mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
621 lines
22 KiB
621 lines
22 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved. |
|
// Copyright (C) 2017, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "../precomp.hpp" |
|
#include "layers_common.hpp" |
|
#include "../op_inf_engine.hpp" |
|
#include <float.h> |
|
#include <algorithm> |
|
#include <cmath> |
|
|
|
#ifdef HAVE_OPENCL |
|
#include "opencl_kernels_dnn.hpp" |
|
#endif |
|
|
|
namespace cv |
|
{ |
|
namespace dnn |
|
{ |
|
|
|
class PriorBoxLayerImpl CV_FINAL : public PriorBoxLayer |
|
{ |
|
public: |
|
static bool getParameterDict(const LayerParams ¶ms, |
|
const std::string ¶meterName, |
|
DictValue& result) |
|
{ |
|
if (!params.has(parameterName)) |
|
{ |
|
return false; |
|
} |
|
|
|
result = params.get(parameterName); |
|
return true; |
|
} |
|
|
|
template<typename T> |
|
T getParameter(const LayerParams ¶ms, |
|
const std::string ¶meterName, |
|
const size_t &idx=0, |
|
const bool required=true, |
|
const T& defaultValue=T()) |
|
{ |
|
DictValue dictValue; |
|
bool success = getParameterDict(params, parameterName, dictValue); |
|
if(!success) |
|
{ |
|
if(required) |
|
{ |
|
std::string message = _layerName; |
|
message += " layer parameter does not contain "; |
|
message += parameterName; |
|
message += " parameter."; |
|
CV_Error(Error::StsBadArg, message); |
|
} |
|
else |
|
{ |
|
return defaultValue; |
|
} |
|
} |
|
return dictValue.get<T>(idx); |
|
} |
|
|
|
void getAspectRatios(const LayerParams ¶ms) |
|
{ |
|
DictValue aspectRatioParameter; |
|
bool aspectRatioRetieved = getParameterDict(params, "aspect_ratio", aspectRatioParameter); |
|
if (!aspectRatioRetieved) |
|
return; |
|
|
|
for (int i = 0; i < aspectRatioParameter.size(); ++i) |
|
{ |
|
float aspectRatio = aspectRatioParameter.get<float>(i); |
|
bool alreadyExists = fabs(aspectRatio - 1.f) < 1e-6f; |
|
|
|
for (size_t j = 0; j < _aspectRatios.size() && !alreadyExists; ++j) |
|
{ |
|
alreadyExists = fabs(aspectRatio - _aspectRatios[j]) < 1e-6; |
|
} |
|
if (!alreadyExists) |
|
{ |
|
_aspectRatios.push_back(aspectRatio); |
|
if (_flip) |
|
{ |
|
_aspectRatios.push_back(1./aspectRatio); |
|
} |
|
} |
|
} |
|
} |
|
|
|
static void getParams(const std::string& name, const LayerParams ¶ms, |
|
std::vector<float>* values) |
|
{ |
|
DictValue dict; |
|
if (getParameterDict(params, name, dict)) |
|
{ |
|
values->resize(dict.size()); |
|
for (int i = 0; i < dict.size(); ++i) |
|
{ |
|
(*values)[i] = dict.get<float>(i); |
|
} |
|
} |
|
else |
|
values->clear(); |
|
} |
|
|
|
void getVariance(const LayerParams ¶ms) |
|
{ |
|
DictValue varianceParameter; |
|
bool varianceParameterRetrieved = getParameterDict(params, "variance", varianceParameter); |
|
CV_Assert(varianceParameterRetrieved); |
|
|
|
int varianceSize = varianceParameter.size(); |
|
if (varianceSize > 1) |
|
{ |
|
// Must and only provide 4 variance. |
|
CV_Assert(varianceSize == 4); |
|
|
|
for (int i = 0; i < varianceSize; ++i) |
|
{ |
|
float variance = varianceParameter.get<float>(i); |
|
CV_Assert(variance > 0); |
|
_variance.push_back(variance); |
|
} |
|
} |
|
else |
|
{ |
|
if (varianceSize == 1) |
|
{ |
|
float variance = varianceParameter.get<float>(0); |
|
CV_Assert(variance > 0); |
|
_variance.push_back(variance); |
|
} |
|
else |
|
{ |
|
// Set default to 0.1. |
|
_variance.push_back(0.1f); |
|
} |
|
} |
|
} |
|
|
|
PriorBoxLayerImpl(const LayerParams ¶ms) |
|
{ |
|
setParamsFrom(params); |
|
_minSize = getParameter<float>(params, "min_size", 0, false, 0); |
|
_flip = getParameter<bool>(params, "flip", 0, false, true); |
|
_clip = getParameter<bool>(params, "clip", 0, false, true); |
|
_bboxesNormalized = getParameter<bool>(params, "normalized_bbox", 0, false, true); |
|
|
|
_aspectRatios.clear(); |
|
|
|
getAspectRatios(params); |
|
getVariance(params); |
|
|
|
_maxSize = -1; |
|
if (params.has("max_size")) |
|
{ |
|
_maxSize = params.get("max_size").get<float>(0); |
|
CV_Assert(_maxSize > _minSize); |
|
} |
|
|
|
std::vector<float> widths, heights; |
|
getParams("width", params, &widths); |
|
getParams("height", params, &heights); |
|
_explicitSizes = !widths.empty(); |
|
CV_Assert(widths.size() == heights.size()); |
|
|
|
if (_explicitSizes) |
|
{ |
|
CV_Assert(_aspectRatios.empty()); |
|
CV_Assert(!params.has("min_size")); |
|
CV_Assert(!params.has("max_size")); |
|
_boxWidths = widths; |
|
_boxHeights = heights; |
|
} |
|
else |
|
{ |
|
CV_Assert(_minSize > 0); |
|
_boxWidths.resize(1 + (_maxSize > 0 ? 1 : 0) + _aspectRatios.size()); |
|
_boxHeights.resize(_boxWidths.size()); |
|
_boxWidths[0] = _boxHeights[0] = _minSize; |
|
|
|
int i = 1; |
|
if (_maxSize > 0) |
|
{ |
|
// second prior: aspect_ratio = 1, size = sqrt(min_size * max_size) |
|
_boxWidths[i] = _boxHeights[i] = sqrt(_minSize * _maxSize); |
|
i += 1; |
|
} |
|
|
|
// rest of priors |
|
for (size_t r = 0; r < _aspectRatios.size(); ++r) |
|
{ |
|
float arSqrt = sqrt(_aspectRatios[r]); |
|
_boxWidths[i + r] = _minSize * arSqrt; |
|
_boxHeights[i + r] = _minSize / arSqrt; |
|
} |
|
} |
|
CV_Assert(_boxWidths.size() == _boxHeights.size()); |
|
_numPriors = _boxWidths.size(); |
|
|
|
if (params.has("step_h") || params.has("step_w")) { |
|
CV_Assert(!params.has("step")); |
|
_stepY = getParameter<float>(params, "step_h"); |
|
CV_Assert(_stepY > 0.); |
|
_stepX = getParameter<float>(params, "step_w"); |
|
CV_Assert(_stepX > 0.); |
|
} else if (params.has("step")) { |
|
const float step = getParameter<float>(params, "step"); |
|
CV_Assert(step > 0); |
|
_stepY = step; |
|
_stepX = step; |
|
} else { |
|
_stepY = 0; |
|
_stepX = 0; |
|
} |
|
if (params.has("offset_h") || params.has("offset_w")) |
|
{ |
|
CV_Assert_N(!params.has("offset"), params.has("offset_h"), params.has("offset_w")); |
|
getParams("offset_h", params, &_offsetsY); |
|
getParams("offset_w", params, &_offsetsX); |
|
CV_Assert(_offsetsX.size() == _offsetsY.size()); |
|
_numPriors *= std::max((size_t)1, 2 * (_offsetsX.size() - 1)); |
|
} |
|
else |
|
{ |
|
float offset = getParameter<float>(params, "offset", 0, false, 0.5); |
|
_offsetsX.assign(1, offset); |
|
_offsetsY.assign(1, offset); |
|
} |
|
} |
|
|
|
virtual bool supportBackend(int backendId) CV_OVERRIDE |
|
{ |
|
return backendId == DNN_BACKEND_OPENCV || |
|
backendId == DNN_BACKEND_INFERENCE_ENGINE && haveInfEngine(); |
|
} |
|
|
|
bool getMemoryShapes(const std::vector<MatShape> &inputs, |
|
const int requiredOutputs, |
|
std::vector<MatShape> &outputs, |
|
std::vector<MatShape> &internals) const CV_OVERRIDE |
|
{ |
|
CV_Assert(!inputs.empty()); |
|
|
|
int layerHeight = inputs[0][2]; |
|
int layerWidth = inputs[0][3]; |
|
|
|
// Since all images in a batch has same height and width, we only need to |
|
// generate one set of priors which can be shared across all images. |
|
size_t outNum = 1; |
|
// 2 channels. First channel stores the mean of each prior coordinate. |
|
// Second channel stores the variance of each prior coordinate. |
|
size_t outChannels = 2; |
|
|
|
outputs.resize(1, shape(outNum, outChannels, |
|
layerHeight * layerWidth * _numPriors * 4)); |
|
|
|
return false; |
|
} |
|
|
|
void finalize(InputArrayOfArrays inputs_arr, OutputArrayOfArrays) CV_OVERRIDE |
|
{ |
|
std::vector<Mat> inputs; |
|
inputs_arr.getMatVector(inputs); |
|
|
|
CV_CheckGT(inputs.size(), (size_t)1, ""); |
|
CV_CheckEQ(inputs[0].dims, 4, ""); CV_CheckEQ(inputs[1].dims, 4, ""); |
|
int layerWidth = inputs[0].size[3]; |
|
int layerHeight = inputs[0].size[2]; |
|
|
|
int imageWidth = inputs[1].size[3]; |
|
int imageHeight = inputs[1].size[2]; |
|
|
|
_stepY = _stepY == 0 ? (static_cast<float>(imageHeight) / layerHeight) : _stepY; |
|
_stepX = _stepX == 0 ? (static_cast<float>(imageWidth) / layerWidth) : _stepX; |
|
} |
|
|
|
#ifdef HAVE_OPENCL |
|
bool forward_ocl(InputArrayOfArrays inps, OutputArrayOfArrays outs, OutputArrayOfArrays internals) |
|
{ |
|
std::vector<UMat> inputs; |
|
std::vector<UMat> outputs; |
|
|
|
bool use_half = (inps.depth() == CV_16S); |
|
inps.getUMatVector(inputs); |
|
outs.getUMatVector(outputs); |
|
|
|
int _layerWidth = inputs[0].size[3]; |
|
int _layerHeight = inputs[0].size[2]; |
|
|
|
int _imageWidth = inputs[1].size[3]; |
|
int _imageHeight = inputs[1].size[2]; |
|
|
|
if (umat_offsetsX.empty()) |
|
{ |
|
Mat offsetsX(1, _offsetsX.size(), CV_32FC1, &_offsetsX[0]); |
|
Mat offsetsY(1, _offsetsY.size(), CV_32FC1, &_offsetsY[0]); |
|
Mat variance(1, _variance.size(), CV_32FC1, &_variance[0]); |
|
Mat widths(1, _boxWidths.size(), CV_32FC1, &_boxWidths[0]); |
|
Mat heights(1, _boxHeights.size(), CV_32FC1, &_boxHeights[0]); |
|
|
|
offsetsX.copyTo(umat_offsetsX); |
|
offsetsY.copyTo(umat_offsetsY); |
|
variance.copyTo(umat_variance); |
|
widths.copyTo(umat_widths); |
|
heights.copyTo(umat_heights); |
|
} |
|
|
|
String opts; |
|
if (use_half) |
|
opts = "-DDtype=half -DDtype4=half4 -Dconvert_T=convert_half4"; |
|
else |
|
opts = "-DDtype=float -DDtype4=float4 -Dconvert_T=convert_float4"; |
|
|
|
size_t nthreads = _layerHeight * _layerWidth; |
|
ocl::Kernel kernel("prior_box", ocl::dnn::prior_box_oclsrc, opts); |
|
|
|
kernel.set(0, (int)nthreads); |
|
kernel.set(1, (float)_stepX); |
|
kernel.set(2, (float)_stepY); |
|
kernel.set(3, ocl::KernelArg::PtrReadOnly(umat_offsetsX)); |
|
kernel.set(4, ocl::KernelArg::PtrReadOnly(umat_offsetsY)); |
|
kernel.set(5, (int)_offsetsX.size()); |
|
kernel.set(6, ocl::KernelArg::PtrReadOnly(umat_widths)); |
|
kernel.set(7, ocl::KernelArg::PtrReadOnly(umat_heights)); |
|
kernel.set(8, (int)_boxWidths.size()); |
|
kernel.set(9, ocl::KernelArg::PtrWriteOnly(outputs[0])); |
|
kernel.set(10, (int)_layerHeight); |
|
kernel.set(11, (int)_layerWidth); |
|
kernel.set(12, (int)_imageHeight); |
|
kernel.set(13, (int)_imageWidth); |
|
kernel.run(1, &nthreads, NULL, false); |
|
|
|
// clip the prior's coordinate such that it is within [0, 1] |
|
if (_clip) |
|
{ |
|
ocl::Kernel kernel("clip", ocl::dnn::prior_box_oclsrc, opts); |
|
size_t nthreads = _layerHeight * _layerWidth * _numPriors * 4; |
|
if (!kernel.args((int)nthreads, ocl::KernelArg::PtrReadWrite(outputs[0])) |
|
.run(1, &nthreads, NULL, false)) |
|
return false; |
|
} |
|
|
|
// set the variance. |
|
{ |
|
ocl::Kernel kernel("set_variance", ocl::dnn::prior_box_oclsrc, opts); |
|
int offset = total(shape(outputs[0]), 2); |
|
size_t nthreads = _layerHeight * _layerWidth * _numPriors; |
|
kernel.set(0, (int)nthreads); |
|
kernel.set(1, (int)offset); |
|
kernel.set(2, (int)_variance.size()); |
|
kernel.set(3, ocl::KernelArg::PtrReadOnly(umat_variance)); |
|
kernel.set(4, ocl::KernelArg::PtrWriteOnly(outputs[0])); |
|
if (!kernel.run(1, &nthreads, NULL, false)) |
|
return false; |
|
} |
|
return true; |
|
} |
|
#endif |
|
|
|
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE |
|
{ |
|
CV_TRACE_FUNCTION(); |
|
CV_TRACE_ARG_VALUE(name, "name", name.c_str()); |
|
|
|
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget) && |
|
OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel()), |
|
forward_ocl(inputs_arr, outputs_arr, internals_arr)) |
|
|
|
if (inputs_arr.depth() == CV_16S) |
|
{ |
|
forward_fallback(inputs_arr, outputs_arr, internals_arr); |
|
return; |
|
} |
|
|
|
std::vector<Mat> inputs, outputs; |
|
inputs_arr.getMatVector(inputs); |
|
outputs_arr.getMatVector(outputs); |
|
|
|
CV_Assert(inputs.size() == 2); |
|
|
|
int _layerWidth = inputs[0].size[3]; |
|
int _layerHeight = inputs[0].size[2]; |
|
|
|
int _imageWidth = inputs[1].size[3]; |
|
int _imageHeight = inputs[1].size[2]; |
|
|
|
float* outputPtr = outputs[0].ptr<float>(); |
|
float _boxWidth, _boxHeight; |
|
for (size_t h = 0; h < _layerHeight; ++h) |
|
{ |
|
for (size_t w = 0; w < _layerWidth; ++w) |
|
{ |
|
for (size_t i = 0; i < _boxWidths.size(); ++i) |
|
{ |
|
_boxWidth = _boxWidths[i]; |
|
_boxHeight = _boxHeights[i]; |
|
for (int j = 0; j < _offsetsX.size(); ++j) |
|
{ |
|
float center_x = (w + _offsetsX[j]) * _stepX; |
|
float center_y = (h + _offsetsY[j]) * _stepY; |
|
outputPtr = addPrior(center_x, center_y, _boxWidth, _boxHeight, _imageWidth, |
|
_imageHeight, _bboxesNormalized, outputPtr); |
|
} |
|
} |
|
} |
|
} |
|
// clip the prior's coordinate such that it is within [0, 1] |
|
if (_clip) |
|
{ |
|
int _outChannelSize = _layerHeight * _layerWidth * _numPriors * 4; |
|
outputPtr = outputs[0].ptr<float>(); |
|
for (size_t d = 0; d < _outChannelSize; ++d) |
|
{ |
|
outputPtr[d] = std::min<float>(std::max<float>(outputPtr[d], 0.), 1.); |
|
} |
|
} |
|
// set the variance. |
|
outputPtr = outputs[0].ptr<float>(0, 1); |
|
if(_variance.size() == 1) |
|
{ |
|
Mat secondChannel(1, outputs[0].size[2], CV_32F, outputPtr); |
|
secondChannel.setTo(Scalar::all(_variance[0])); |
|
} |
|
else |
|
{ |
|
int count = 0; |
|
for (size_t h = 0; h < _layerHeight; ++h) |
|
{ |
|
for (size_t w = 0; w < _layerWidth; ++w) |
|
{ |
|
for (size_t i = 0; i < _numPriors; ++i) |
|
{ |
|
for (int j = 0; j < 4; ++j) |
|
{ |
|
outputPtr[count] = _variance[j]; |
|
++count; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
virtual Ptr<BackendNode> initInfEngine(const std::vector<Ptr<BackendWrapper> >&) CV_OVERRIDE |
|
{ |
|
#ifdef HAVE_INF_ENGINE |
|
InferenceEngine::LayerParams lp; |
|
lp.name = name; |
|
lp.type = _explicitSizes ? "PriorBoxClustered" : "PriorBox"; |
|
lp.precision = InferenceEngine::Precision::FP32; |
|
std::shared_ptr<InferenceEngine::CNNLayer> ieLayer(new InferenceEngine::CNNLayer(lp)); |
|
|
|
if (_explicitSizes) |
|
{ |
|
CV_Assert(!_boxWidths.empty()); CV_Assert(!_boxHeights.empty()); |
|
CV_Assert(_boxWidths.size() == _boxHeights.size()); |
|
ieLayer->params["width"] = format("%f", _boxWidths[0]); |
|
ieLayer->params["height"] = format("%f", _boxHeights[0]); |
|
for (int i = 1; i < _boxWidths.size(); ++i) |
|
{ |
|
ieLayer->params["width"] += format(",%f", _boxWidths[i]); |
|
ieLayer->params["height"] += format(",%f", _boxHeights[i]); |
|
} |
|
} |
|
else |
|
{ |
|
ieLayer->params["min_size"] = format("%f", _minSize); |
|
ieLayer->params["max_size"] = _maxSize > 0 ? format("%f", _maxSize) : ""; |
|
|
|
if (!_aspectRatios.empty()) |
|
{ |
|
ieLayer->params["aspect_ratio"] = format("%f", _aspectRatios[0]); |
|
for (int i = 1; i < _aspectRatios.size(); ++i) |
|
ieLayer->params["aspect_ratio"] += format(",%f", _aspectRatios[i]); |
|
} |
|
} |
|
|
|
ieLayer->params["flip"] = "0"; // We already flipped aspect ratios. |
|
ieLayer->params["clip"] = _clip ? "1" : "0"; |
|
|
|
CV_Assert(!_variance.empty()); |
|
ieLayer->params["variance"] = format("%f", _variance[0]); |
|
for (int i = 1; i < _variance.size(); ++i) |
|
ieLayer->params["variance"] += format(",%f", _variance[i]); |
|
|
|
if (_stepX == _stepY) |
|
{ |
|
ieLayer->params["step"] = format("%f", _stepX); |
|
ieLayer->params["step_h"] = "0.0"; |
|
ieLayer->params["step_w"] = "0.0"; |
|
} |
|
else |
|
{ |
|
ieLayer->params["step"] = "0.0"; |
|
ieLayer->params["step_h"] = format("%f", _stepY); |
|
ieLayer->params["step_w"] = format("%f", _stepX); |
|
} |
|
CV_CheckEQ(_offsetsX.size(), (size_t)1, ""); CV_CheckEQ(_offsetsY.size(), (size_t)1, ""); CV_CheckEQ(_offsetsX[0], _offsetsY[0], ""); |
|
ieLayer->params["offset"] = format("%f", _offsetsX[0]); |
|
|
|
return Ptr<BackendNode>(new InfEngineBackendNode(ieLayer)); |
|
#endif // HAVE_INF_ENGINE |
|
return Ptr<BackendNode>(); |
|
} |
|
|
|
virtual int64 getFLOPS(const std::vector<MatShape> &inputs, |
|
const std::vector<MatShape> &outputs) const CV_OVERRIDE |
|
{ |
|
CV_UNUSED(outputs); // suppress unused variable warning |
|
long flops = 0; |
|
|
|
for (int i = 0; i < inputs.size(); i++) |
|
{ |
|
flops += total(inputs[i], 2) * _numPriors * 4; |
|
} |
|
|
|
return flops; |
|
} |
|
|
|
private: |
|
float _minSize; |
|
float _maxSize; |
|
|
|
float _stepX, _stepY; |
|
|
|
std::vector<float> _aspectRatios; |
|
std::vector<float> _variance; |
|
std::vector<float> _offsetsX; |
|
std::vector<float> _offsetsY; |
|
// Precomputed final widths and heights based on aspect ratios or explicit sizes. |
|
std::vector<float> _boxWidths; |
|
std::vector<float> _boxHeights; |
|
|
|
#ifdef HAVE_OPENCL |
|
UMat umat_offsetsX; |
|
UMat umat_offsetsY; |
|
UMat umat_widths; |
|
UMat umat_heights; |
|
UMat umat_variance; |
|
#endif |
|
|
|
bool _flip; |
|
bool _clip; |
|
bool _explicitSizes; |
|
bool _bboxesNormalized; |
|
|
|
size_t _numPriors; |
|
|
|
static const size_t _numAxes = 4; |
|
static const std::string _layerName; |
|
|
|
static float* addPrior(float center_x, float center_y, float width, float height, |
|
float imgWidth, float imgHeight, bool normalized, float* dst) |
|
{ |
|
if (normalized) |
|
{ |
|
dst[0] = (center_x - width * 0.5f) / imgWidth; // xmin |
|
dst[1] = (center_y - height * 0.5f) / imgHeight; // ymin |
|
dst[2] = (center_x + width * 0.5f) / imgWidth; // xmax |
|
dst[3] = (center_y + height * 0.5f) / imgHeight; // ymax |
|
} |
|
else |
|
{ |
|
dst[0] = center_x - width * 0.5f; // xmin |
|
dst[1] = center_y - height * 0.5f; // ymin |
|
dst[2] = center_x + width * 0.5f - 1.0f; // xmax |
|
dst[3] = center_y + height * 0.5f - 1.0f; // ymax |
|
} |
|
return dst + 4; |
|
} |
|
}; |
|
|
|
const std::string PriorBoxLayerImpl::_layerName = std::string("PriorBox"); |
|
|
|
Ptr<PriorBoxLayer> PriorBoxLayer::create(const LayerParams ¶ms) |
|
{ |
|
return Ptr<PriorBoxLayer>(new PriorBoxLayerImpl(params)); |
|
} |
|
|
|
} |
|
}
|
|
|