Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
364 lines
13 KiB
364 lines
13 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved. |
|
// Copyright (C) 2017, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "../precomp.hpp" |
|
#include "layers_common.hpp" |
|
#include "../op_halide.hpp" |
|
#include "../op_inf_engine.hpp" |
|
#include "../ie_ngraph.hpp" |
|
|
|
#include <algorithm> |
|
#include <stdlib.h> |
|
using std::max; |
|
|
|
#ifdef HAVE_OPENCL |
|
#include "opencl_kernels_dnn.hpp" |
|
using namespace cv::dnn::ocl4dnn; |
|
#endif |
|
|
|
namespace cv |
|
{ |
|
namespace dnn |
|
{ |
|
|
|
class SoftMaxLayerImpl CV_FINAL : public SoftmaxLayer |
|
{ |
|
public: |
|
|
|
SoftMaxLayerImpl(const LayerParams& params) |
|
{ |
|
axisRaw = params.get<int>("axis", 1); |
|
logSoftMax = params.get<bool>("log_softmax", false); |
|
setParamsFrom(params); |
|
} |
|
|
|
#ifdef HAVE_OPENCL |
|
Ptr<OCL4DNNSoftmax<float> > softmaxOp; |
|
#endif |
|
|
|
bool getMemoryShapes(const std::vector<MatShape> &inputs, |
|
const int requiredOutputs, |
|
std::vector<MatShape> &outputs, |
|
std::vector<MatShape> &internals) const CV_OVERRIDE |
|
{ |
|
bool inplace = Layer::getMemoryShapes(inputs, requiredOutputs, outputs, internals); |
|
MatShape shape = inputs[0]; |
|
int cAxis = normalize_axis(axisRaw, shape.size()); |
|
shape[cAxis] = 1; |
|
internals.assign(1, shape); |
|
return inplace; |
|
} |
|
|
|
virtual bool supportBackend(int backendId) CV_OVERRIDE |
|
{ |
|
return backendId == DNN_BACKEND_OPENCV || |
|
(backendId == DNN_BACKEND_HALIDE && haveHalide() && axisRaw == 1) || |
|
backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH || |
|
(backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && haveInfEngine() && !logSoftMax); |
|
} |
|
|
|
#ifdef HAVE_OPENCL |
|
virtual void finalize(const std::vector<Mat*> &inputs, std::vector<Mat> &outputs) CV_OVERRIDE |
|
{ |
|
softmaxOp.release(); |
|
} |
|
|
|
bool forward_ocl(InputArrayOfArrays inputs_, OutputArrayOfArrays outputs_, OutputArrayOfArrays internals_) |
|
{ |
|
std::vector<UMat> inputs; |
|
std::vector<UMat> outputs; |
|
std::vector<UMat> internals; |
|
|
|
bool use_half = (inputs_.depth() == CV_16S); |
|
inputs_.getUMatVector(inputs); |
|
outputs_.getUMatVector(outputs); |
|
internals_.getUMatVector(internals); |
|
|
|
UMat& src = inputs[0]; |
|
UMat& dstMat = outputs[0]; |
|
int axis = normalize_axis(axisRaw, src.dims); |
|
|
|
if (softmaxOp.empty()) |
|
{ |
|
OCL4DNNSoftmaxConfig config; |
|
config.in_shape = shape(inputs[0]); |
|
config.axis = axis; |
|
config.channels = inputs[0].size[axis]; |
|
config.logsoftmax = logSoftMax; |
|
config.use_half = use_half; |
|
|
|
softmaxOp = Ptr<OCL4DNNSoftmax<float> >(new OCL4DNNSoftmax<float>(config)); |
|
} |
|
|
|
if (softmaxOp->Forward(src, dstMat)) |
|
return true; |
|
|
|
UMat& bufMat = internals[0]; |
|
MatShape s = shape(src); |
|
size_t outerSize = total(s, 0, axis); |
|
size_t channels = src.size[axis]; |
|
size_t innerSize = total(s, axis + 1); |
|
|
|
String buildOpts = format("-DT=%s", use_half ? "half" : "float"); |
|
ocl::Kernel kmax, ksub, ksum, kdiv; |
|
|
|
if (!kmax.create("kernel_channel_max", ocl::dnn::softmax_oclsrc, buildOpts)) |
|
return false; |
|
|
|
if (!ksub.create("kernel_channel_subtract", ocl::dnn::softmax_oclsrc, buildOpts)) |
|
return false; |
|
|
|
if (!ksum.create("kernel_channel_sum", ocl::dnn::softmax_oclsrc, buildOpts)) |
|
return false; |
|
|
|
if (logSoftMax) buildOpts += " -DLOG_SOFTMAX "; |
|
if (!kdiv.create("kernel_channel_div", ocl::dnn::softmax_oclsrc, buildOpts)) |
|
return false; |
|
|
|
size_t bufSize = internals[0].total(); |
|
size_t totalSize = src.total(); |
|
|
|
size_t internal_globalSize[1] = { bufSize }; |
|
size_t total_globalSize[1] = { totalSize }; |
|
|
|
kmax.args((int)outerSize, (int)channels, (int)innerSize, |
|
ocl::KernelArg::PtrReadOnly(src), ocl::KernelArg::PtrReadWrite(bufMat)); |
|
if (!kmax.run(1, internal_globalSize, NULL, false)) |
|
return false; |
|
|
|
ksub.args((int)totalSize, (int)outerSize, (int)channels, (int)innerSize, |
|
ocl::KernelArg::PtrReadOnly(bufMat), |
|
ocl::KernelArg::PtrReadOnly(src), ocl::KernelArg::PtrWriteOnly(dstMat)); |
|
if (!ksub.run(1, total_globalSize, NULL, false)) |
|
return false; |
|
|
|
ksum.args((int)outerSize, (int)channels, (int)innerSize, |
|
ocl::KernelArg::PtrReadOnly(dstMat), ocl::KernelArg::PtrReadWrite(bufMat)); |
|
if (!ksum.run(1, internal_globalSize, NULL, false)) |
|
return false; |
|
|
|
kdiv.args((int)totalSize, (int)outerSize, (int)channels, (int)innerSize, |
|
ocl::KernelArg::PtrReadOnly(bufMat), ocl::KernelArg::PtrReadWrite(dstMat)); |
|
if (!kdiv.run(1, total_globalSize, NULL, false)) |
|
return false; |
|
|
|
return true; |
|
} |
|
#endif |
|
|
|
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE |
|
{ |
|
CV_TRACE_FUNCTION(); |
|
CV_TRACE_ARG_VALUE(name, "name", name.c_str()); |
|
|
|
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget), |
|
forward_ocl(inputs_arr, outputs_arr, internals_arr)) |
|
|
|
if (inputs_arr.depth() == CV_16S) |
|
{ |
|
forward_fallback(inputs_arr, outputs_arr, internals_arr); |
|
return; |
|
} |
|
|
|
std::vector<Mat> inputs, outputs, internals; |
|
inputs_arr.getMatVector(inputs); |
|
outputs_arr.getMatVector(outputs); |
|
internals_arr.getMatVector(internals); |
|
|
|
const Mat &src = inputs[0]; |
|
Mat &dst = outputs[0]; |
|
|
|
int axis = normalize_axis(axisRaw, src.dims); |
|
size_t outerSize = src.total(0, axis), channels = src.size[axis], |
|
innerSize = src.total(axis + 1); |
|
|
|
CV_Assert(src.type() == CV_32F); |
|
CV_Assert(src.isContinuous() && dst.isContinuous()); |
|
|
|
const float *srcPtr = src.ptr<float>(); |
|
float *dstPtr = dst.ptr<float>(); |
|
float *bufPtr = internals[0].ptr<float>(); |
|
|
|
size_t outerStep = src.total(axis); |
|
size_t cnStep = src.total(axis + 1); |
|
|
|
//compute max along axis |
|
for (size_t outerDim = 0; outerDim < outerSize; outerDim++) |
|
{ |
|
size_t srcOffset = outerDim * outerStep; |
|
size_t bufOffset = outerDim * cnStep; |
|
|
|
memcpy(bufPtr + bufOffset, srcPtr + srcOffset, innerSize * sizeof(float)); |
|
|
|
for (size_t cnDim = 1; cnDim < channels; cnDim++) |
|
{ |
|
for (size_t i = 0; i < innerSize; i++) |
|
bufPtr[bufOffset + i] = std::max(bufPtr[bufOffset + i], srcPtr[srcOffset + cnDim * cnStep + i]); |
|
} |
|
} |
|
|
|
//subtract max |
|
for (size_t outerDim = 0; outerDim < outerSize; outerDim++) |
|
{ |
|
size_t srcOffset = outerDim * outerStep; |
|
size_t bufOffset = outerDim * cnStep; |
|
|
|
for (size_t cnDim = 0; cnDim < channels; cnDim++) |
|
{ |
|
const int offset = srcOffset + cnDim * cnStep; |
|
for (size_t i = 0; i < innerSize; i++) |
|
dstPtr[offset + i] = srcPtr[offset + i] - bufPtr[bufOffset + i]; |
|
} |
|
} |
|
|
|
cv::exp(dst, dst); |
|
|
|
for (size_t outerDim = 0; outerDim < outerSize; outerDim++) |
|
{ |
|
size_t srcOffset = outerDim * outerStep; |
|
size_t bufOffset = outerDim * cnStep; |
|
|
|
//sum exp along axis |
|
for (size_t i = 0; i < innerSize; i++) |
|
bufPtr[bufOffset + i] = 0.f; |
|
|
|
for (size_t cnDim = 0; cnDim < channels; cnDim++) |
|
{ |
|
const int offset = srcOffset + cnDim * cnStep; |
|
for (size_t i = 0; i < innerSize; i++) |
|
bufPtr[bufOffset + i] += dstPtr[offset + i]; |
|
} |
|
|
|
//divide by computed sum |
|
for (size_t cnDim = 0; cnDim < channels; cnDim++) |
|
{ |
|
const int offset = srcOffset + cnDim * cnStep; |
|
for (size_t i = 0; i < innerSize; i++) |
|
dstPtr[offset + i] /= bufPtr[bufOffset + i]; |
|
} |
|
if (logSoftMax) |
|
{ |
|
for (size_t cnDim = 0; cnDim < channels; cnDim++) |
|
{ |
|
const int offset = srcOffset + cnDim * cnStep; |
|
for (size_t i = 0; i < innerSize; i++) |
|
dstPtr[offset + i] = log(dstPtr[offset + i]); |
|
} |
|
} |
|
} |
|
} |
|
|
|
virtual Ptr<BackendNode> initHalide(const std::vector<Ptr<BackendWrapper> > &inputs) CV_OVERRIDE |
|
{ |
|
#ifdef HAVE_HALIDE |
|
Halide::Buffer<float> inputBuffer = halideBuffer(inputs[0]); |
|
int inW, inH, inC, inN; |
|
getCanonicalSize(inputBuffer, &inW, &inH, &inC, &inN); |
|
|
|
if (inW != 1 || inH != 1) |
|
CV_Error(cv::Error::StsNotImplemented, |
|
"Halide backend for SoftMax with spatial size " |
|
"more than 1x1 is not implemented"); |
|
|
|
Halide::Var x("x"), y("y"), c("c"), n("n"); |
|
Halide::Func top = (name.empty() ? Halide::Func() : Halide::Func(name)); |
|
|
|
Halide::Func expInput("expInput"); |
|
Halide::RDom r(0, inW, 0, inH, 0, inC); |
|
expInput(x, y, c, n) = exp(inputBuffer(x, y, c, n)); |
|
Halide::Expr globalSum = sum(expInput(r.x, r.y, r.z, n)); |
|
top(x, y, c, n) = expInput(x, y, c, n) / globalSum; |
|
return Ptr<BackendNode>(new HalideBackendNode(top)); |
|
#endif // HAVE_HALIDE |
|
return Ptr<BackendNode>(); |
|
} |
|
|
|
#ifdef HAVE_DNN_IE_NN_BUILDER_2019 |
|
virtual Ptr<BackendNode> initInfEngine(const std::vector<Ptr<BackendWrapper> >& inputs) CV_OVERRIDE |
|
{ |
|
InferenceEngine::DataPtr input = infEngineDataNode(inputs[0]); |
|
|
|
InferenceEngine::Builder::SoftMaxLayer ieLayer(name); |
|
ieLayer.setAxis(normalize_axis(axisRaw, input->getDims().size())); |
|
|
|
return Ptr<BackendNode>(new InfEngineBackendNode(ieLayer)); |
|
} |
|
#endif // HAVE_DNN_IE_NN_BUILDER_2019 |
|
|
|
#ifdef HAVE_DNN_NGRAPH |
|
virtual Ptr<BackendNode> initNgraph(const std::vector<Ptr<BackendWrapper> >& inputs, |
|
const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE |
|
{ |
|
auto& ieInpNode = nodes[0].dynamicCast<InfEngineNgraphNode>()->node; |
|
int axis = normalize_axis(axisRaw, ieInpNode->get_shape().size()); |
|
auto softmax = std::make_shared<ngraph::op::v1::Softmax>(ieInpNode, axis); |
|
if (logSoftMax) |
|
return Ptr<BackendNode>(new InfEngineNgraphNode(std::make_shared<ngraph::op::v0::Log>(softmax))); |
|
|
|
return Ptr<BackendNode>(new InfEngineNgraphNode(softmax)); |
|
} |
|
#endif // HAVE_DNN_NGRAPH |
|
|
|
int64 getFLOPS(const std::vector<MatShape> &inputs, |
|
const std::vector<MatShape> &outputs) const CV_OVERRIDE |
|
{ |
|
CV_UNUSED(outputs); // suppress unused variable warning |
|
int64 flops = 0; |
|
|
|
for (int i = 0; i < inputs.size(); i++) |
|
{ |
|
flops += 4*total(inputs[i]); |
|
} |
|
|
|
return flops; |
|
} |
|
|
|
int axisRaw; |
|
}; |
|
|
|
Ptr<SoftmaxLayer> SoftmaxLayer::create(const LayerParams& params) |
|
{ |
|
return Ptr<SoftmaxLayer>(new SoftMaxLayerImpl(params)); |
|
} |
|
|
|
} |
|
}
|
|
|