mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
168 lines
5.1 KiB
168 lines
5.1 KiB
/** |
|
* @brief Sample code showing how to segment overlapping objects using Laplacian filtering, in addition to Watershed and Distance Transformation |
|
* @author OpenCV Team |
|
*/ |
|
|
|
#include <opencv2/core.hpp> |
|
#include <opencv2/imgproc.hpp> |
|
#include <opencv2/highgui.hpp> |
|
#include <iostream> |
|
|
|
using namespace std; |
|
using namespace cv; |
|
|
|
int main(int argc, char *argv[]) |
|
{ |
|
//! [load_image] |
|
// Load the image |
|
CommandLineParser parser( argc, argv, "{@input | cards.png | input image}" ); |
|
Mat src = imread( samples::findFile( parser.get<String>( "@input" ) ) ); |
|
if( src.empty() ) |
|
{ |
|
cout << "Could not open or find the image!\n" << endl; |
|
cout << "Usage: " << argv[0] << " <Input image>" << endl; |
|
return -1; |
|
} |
|
|
|
// Show the source image |
|
imshow("Source Image", src); |
|
//! [load_image] |
|
|
|
//! [black_bg] |
|
// Change the background from white to black, since that will help later to extract |
|
// better results during the use of Distance Transform |
|
Mat mask; |
|
inRange(src, Scalar(255, 255, 255), Scalar(255, 255, 255), mask); |
|
src.setTo(Scalar(0, 0, 0), mask); |
|
|
|
// Show output image |
|
imshow("Black Background Image", src); |
|
//! [black_bg] |
|
|
|
//! [sharp] |
|
// Create a kernel that we will use to sharpen our image |
|
Mat kernel = (Mat_<float>(3,3) << |
|
1, 1, 1, |
|
1, -8, 1, |
|
1, 1, 1); // an approximation of second derivative, a quite strong kernel |
|
|
|
// do the laplacian filtering as it is |
|
// well, we need to convert everything in something more deeper then CV_8U |
|
// because the kernel has some negative values, |
|
// and we can expect in general to have a Laplacian image with negative values |
|
// BUT a 8bits unsigned int (the one we are working with) can contain values from 0 to 255 |
|
// so the possible negative number will be truncated |
|
Mat imgLaplacian; |
|
filter2D(src, imgLaplacian, CV_32F, kernel); |
|
Mat sharp; |
|
src.convertTo(sharp, CV_32F); |
|
Mat imgResult = sharp - imgLaplacian; |
|
|
|
// convert back to 8bits gray scale |
|
imgResult.convertTo(imgResult, CV_8UC3); |
|
imgLaplacian.convertTo(imgLaplacian, CV_8UC3); |
|
|
|
// imshow( "Laplace Filtered Image", imgLaplacian ); |
|
imshow( "New Sharped Image", imgResult ); |
|
//! [sharp] |
|
|
|
//! [bin] |
|
// Create binary image from source image |
|
Mat bw; |
|
cvtColor(imgResult, bw, COLOR_BGR2GRAY); |
|
threshold(bw, bw, 40, 255, THRESH_BINARY | THRESH_OTSU); |
|
imshow("Binary Image", bw); |
|
//! [bin] |
|
|
|
//! [dist] |
|
// Perform the distance transform algorithm |
|
Mat dist; |
|
distanceTransform(bw, dist, DIST_L2, 3); |
|
|
|
// Normalize the distance image for range = {0.0, 1.0} |
|
// so we can visualize and threshold it |
|
normalize(dist, dist, 0, 1.0, NORM_MINMAX); |
|
imshow("Distance Transform Image", dist); |
|
//! [dist] |
|
|
|
//! [peaks] |
|
// Threshold to obtain the peaks |
|
// This will be the markers for the foreground objects |
|
threshold(dist, dist, 0.4, 1.0, THRESH_BINARY); |
|
|
|
// Dilate a bit the dist image |
|
Mat kernel1 = Mat::ones(3, 3, CV_8U); |
|
dilate(dist, dist, kernel1); |
|
imshow("Peaks", dist); |
|
//! [peaks] |
|
|
|
//! [seeds] |
|
// Create the CV_8U version of the distance image |
|
// It is needed for findContours() |
|
Mat dist_8u; |
|
dist.convertTo(dist_8u, CV_8U); |
|
|
|
// Find total markers |
|
vector<vector<Point> > contours; |
|
findContours(dist_8u, contours, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE); |
|
|
|
// Create the marker image for the watershed algorithm |
|
Mat markers = Mat::zeros(dist.size(), CV_32S); |
|
|
|
// Draw the foreground markers |
|
for (size_t i = 0; i < contours.size(); i++) |
|
{ |
|
drawContours(markers, contours, static_cast<int>(i), Scalar(static_cast<int>(i)+1), -1); |
|
} |
|
|
|
// Draw the background marker |
|
circle(markers, Point(5,5), 3, Scalar(255), -1); |
|
Mat markers8u; |
|
markers.convertTo(markers8u, CV_8U, 10); |
|
imshow("Markers", markers8u); |
|
//! [seeds] |
|
|
|
//! [watershed] |
|
// Perform the watershed algorithm |
|
watershed(imgResult, markers); |
|
|
|
Mat mark; |
|
markers.convertTo(mark, CV_8U); |
|
bitwise_not(mark, mark); |
|
// imshow("Markers_v2", mark); // uncomment this if you want to see how the mark |
|
// image looks like at that point |
|
|
|
// Generate random colors |
|
vector<Vec3b> colors; |
|
for (size_t i = 0; i < contours.size(); i++) |
|
{ |
|
int b = theRNG().uniform(0, 256); |
|
int g = theRNG().uniform(0, 256); |
|
int r = theRNG().uniform(0, 256); |
|
|
|
colors.push_back(Vec3b((uchar)b, (uchar)g, (uchar)r)); |
|
} |
|
|
|
// Create the result image |
|
Mat dst = Mat::zeros(markers.size(), CV_8UC3); |
|
|
|
// Fill labeled objects with random colors |
|
for (int i = 0; i < markers.rows; i++) |
|
{ |
|
for (int j = 0; j < markers.cols; j++) |
|
{ |
|
int index = markers.at<int>(i,j); |
|
if (index > 0 && index <= static_cast<int>(contours.size())) |
|
{ |
|
dst.at<Vec3b>(i,j) = colors[index-1]; |
|
} |
|
} |
|
} |
|
|
|
// Visualize the final image |
|
imshow("Final Result", dst); |
|
//! [watershed] |
|
|
|
waitKey(); |
|
return 0; |
|
}
|
|
|