR: return cv::GArg(m_res.slot<cv::Scalar>()[ref.id]); |
|
// Note: .at() is intentional for GArray and GOpaque as objects MUST be already there |
|
// (and constructed by either bindIn/Out or resetInternal) |
|
case cv::GShape::GARRAY: return cv::GArg(m_res.slot<cv::detail::VectorRef>().at(ref.id)); |
|
case cv::GShape::GOPAQUE: return cv::GArg(m_res.slot<cv::detail::OpaqueRef>().at(ref.id)); |
|
case cv::GShape::GFRAME: return cv::GArg(m_res.slot<cv::MediaFrame>().at(ref.id)); |
|
default: |
|
cv::util::throw_error(std::logic_error("Unsupported GShape type")); |
|
break; |
|
} |
|
} |
|
|
|
static void writeBack(cv::GRunArg& arg, cv::GRunArgP& out) |
|
{ |
|
switch (arg.index()) |
|
{ |
|
case cv::GRunArg::index_of<cv::Mat>(): |
|
{ |
|
auto& rmat = *cv::util::get<cv::RMat*>(out); |
|
rmat = cv::make_rmat<cv::gimpl::RMatOnMat>(cv::util::get<cv::Mat>(arg)); |
|
break; |
|
} |
|
case cv::GRunArg::index_of<cv::Scalar>(): |
|
{ |
|
*cv::util::get<cv::Scalar*>(out) = cv::util::get<cv::Scalar>(arg); |
|
break; |
|
} |
|
case cv::GRunArg::index_of<cv::detail::OpaqueRef>(): |
|
{ |
|
auto& oref = cv::util::get<cv::detail::OpaqueRef>(arg); |
|
cv::util::get<cv::detail::OpaqueRef>(out).mov(oref); |
|
break; |
|
} |
|
case cv::GRunArg::index_of<cv::detail::VectorRef>(): |
|
{ |
|
auto& vref = cv::util::get<cv::detail::VectorRef>(arg); |
|
cv::util::get<cv::detail::VectorRef>(out).mov(vref); |
|
break; |
|
} |
|
default: |
|
GAPI_Assert(false && "Unsupported output type"); |
|
} |
|
} |
|
|
|
void GPythonExecutable::handleNewStream() |
|
{ |
|
if (!m_kernel.is_stateful) |
|
return; |
|
|
|
m_node_state = m_kernel.setup(cv::gimpl::GModel::collectInputMeta(m_gm, m_op), |
|
m_gm.metadata(m_op).get<cv::gimpl::Op>().args); |
|
} |
|
|
|
void GPythonExecutable::run(std::vector<InObj> &&input_objs, |
|
std::vector<OutObj> &&output_objs) |
|
{ |
|
const auto &op = m_gm.metadata(m_op).get<cv::gimpl::Op>(); |
|
for (auto& it : input_objs) cv::gimpl::magazine::bindInArg(m_res, it.first, it.second); |
|
|
|
using namespace std::placeholders; |
|
cv::GArgs inputs; |
|
ade::util::transform(op.args, |
|
std::back_inserter(inputs), |
|
std::bind(&packArg, std::ref(m_res), _1)); |
|
|
|
cv::gapi::python::GPythonContext ctx{inputs, m_in_metas, m_out_info, /*state*/{}}; |
|
|
|
// NB: For stateful kernel add state to its execution context |
|
if (m_kernel.is_stateful) |
|
{ |
|
ctx.m_state = cv::optional<cv::GArg>(m_node_state); |
|
} |
|
|
|
auto outs = m_kernel.run(ctx); |
|
|
|
for (auto&& it : ade::util::zip(outs, output_objs)) |
|
{ |
|
writeBack(std::get<0>(it), std::get<1>(it).second); |
|
} |
|
} |
|
|
|
class GPythonBackendImpl final: public cv::gapi::GBackend::Priv |
|
{ |
|
virtual void unpackKernel(ade::Graph &graph, |
|
const ade::NodeHandle &op_node, |
|
const cv::GKernelImpl &impl) override |
|
{ |
|
PythonModel gm(graph); |
|
const auto &kernel = cv::util::any_cast<cv::gapi::python::GPythonKernel>(impl.opaque); |
|
gm.metadata(op_node).set(PythonUnit{kernel}); |
|
} |
|
|
|
virtual EPtr compile(const ade::Graph &graph, |
|
const cv::GCompileArgs &, |
|
const std::vector<ade::NodeHandle> &nodes) const override |
|
{ |
|
return EPtr{new GPythonExecutable(graph, nodes)}; |
|
} |
|
|
|
virtual bool controlsMerge() const override |
|
{ |
|
return true; |
|
} |
|
|
|
virtual bool allowsMerge(const cv::gimpl::GIslandModel::Graph &, |
|
const ade::NodeHandle &, |
|
const ade::NodeHandle &, |
|
const ade::NodeHandle &) const override |
|
{ |
|
return false; |
|
} |
|
}; |
|
|
|
GPythonExecutable::GPythonExecutable(const ade::Graph& g, |
|
const std::vector<ade::NodeHandle>& nodes) |
|
: m_g(g), m_gm(m_g) |
|
{ |
|
using namespace cv::gimpl; |
|
const auto is_op = [this](const ade::NodeHandle &nh) |
|
{ |
|
return m_gm.metadata(nh).get<NodeType>().t == NodeType::OP; |
|
}; |
|
|
|
auto it = std::find_if(nodes.begin(), nodes.end(), is_op); |
|
GAPI_Assert(it != nodes.end() && "No operators found for this island?!"); |
|
|
|
ConstPythonModel cag(m_g); |
|
|
|
m_op = *it; |
|
m_kernel = cag.metadata(m_op).get<PythonUnit>().kernel; |
|
|
|
// If kernel is stateful then prepare storage for its state. |
|
if (m_kernel.is_stateful) |
|
{ |
|
m_node_state = cv::GArg{ }; |
|
} |
|
|
|
// Ensure this the only op in the graph |
|
if (std::any_of(it+1, nodes.end(), is_op)) |
|
{ |
|
cv::util::throw_error |
|
(std::logic_error |
|
("Internal error: Python subgraph has multiple operations")); |
|
} |
|
|
|
m_out_info.reserve(m_op->outEdges().size()); |
|
for (const auto &e : m_op->outEdges()) |
|
{ |
|
const auto& out_data = m_gm.metadata(e->dstNode()).get<cv::gimpl::Data>(); |
|
m_out_info.push_back(cv::GTypeInfo{out_data.shape, out_data.kind, out_data.ctor}); |
|
} |
|
|
|
const auto& op = m_gm.metadata(m_op).get<cv::gimpl::Op>(); |
|
m_in_metas.resize(op.args.size()); |
|
GAPI_Assert(m_op->inEdges().size() > 0); |
|
for (const auto &in_eh : m_op->inEdges()) |
|
{ |
|
const auto& input_port = m_gm.metadata(in_eh).get<Input>().port; |
|
const auto& input_nh = in_eh->srcNode(); |
|
const auto& input_meta = m_gm.metadata(input_nh).get<Data>().meta; |
|
m_in_metas.at(input_port) = input_meta; |
|
} |
|
} |
|
|
|
} // anonymous namespace |
|
|
|
cv::gapi::GBackend cv::gapi::python::backend() |
|
{ |
|
static cv::gapi::GBackend this_backend(std::make_shared<GPythonBackendImpl>()); |
|
return this_backend; |
|
}
|
|
|