Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

671 lines
24 KiB

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Copyright (C) 2017, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "../precomp.hpp"
#include "../op_inf_engine.hpp"
#include "../ie_ngraph.hpp"
#include "layers_common.hpp"
#include <opencv2/dnn/shape_utils.hpp>
#include <opencv2/core/utils/logger.hpp>
#ifdef HAVE_OPENCL
#include "opencl_kernels_dnn.hpp"
#endif
namespace cv
{
namespace dnn
{
class SliceLayerImpl : public SliceLayer
{
public:
SliceLayerImpl(const LayerParams& params)
{
setParamsFrom(params);
axis = params.get<int>("axis", 1);
num_split = params.get<int>("num_split", 0);
hasDynamicShapes = params.get<bool>("has_dynamic_shapes", false);
shapesInitialized = !hasDynamicShapes;
if (params.has("slice_point"))
{
CV_Assert(!params.has("begin") && !params.has("size") && !params.has("end"));
const DictValue &indicesValue = params.get("slice_point");
sliceRanges.resize(indicesValue.size() + 1,
std::vector<Range>(axis + 1, Range::all()));
int prevSlice = 0;
for (int i = 0; i < indicesValue.size(); ++i)
{
sliceRanges[i][axis].start = prevSlice;
sliceRanges[i][axis].end = indicesValue.get<int>(i);
prevSlice = sliceRanges[i][axis].end;
}
sliceRanges.back()[axis].start = prevSlice;
}
else if (params.has("begin"))
{
CV_Assert(params.has("size") ^ params.has("end"));
const DictValue &begins = params.get("begin");
const DictValue &sizesOrEnds = params.has("size") ? params.get("size") : params.get("end");
CV_Assert(begins.size() == sizesOrEnds.size());
sliceRanges.resize(1);
sliceRanges[0].resize(begins.size(), Range::all());
for (int i = 0; i < begins.size(); ++i)
{
int start = begins.get<int>(i);
int sizeOrEnd = sizesOrEnds.get<int>(i); // It may be negative to reverse indexation.
CV_Assert(start >= 0);
sliceRanges[0][i].start = start;
if (params.has("size"))
{
int size = sizeOrEnd;
CV_Assert(size == -1 || size > 0); // -1 value means range [start, axis_size).
sliceRanges[0][i].end = size > 0 ? (start + size) : -1; // We'll finalize a negative value later.
}
else
{
int end = sizeOrEnd;
CV_Assert(end < 0 || end > start); // End index is excluded.
sliceRanges[0][i].end = end; // We'll finalize a negative value later.
}
}
}
}
virtual bool supportBackend(int backendId) CV_OVERRIDE
{
#ifdef HAVE_DNN_IE_NN_BUILDER_2019
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
return INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2019R1) &&
sliceRanges.size() == 1 && sliceRanges[0].size() == 4;
#endif
#ifdef HAVE_DNN_NGRAPH
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
return sliceRanges.size() == 1;
#endif
return backendId == DNN_BACKEND_OPENCV;
}
bool getMemoryShapes(const std::vector<MatShape> &inputs,
const int requiredOutputs,
std::vector<MatShape> &outputs,
std::vector<MatShape> &internals) const CV_OVERRIDE
{
CV_Assert(inputs.size() == 1);
MatShape inpShape = inputs[0];
if (!sliceRanges.empty())
{
outputs.resize(sliceRanges.size(), inpShape);
for (int i = 0; i < outputs.size(); ++i)
{
CV_Assert(sliceRanges[i].size() <= inpShape.size());
for (int j = 0; j < sliceRanges[i].size(); ++j)
{
if (shapesInitialized || inpShape[j] > 0)
outputs[i][j] = normalize_axis_range(sliceRanges[i][j], inpShape[j]).size();
}
}
}
else // Divide input blob on equal parts by axis.
{
CV_Assert(0 <= axis && axis < inpShape.size());
int splits = num_split ? num_split : requiredOutputs;
CV_Assert(splits > 0 && inpShape[axis] % splits == 0);
inpShape[axis] /= splits;
outputs.resize(splits, inpShape);
}
return false;
}
bool updateMemoryShapes(const std::vector<MatShape> &inputs) CV_OVERRIDE
{
shapesInitialized = true;
return true;
}
void finalize(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr) CV_OVERRIDE
{
#ifdef HAVE_OPENCL
ocl_exec_cache.clear();
#endif
std::vector<Mat> inputs, outputs;
inputs_arr.getMatVector(inputs);
outputs_arr.getMatVector(outputs);
CV_Assert(inputs.size() == 1);
const MatSize& inpShape = inputs[0].size;
finalSliceRanges = sliceRanges;
if (sliceRanges.empty())
{
// Divide input blob on equal parts by axis.
int outAxisSize = inpShape[axis] / outputs.size();
finalSliceRanges.resize(outputs.size(),
std::vector<Range>(axis + 1, Range::all()));
int prevSlice = 0;
for (int i = 0; i < outputs.size(); ++i)
{
finalSliceRanges[i][axis].start = prevSlice;
finalSliceRanges[i][axis].end = finalSliceRanges[i][axis].start + outAxisSize;
prevSlice = finalSliceRanges[i][axis].end;
}
}
else
CV_Assert(outputs.size() == sliceRanges.size());
for (int i = 0; i < outputs.size(); ++i)
{
CV_Assert(finalSliceRanges[i].size() <= inpShape.dims());
// Fill the rest of ranges.
for (int j = finalSliceRanges[i].size(); j < inpShape.dims(); ++j)
{
finalSliceRanges[i].push_back(Range::all());
}
// Clamp.
for (int j = 0; j < finalSliceRanges[i].size(); ++j)
{
finalSliceRanges[i][j] = normalize_axis_range(finalSliceRanges[i][j], inpShape[j]);
}
}
#if 0
std::cout << "DEBUG: DNN/Slice: " << outputs.size() << " inpShape=" << inpShape << std::endl;
for (int i = 0; i < outputs.size(); ++i)
{
for (int j = 0; j < finalSliceRanges[i].size(); ++j)
{
std::cout << finalSliceRanges[i][j];
}
std::cout << std::endl;
}
#endif
}
#ifdef HAVE_OPENCL
struct OpenCLExecInfo
{
std::string kernel_name;
std::string build_opts;
size_t local_size[2];
size_t global_size[2];
OpenCLExecInfo()
{
local_size[0] = local_size[1] = 0;
global_size[0] = global_size[1] = 0;
}
};
std::vector<OpenCLExecInfo> ocl_exec_cache;
void ocl_prepare(const std::vector<UMat>& inputs, const std::vector<UMat>& outputs)
{
CV_TRACE_FUNCTION();
CV_Assert(outputs.size() == finalSliceRanges.size());
ocl_exec_cache.resize(outputs.size());
const UMat& input = inputs[0];
const int dims = input.dims;
size_t WSZ = 128;
const int elemSize = (int)input.elemSize();
String opts0 = cv::format(
"-DDIMS=%d -DELEMSIZE=%d",
dims, elemSize
);
for (int d = 0; d < dims; d++)
{
opts0 += cv::format(" -DSRC_STEP_%d=%d", d, (int)input.step[dims - 1 - d]);
}
for (size_t i = 0; i < outputs.size(); i++)
{
OpenCLExecInfo& ocl = ocl_exec_cache[i];
const UMat& output = outputs[i];
const std::vector<Range>& range = finalSliceRanges[i];
String opts = opts0;
CV_CheckEQ(output.dims, dims, "");
for (int d = 0; d < dims; d++)
{
opts += cv::format(" -DDST_STEP_%d=%d -DDST_SZ_%d=%d -DSRC_START_%d=%d",
d, (int)output.step[dims - 1 - d],
d, (int)output.size[dims - 1 - d],
d, (int)range[dims - 1 - d].start
);
CV_CheckEQ(range[d].size(), (int)output.size[d], "");
}
const size_t param_LIMIT_BLOCK_SIZE_PER_WG = WSZ * 64;
int block_dims = 0;
size_t block_size = elemSize;
for (int i = dims - 1; i >= 0; --i)
{
if (input.step[i] != output.step[i])
break;
block_size *= output.size[i];
block_dims++;
if (block_size >= param_LIMIT_BLOCK_SIZE_PER_WG)
break;
}
const size_t total = output.total() * elemSize;
size_t num_blocks = total / block_size;
if ((num_blocks <= 8 && block_size >= WSZ * 4) || (block_size >= param_LIMIT_BLOCK_SIZE_PER_WG))
{
// use 1D copy mode
opts += cv::format(" -DUSE_COPY_1D=1");
opts += cv::format(" -DBLOCK_DIMS=%d", block_dims);
opts += cv::format(" -DBLOCK_DIMS_CONTIGUOUS=%d", block_dims);
opts += cv::format(" -DBLOCK_SIZE=%d", (int)block_size);
opts += cv::format(" -DBLOCK_COLS=%d", (int)block_size);
}
else
{
// use 2D copy mode
int block_cols = block_size;
int block_dims_contiguous = block_dims;
size_t input_base_step = input.step[dims - 1 - block_dims_contiguous];
size_t output_base_step = output.step[dims - 1 - block_dims_contiguous];
size_t block_rows = 1;
for (int i = dims - 1 - block_dims_contiguous; i >= 0; --i)
{
if (input.step[i] * output_base_step != output.step[i] * input_base_step)
break;
block_rows *= output.size[i];
block_dims++;
}
block_size *= block_rows;
num_blocks = total / block_size;
if (block_rows > 1)
{
opts += cv::format(" -DBLOCK_DIMS=%d", block_dims);
opts += cv::format(" -DBLOCK_DIMS_CONTIGUOUS=%d", block_dims_contiguous);
opts += cv::format(" -DBLOCK_SIZE=%d", (int)block_size);
opts += cv::format(" -DBLOCK_COLS=%d", (int)block_cols);
opts += cv::format(" -DBLOCK_ROWS=%d", (int)block_rows);
opts += cv::format(" -DBLOCK_SRC_STRIDE=%d", (int)input_base_step);
}
else
{
// use 1D copy mode
opts += cv::format(" -DUSE_COPY_1D=1");
opts += cv::format(" -DBLOCK_DIMS=%d", block_dims_contiguous);
opts += cv::format(" -DBLOCK_DIMS_CONTIGUOUS=%d", block_dims_contiguous);
opts += cv::format(" -DBLOCK_SIZE=%d", (int)block_size);
opts += cv::format(" -DBLOCK_COLS=%d", (int)block_size);
}
}
const size_t MIN_WORK_ITEMS = 16;
if (block_size <= 4 * MIN_WORK_ITEMS)
WSZ = 4;
else if (block_size <= 8 * MIN_WORK_ITEMS)
WSZ = 8;
else if (block_size <= 16 * MIN_WORK_ITEMS)
WSZ = 16;
else if (block_size <= 32 * MIN_WORK_ITEMS)
WSZ = 32;
else if (block_size <= 64 * MIN_WORK_ITEMS)
WSZ = 64;
opts += cv::format(" -DWSZ=%d", (int)WSZ);
std::ostringstream kernel_suffix;
kernel_suffix << dims << 'x' << elemSize << "_bsz" << block_size;
kernel_suffix << "__src_";
for (int d = 0; d < dims; d++)
{
kernel_suffix << input.size[dims - 1 - d] << '_';
}
kernel_suffix << '_';
/*for (int d = 0; d < dims; d++)
{
kernel_suffix << input.step[dims - 1 - d] << '_';
}
kernel_suffix << '_';*/
kernel_suffix << "dst_";
for (int d = 0; d < dims; d++)
{
kernel_suffix << output.size[dims - 1 - d] << '_';
}
/*kernel_suffix << '_';
for (int d = 0; d < dims; d++)
{
kernel_suffix << output.step[dims - 1 - d] << '_';
}*/
kernel_suffix << "_slice_";
for (int d = 0; d < dims; d++)
{
kernel_suffix << range[dims - 1 - d].start << '_';
}
for (int d = 0; d < dims; d++)
{
kernel_suffix << '_' << range[dims - 1 - d].end;
}
std::string kernel_suffix_str = kernel_suffix.str();
opts += cv::format(" -DSLICE_KERNEL_SUFFIX=%s", kernel_suffix_str.c_str());
ocl.kernel_name = cv::format("slice_%s", kernel_suffix_str.c_str());
ocl.build_opts = opts;
ocl.local_size[0] = WSZ;
ocl.local_size[1] = 1;
ocl.global_size[0] = WSZ;
ocl.global_size[1] = num_blocks;
} // for outputs.size()
} // ocl_prepare
bool forward_ocl(InputArrayOfArrays inputs_, OutputArrayOfArrays outputs_, OutputArrayOfArrays internals_)
{
CV_TRACE_FUNCTION();
std::vector<UMat> inputs;
std::vector<UMat> outputs;
inputs_.getUMatVector(inputs);
outputs_.getUMatVector(outputs);
CV_Assert(outputs.size() == finalSliceRanges.size());
const UMat& input = inputs[0];
const int dims = input.dims;
if (dims > 5)
{
CV_LOG_INFO(NULL, "DNN/OpenCL/Slice: implementation doesn't support dims=" << dims << ". Fallback to CPU");
return false;
}
if (ocl_exec_cache.empty())
{
ocl_prepare(inputs, outputs);
}
CV_CheckEQ(ocl_exec_cache.size(), outputs.size(), "");
for (size_t i = 0; i < outputs.size(); i++)
{
const OpenCLExecInfo& ocl = ocl_exec_cache[i];
UMat& output = outputs[i];
ocl::Kernel kernel(ocl.kernel_name.c_str(), ocl::dnn::slice_oclsrc, ocl.build_opts);
if (kernel.empty())
return false;
bool ret = kernel.args(
ocl::KernelArg::PtrReadOnly(input),
ocl::KernelArg::PtrWriteOnly(output)
)
.run(2, (size_t*)ocl.global_size, (size_t*)ocl.local_size, false);
if (!ret)
return false;
} // for outputs.size()
return true;
} // forward_ocl
#endif
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE
{
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget),
forward_ocl(inputs_arr, outputs_arr, internals_arr))
std::vector<Mat> inputs, outputs;
inputs_arr.getMatVector(inputs);
outputs_arr.getMatVector(outputs);
const Mat& inpMat = inputs[0];
CV_Assert(outputs.size() == finalSliceRanges.size());
for (size_t i = 0; i < outputs.size(); i++)
{
inpMat(finalSliceRanges[i]).copyTo(outputs[i]);
}
}
#ifdef HAVE_DNN_IE_NN_BUILDER_2019
#if INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2019R1)
virtual Ptr<BackendNode> initInfEngine(const std::vector<Ptr<BackendWrapper> >& inputs) CV_OVERRIDE
{
CV_Assert_N(finalSliceRanges.size() == 1, inputs.size() <= 2);
std::vector<size_t> axes, offsets, dims;
int from, to, step;
int numDims = finalSliceRanges[0].size();
if (preferableTarget == DNN_TARGET_MYRIAD)
{
from = axis;
to = numDims;
step = 1;
}
else
{
from = numDims - 1;
to = axis - 1;
step = -1;
}
for (int i = from; i != to; i += step)
{
axes.push_back(i);
offsets.push_back(finalSliceRanges[0][i].start);
dims.push_back(finalSliceRanges[0][i].size());
}
InferenceEngine::Builder::Layer ieLayer(name);
ieLayer.setName(name);
ieLayer.setType("Crop");
ieLayer.getParameters()["axis"] = axes;
ieLayer.getParameters()["dim"] = dims;
ieLayer.getParameters()["offset"] = offsets;
ieLayer.setInputPorts(std::vector<InferenceEngine::Port>(2));
ieLayer.setOutputPorts(std::vector<InferenceEngine::Port>(1));
if (inputs.size() != 2)
{
std::vector<size_t> outShape(numDims);
for (int i = 0; i < numDims; ++i)
outShape[i] = finalSliceRanges[0][i].size();
ieLayer.getInputPorts()[1].setParameter("type", "weights");
auto shapeSource = InferenceEngine::make_shared_blob<float>({
InferenceEngine::Precision::FP32, outShape,
InferenceEngine::Layout::ANY
});
shapeSource->allocate();
addConstantData("weights", shapeSource, ieLayer);
}
return Ptr<BackendNode>(new InfEngineBackendNode(ieLayer));
}
#endif
#endif
#ifdef HAVE_DNN_NGRAPH
virtual Ptr<BackendNode> initNgraph(const std::vector<Ptr<BackendWrapper> >& inputs,
const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE
{
CV_Assert_N(nodes.size() <= 2);
auto& ieInpNode = nodes[0].dynamicCast<InfEngineNgraphNode>()->node;
CV_Assert(finalSliceRanges[0].size() == ieInpNode->get_shape().size());
std::vector<int64_t> offsets, dims;
for (int i = 0; i < finalSliceRanges[0].size(); ++i)
{
offsets.push_back(finalSliceRanges[0][i].start);
dims.push_back(finalSliceRanges[0][i].end);
}
auto lower_bounds = std::make_shared<ngraph::op::Constant>(ngraph::element::i64,
ngraph::Shape{offsets.size()}, offsets.data());
auto upper_bounds = std::make_shared<ngraph::op::Constant>(ngraph::element::i64,
ngraph::Shape{dims.size()}, dims.data());
auto strides = std::make_shared<ngraph::op::Constant>(ngraph::element::i64,
ngraph::Shape{dims.size()}, std::vector<int64_t>((int64_t)dims.size(), 1));
auto slice = std::make_shared<ngraph::op::v1::StridedSlice>(ieInpNode,
lower_bounds, upper_bounds, strides, std::vector<int64_t>{}, std::vector<int64_t>{});
return Ptr<BackendNode>(new InfEngineNgraphNode(slice));
}
#endif // HAVE_DNN_NGRAPH
protected:
// The actual non-negative values determined from @p sliceRanges depends on input size.
std::vector<std::vector<Range> > finalSliceRanges;
bool hasDynamicShapes;
bool shapesInitialized;
};
class CropLayerImpl CV_FINAL : public SliceLayerImpl
{
public:
CropLayerImpl(const LayerParams& params) : SliceLayerImpl(LayerParams())
{
setParamsFrom(params);
axis = params.get<int>("axis", 2);
const DictValue *paramOffset = params.ptr("offset");
if (paramOffset)
{
for (int i = 0; i < paramOffset->size(); i++)
offset.push_back(paramOffset->get<int>(i));
}
}
bool getMemoryShapes(const std::vector<MatShape> &inputs,
const int requiredOutputs,
std::vector<MatShape> &outputs,
std::vector<MatShape> &internals) const CV_OVERRIDE
{
CV_Assert(inputs.size() == 2);
MatShape dstShape = inputs[0];
int start = normalize_axis(axis, dstShape);
for (int i = start; i < dstShape.size(); i++)
{
dstShape[i] = inputs[1][i];
}
outputs.resize(1, dstShape);
return false;
}
void finalize(InputArrayOfArrays inputs_arr, OutputArrayOfArrays) CV_OVERRIDE
{
std::vector<Mat> inputs;
inputs_arr.getMatVector(inputs);
CV_Assert(2 == inputs.size());
const Mat &inpBlob = inputs[0];
const Mat &inpSzBlob = inputs[1];
int dims = inpBlob.dims;
int start_axis = normalize_axis(axis, dims);
std::vector<int> offset_final(dims, 0);
if (offset.size() == 1)
{
for (int i = start_axis; i < dims; i++)
offset_final[i] = offset[0];
}
else if (offset.size() > 1)
{
if ((int)offset.size() != dims - start_axis)
CV_Error(Error::StsBadArg, "number of offset values specified must be "
"equal to the number of dimensions following axis.");
for (int i = start_axis; i < dims; i++)
offset_final[i] = offset[i - start_axis];
}
finalSliceRanges.resize(1);
finalSliceRanges[0].resize(dims);
for (int i = 0; i < start_axis; i++)
{
finalSliceRanges[0][i] = Range(0, inpBlob.size[i]);
}
for (int i = start_axis; i < dims; i++)
{
if (offset_final[i] < 0 || offset_final[i] + inpSzBlob.size[i] > inpBlob.size[i])
CV_Error(Error::StsBadArg, "invalid crop parameters or blob sizes");
finalSliceRanges[0][i] = Range(offset_final[i], offset_final[i] + inpSzBlob.size[i]);
}
}
private:
std::vector<int> offset;
};
Ptr<SliceLayer> SliceLayer::create(const LayerParams& params)
{
return Ptr<SliceLayer>(new SliceLayerImpl(params));
}
Ptr<Layer> CropLayer::create(const LayerParams& params)
{
return Ptr<Layer>(new CropLayerImpl(params));
}
}
}