mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
214 lines
7.9 KiB
214 lines
7.9 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "test_precomp.hpp" |
|
#include "npy_blob.hpp" |
|
#include <opencv2/core/ocl.hpp> |
|
#include <opencv2/ts/ocl_test.hpp> |
|
|
|
namespace opencv_test { namespace { |
|
|
|
template<typename TString> |
|
static std::string _tf(TString filename) |
|
{ |
|
return (getOpenCVExtraDir() + "/dnn/") + filename; |
|
} |
|
|
|
TEST(Reproducibility_GoogLeNet, Accuracy) |
|
{ |
|
Net net = readNetFromCaffe(findDataFile("dnn/bvlc_googlenet.prototxt", false), |
|
findDataFile("dnn/bvlc_googlenet.caffemodel", false)); |
|
|
|
std::vector<Mat> inpMats; |
|
inpMats.push_back( imread(_tf("googlenet_0.png")) ); |
|
inpMats.push_back( imread(_tf("googlenet_1.png")) ); |
|
ASSERT_TRUE(!inpMats[0].empty() && !inpMats[1].empty()); |
|
|
|
net.setInput(blobFromImages(inpMats, 1.0f, Size(), Scalar(), false), "data"); |
|
Mat out = net.forward("prob"); |
|
|
|
Mat ref = blobFromNPY(_tf("googlenet_prob.npy")); |
|
normAssert(out, ref); |
|
} |
|
|
|
OCL_TEST(Reproducibility_GoogLeNet, Accuracy) |
|
{ |
|
Net net = readNetFromCaffe(findDataFile("dnn/bvlc_googlenet.prototxt", false), |
|
findDataFile("dnn/bvlc_googlenet.caffemodel", false)); |
|
|
|
net.setPreferableBackend(DNN_BACKEND_DEFAULT); |
|
net.setPreferableTarget(DNN_TARGET_OPENCL); |
|
|
|
// Initialize network for a single image in the batch but test with batch size=2. |
|
Mat inp = Mat(224, 224, CV_8UC3); |
|
randu(inp, -1, 1); |
|
net.setInput(blobFromImage(inp)); |
|
net.forward(); |
|
|
|
std::vector<Mat> inpMats; |
|
inpMats.push_back( imread(_tf("googlenet_0.png")) ); |
|
inpMats.push_back( imread(_tf("googlenet_1.png")) ); |
|
ASSERT_TRUE(!inpMats[0].empty() && !inpMats[1].empty()); |
|
|
|
net.setInput(blobFromImages(inpMats, 1.0f, Size(), Scalar(), false), "data"); |
|
Mat out = net.forward("prob"); |
|
|
|
Mat ref = blobFromNPY(_tf("googlenet_prob.npy")); |
|
normAssert(out, ref); |
|
} |
|
|
|
TEST(IntermediateBlobs_GoogLeNet, Accuracy) |
|
{ |
|
Net net = readNetFromCaffe(findDataFile("dnn/bvlc_googlenet.prototxt", false), |
|
findDataFile("dnn/bvlc_googlenet.caffemodel", false)); |
|
|
|
std::vector<String> blobsNames; |
|
blobsNames.push_back("conv1/7x7_s2"); |
|
blobsNames.push_back("conv1/relu_7x7"); |
|
blobsNames.push_back("inception_4c/1x1"); |
|
blobsNames.push_back("inception_4c/relu_1x1"); |
|
std::vector<Mat> outs; |
|
Mat in = blobFromImage(imread(_tf("googlenet_0.png")), 1.0f, Size(), Scalar(), false); |
|
net.setInput(in, "data"); |
|
net.forward(outs, blobsNames); |
|
CV_Assert(outs.size() == blobsNames.size()); |
|
|
|
for (size_t i = 0; i < blobsNames.size(); i++) |
|
{ |
|
std::string filename = blobsNames[i]; |
|
std::replace( filename.begin(), filename.end(), '/', '#'); |
|
Mat ref = blobFromNPY(_tf("googlenet_" + filename + ".npy")); |
|
|
|
normAssert(outs[i], ref, "", 1E-4, 1E-2); |
|
} |
|
} |
|
|
|
OCL_TEST(IntermediateBlobs_GoogLeNet, Accuracy) |
|
{ |
|
Net net = readNetFromCaffe(findDataFile("dnn/bvlc_googlenet.prototxt", false), |
|
findDataFile("dnn/bvlc_googlenet.caffemodel", false)); |
|
|
|
net.setPreferableBackend(DNN_BACKEND_DEFAULT); |
|
net.setPreferableTarget(DNN_TARGET_OPENCL); |
|
|
|
std::vector<String> blobsNames; |
|
blobsNames.push_back("conv1/7x7_s2"); |
|
blobsNames.push_back("conv1/relu_7x7"); |
|
blobsNames.push_back("inception_4c/1x1"); |
|
blobsNames.push_back("inception_4c/relu_1x1"); |
|
std::vector<Mat> outs; |
|
Mat in = blobFromImage(imread(_tf("googlenet_0.png")), 1.0f, Size(), Scalar(), false); |
|
net.setInput(in, "data"); |
|
net.forward(outs, blobsNames); |
|
CV_Assert(outs.size() == blobsNames.size()); |
|
|
|
for (size_t i = 0; i < blobsNames.size(); i++) |
|
{ |
|
std::string filename = blobsNames[i]; |
|
std::replace( filename.begin(), filename.end(), '/', '#'); |
|
Mat ref = blobFromNPY(_tf("googlenet_" + filename + ".npy")); |
|
|
|
normAssert(outs[i], ref, "", 1E-4, 1E-2); |
|
} |
|
} |
|
|
|
TEST(SeveralCalls_GoogLeNet, Accuracy) |
|
{ |
|
Net net = readNetFromCaffe(findDataFile("dnn/bvlc_googlenet.prototxt", false), |
|
findDataFile("dnn/bvlc_googlenet.caffemodel", false)); |
|
|
|
std::vector<Mat> inpMats; |
|
inpMats.push_back( imread(_tf("googlenet_0.png")) ); |
|
inpMats.push_back( imread(_tf("googlenet_1.png")) ); |
|
ASSERT_TRUE(!inpMats[0].empty() && !inpMats[1].empty()); |
|
|
|
net.setInput(blobFromImages(inpMats, 1.0f, Size(), Scalar(), false), "data"); |
|
Mat out = net.forward(); |
|
|
|
Mat ref = blobFromNPY(_tf("googlenet_prob.npy")); |
|
normAssert(out, ref); |
|
|
|
std::vector<String> blobsNames; |
|
blobsNames.push_back("conv1/7x7_s2"); |
|
std::vector<Mat> outs; |
|
Mat in = blobFromImage(inpMats[0], 1.0f, Size(), Scalar(), false); |
|
net.setInput(in, "data"); |
|
net.forward(outs, blobsNames); |
|
CV_Assert(outs.size() == blobsNames.size()); |
|
|
|
ref = blobFromNPY(_tf("googlenet_conv1#7x7_s2.npy")); |
|
|
|
normAssert(outs[0], ref, "", 1E-4, 1E-2); |
|
} |
|
|
|
OCL_TEST(SeveralCalls_GoogLeNet, Accuracy) |
|
{ |
|
Net net = readNetFromCaffe(findDataFile("dnn/bvlc_googlenet.prototxt", false), |
|
findDataFile("dnn/bvlc_googlenet.caffemodel", false)); |
|
|
|
net.setPreferableBackend(DNN_BACKEND_DEFAULT); |
|
net.setPreferableTarget(DNN_TARGET_OPENCL); |
|
|
|
std::vector<Mat> inpMats; |
|
inpMats.push_back( imread(_tf("googlenet_0.png")) ); |
|
inpMats.push_back( imread(_tf("googlenet_1.png")) ); |
|
ASSERT_TRUE(!inpMats[0].empty() && !inpMats[1].empty()); |
|
|
|
net.setInput(blobFromImages(inpMats, 1.0f, Size(), Scalar(), false), "data"); |
|
Mat out = net.forward(); |
|
|
|
Mat ref = blobFromNPY(_tf("googlenet_prob.npy")); |
|
normAssert(out, ref); |
|
|
|
std::vector<String> blobsNames; |
|
blobsNames.push_back("conv1/7x7_s2"); |
|
std::vector<Mat> outs; |
|
Mat in = blobFromImage(inpMats[0], 1.0f, Size(), Scalar(), false); |
|
net.setInput(in, "data"); |
|
net.forward(outs, blobsNames); |
|
CV_Assert(outs.size() == blobsNames.size()); |
|
|
|
ref = blobFromNPY(_tf("googlenet_conv1#7x7_s2.npy")); |
|
|
|
normAssert(outs[0], ref, "", 1E-4, 1E-2); |
|
} |
|
|
|
}} // namespace
|
|
|