Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
671 lines
24 KiB
671 lines
24 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved. |
|
// Copyright (C) 2017, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "../precomp.hpp" |
|
#include "../op_inf_engine.hpp" |
|
#include "../ie_ngraph.hpp" |
|
|
|
#include "layers_common.hpp" |
|
#include <opencv2/dnn/shape_utils.hpp> |
|
|
|
#include <opencv2/core/utils/logger.hpp> |
|
|
|
#ifdef HAVE_OPENCL |
|
#include "opencl_kernels_dnn.hpp" |
|
#endif |
|
|
|
namespace cv |
|
{ |
|
namespace dnn |
|
{ |
|
|
|
class SliceLayerImpl : public SliceLayer |
|
{ |
|
public: |
|
SliceLayerImpl(const LayerParams& params) |
|
{ |
|
setParamsFrom(params); |
|
axis = params.get<int>("axis", 1); |
|
num_split = params.get<int>("num_split", 0); |
|
hasDynamicShapes = params.get<bool>("has_dynamic_shapes", false); |
|
shapesInitialized = !hasDynamicShapes; |
|
if (params.has("slice_point")) |
|
{ |
|
CV_Assert(!params.has("begin") && !params.has("size") && !params.has("end")); |
|
const DictValue &indicesValue = params.get("slice_point"); |
|
sliceRanges.resize(indicesValue.size() + 1, |
|
std::vector<Range>(axis + 1, Range::all())); |
|
int prevSlice = 0; |
|
for (int i = 0; i < indicesValue.size(); ++i) |
|
{ |
|
sliceRanges[i][axis].start = prevSlice; |
|
sliceRanges[i][axis].end = indicesValue.get<int>(i); |
|
prevSlice = sliceRanges[i][axis].end; |
|
} |
|
sliceRanges.back()[axis].start = prevSlice; |
|
} |
|
else if (params.has("begin")) |
|
{ |
|
CV_Assert(params.has("size") ^ params.has("end")); |
|
const DictValue &begins = params.get("begin"); |
|
const DictValue &sizesOrEnds = params.has("size") ? params.get("size") : params.get("end"); |
|
CV_Assert(begins.size() == sizesOrEnds.size()); |
|
|
|
sliceRanges.resize(1); |
|
sliceRanges[0].resize(begins.size(), Range::all()); |
|
for (int i = 0; i < begins.size(); ++i) |
|
{ |
|
int start = begins.get<int>(i); |
|
int sizeOrEnd = sizesOrEnds.get<int>(i); // It may be negative to reverse indexation. |
|
CV_Assert(start >= 0); |
|
|
|
sliceRanges[0][i].start = start; |
|
if (params.has("size")) |
|
{ |
|
int size = sizeOrEnd; |
|
CV_Assert(size == -1 || size > 0); // -1 value means range [start, axis_size). |
|
sliceRanges[0][i].end = size > 0 ? (start + size) : -1; // We'll finalize a negative value later. |
|
} |
|
else |
|
{ |
|
int end = sizeOrEnd; |
|
CV_Assert(end < 0 || end > start); // End index is excluded. |
|
sliceRanges[0][i].end = end; // We'll finalize a negative value later. |
|
} |
|
} |
|
} |
|
} |
|
|
|
virtual bool supportBackend(int backendId) CV_OVERRIDE |
|
{ |
|
#ifdef HAVE_DNN_IE_NN_BUILDER_2019 |
|
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019) |
|
return INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2019R1) && |
|
sliceRanges.size() == 1 && sliceRanges[0].size() == 4; |
|
#endif |
|
#ifdef HAVE_DNN_NGRAPH |
|
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) |
|
return sliceRanges.size() == 1; |
|
#endif |
|
return backendId == DNN_BACKEND_OPENCV; |
|
} |
|
|
|
bool getMemoryShapes(const std::vector<MatShape> &inputs, |
|
const int requiredOutputs, |
|
std::vector<MatShape> &outputs, |
|
std::vector<MatShape> &internals) const CV_OVERRIDE |
|
{ |
|
CV_Assert(inputs.size() == 1); |
|
MatShape inpShape = inputs[0]; |
|
|
|
if (!sliceRanges.empty()) |
|
{ |
|
outputs.resize(sliceRanges.size(), inpShape); |
|
for (int i = 0; i < outputs.size(); ++i) |
|
{ |
|
CV_Assert(sliceRanges[i].size() <= inpShape.size()); |
|
for (int j = 0; j < sliceRanges[i].size(); ++j) |
|
{ |
|
if (shapesInitialized || inpShape[j] > 0) |
|
outputs[i][j] = normalize_axis_range(sliceRanges[i][j], inpShape[j]).size(); |
|
} |
|
} |
|
} |
|
else // Divide input blob on equal parts by axis. |
|
{ |
|
CV_Assert(0 <= axis && axis < inpShape.size()); |
|
int splits = num_split ? num_split : requiredOutputs; |
|
CV_Assert(splits > 0 && inpShape[axis] % splits == 0); |
|
inpShape[axis] /= splits; |
|
outputs.resize(splits, inpShape); |
|
} |
|
return false; |
|
} |
|
|
|
bool updateMemoryShapes(const std::vector<MatShape> &inputs) CV_OVERRIDE |
|
{ |
|
shapesInitialized = true; |
|
return true; |
|
} |
|
|
|
void finalize(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr) CV_OVERRIDE |
|
{ |
|
#ifdef HAVE_OPENCL |
|
ocl_exec_cache.clear(); |
|
#endif |
|
|
|
std::vector<Mat> inputs, outputs; |
|
inputs_arr.getMatVector(inputs); |
|
outputs_arr.getMatVector(outputs); |
|
|
|
CV_Assert(inputs.size() == 1); |
|
const MatSize& inpShape = inputs[0].size; |
|
|
|
finalSliceRanges = sliceRanges; |
|
if (sliceRanges.empty()) |
|
{ |
|
// Divide input blob on equal parts by axis. |
|
int outAxisSize = inpShape[axis] / outputs.size(); |
|
finalSliceRanges.resize(outputs.size(), |
|
std::vector<Range>(axis + 1, Range::all())); |
|
int prevSlice = 0; |
|
for (int i = 0; i < outputs.size(); ++i) |
|
{ |
|
finalSliceRanges[i][axis].start = prevSlice; |
|
finalSliceRanges[i][axis].end = finalSliceRanges[i][axis].start + outAxisSize; |
|
prevSlice = finalSliceRanges[i][axis].end; |
|
} |
|
} |
|
else |
|
CV_Assert(outputs.size() == sliceRanges.size()); |
|
|
|
for (int i = 0; i < outputs.size(); ++i) |
|
{ |
|
CV_Assert(finalSliceRanges[i].size() <= inpShape.dims()); |
|
// Fill the rest of ranges. |
|
for (int j = finalSliceRanges[i].size(); j < inpShape.dims(); ++j) |
|
{ |
|
finalSliceRanges[i].push_back(Range::all()); |
|
} |
|
// Clamp. |
|
for (int j = 0; j < finalSliceRanges[i].size(); ++j) |
|
{ |
|
finalSliceRanges[i][j] = normalize_axis_range(finalSliceRanges[i][j], inpShape[j]); |
|
} |
|
} |
|
|
|
#if 0 |
|
std::cout << "DEBUG: DNN/Slice: " << outputs.size() << " inpShape=" << inpShape << std::endl; |
|
for (int i = 0; i < outputs.size(); ++i) |
|
{ |
|
for (int j = 0; j < finalSliceRanges[i].size(); ++j) |
|
{ |
|
std::cout << finalSliceRanges[i][j]; |
|
} |
|
std::cout << std::endl; |
|
} |
|
#endif |
|
} |
|
|
|
#ifdef HAVE_OPENCL |
|
struct OpenCLExecInfo |
|
{ |
|
std::string kernel_name; |
|
std::string build_opts; |
|
size_t local_size[2]; |
|
size_t global_size[2]; |
|
|
|
OpenCLExecInfo() |
|
{ |
|
local_size[0] = local_size[1] = 0; |
|
global_size[0] = global_size[1] = 0; |
|
} |
|
}; |
|
std::vector<OpenCLExecInfo> ocl_exec_cache; |
|
|
|
void ocl_prepare(const std::vector<UMat>& inputs, const std::vector<UMat>& outputs) |
|
{ |
|
CV_TRACE_FUNCTION(); |
|
|
|
CV_Assert(outputs.size() == finalSliceRanges.size()); |
|
ocl_exec_cache.resize(outputs.size()); |
|
|
|
const UMat& input = inputs[0]; |
|
const int dims = input.dims; |
|
|
|
size_t WSZ = 128; |
|
|
|
const int elemSize = (int)input.elemSize(); |
|
String opts0 = cv::format( |
|
"-DDIMS=%d -DELEMSIZE=%d", |
|
dims, elemSize |
|
); |
|
for (int d = 0; d < dims; d++) |
|
{ |
|
opts0 += cv::format(" -DSRC_STEP_%d=%d", d, (int)input.step[dims - 1 - d]); |
|
} |
|
for (size_t i = 0; i < outputs.size(); i++) |
|
{ |
|
OpenCLExecInfo& ocl = ocl_exec_cache[i]; |
|
|
|
const UMat& output = outputs[i]; |
|
const std::vector<Range>& range = finalSliceRanges[i]; |
|
|
|
String opts = opts0; |
|
|
|
CV_CheckEQ(output.dims, dims, ""); |
|
for (int d = 0; d < dims; d++) |
|
{ |
|
opts += cv::format(" -DDST_STEP_%d=%d -DDST_SZ_%d=%d -DSRC_START_%d=%d", |
|
d, (int)output.step[dims - 1 - d], |
|
d, (int)output.size[dims - 1 - d], |
|
d, (int)range[dims - 1 - d].start |
|
); |
|
CV_CheckEQ(range[d].size(), (int)output.size[d], ""); |
|
} |
|
|
|
const size_t param_LIMIT_BLOCK_SIZE_PER_WG = WSZ * 64; |
|
|
|
int block_dims = 0; |
|
size_t block_size = elemSize; |
|
for (int i = dims - 1; i >= 0; --i) |
|
{ |
|
if (input.step[i] != output.step[i]) |
|
break; |
|
block_size *= output.size[i]; |
|
block_dims++; |
|
if (block_size >= param_LIMIT_BLOCK_SIZE_PER_WG) |
|
break; |
|
} |
|
|
|
const size_t total = output.total() * elemSize; |
|
size_t num_blocks = total / block_size; |
|
|
|
if ((num_blocks <= 8 && block_size >= WSZ * 4) || (block_size >= param_LIMIT_BLOCK_SIZE_PER_WG)) |
|
{ |
|
// use 1D copy mode |
|
opts += cv::format(" -DUSE_COPY_1D=1"); |
|
|
|
opts += cv::format(" -DBLOCK_DIMS=%d", block_dims); |
|
opts += cv::format(" -DBLOCK_DIMS_CONTIGUOUS=%d", block_dims); |
|
opts += cv::format(" -DBLOCK_SIZE=%d", (int)block_size); |
|
|
|
opts += cv::format(" -DBLOCK_COLS=%d", (int)block_size); |
|
} |
|
else |
|
{ |
|
// use 2D copy mode |
|
int block_cols = block_size; |
|
int block_dims_contiguous = block_dims; |
|
size_t input_base_step = input.step[dims - 1 - block_dims_contiguous]; |
|
size_t output_base_step = output.step[dims - 1 - block_dims_contiguous]; |
|
|
|
size_t block_rows = 1; |
|
for (int i = dims - 1 - block_dims_contiguous; i >= 0; --i) |
|
{ |
|
if (input.step[i] * output_base_step != output.step[i] * input_base_step) |
|
break; |
|
block_rows *= output.size[i]; |
|
block_dims++; |
|
} |
|
|
|
block_size *= block_rows; |
|
|
|
num_blocks = total / block_size; |
|
|
|
if (block_rows > 1) |
|
{ |
|
opts += cv::format(" -DBLOCK_DIMS=%d", block_dims); |
|
opts += cv::format(" -DBLOCK_DIMS_CONTIGUOUS=%d", block_dims_contiguous); |
|
opts += cv::format(" -DBLOCK_SIZE=%d", (int)block_size); |
|
|
|
opts += cv::format(" -DBLOCK_COLS=%d", (int)block_cols); |
|
|
|
opts += cv::format(" -DBLOCK_ROWS=%d", (int)block_rows); |
|
opts += cv::format(" -DBLOCK_SRC_STRIDE=%d", (int)input_base_step); |
|
} |
|
else |
|
{ |
|
// use 1D copy mode |
|
opts += cv::format(" -DUSE_COPY_1D=1"); |
|
|
|
opts += cv::format(" -DBLOCK_DIMS=%d", block_dims_contiguous); |
|
opts += cv::format(" -DBLOCK_DIMS_CONTIGUOUS=%d", block_dims_contiguous); |
|
opts += cv::format(" -DBLOCK_SIZE=%d", (int)block_size); |
|
|
|
opts += cv::format(" -DBLOCK_COLS=%d", (int)block_size); |
|
} |
|
} |
|
|
|
const size_t MIN_WORK_ITEMS = 16; |
|
if (block_size <= 4 * MIN_WORK_ITEMS) |
|
WSZ = 4; |
|
else if (block_size <= 8 * MIN_WORK_ITEMS) |
|
WSZ = 8; |
|
else if (block_size <= 16 * MIN_WORK_ITEMS) |
|
WSZ = 16; |
|
else if (block_size <= 32 * MIN_WORK_ITEMS) |
|
WSZ = 32; |
|
else if (block_size <= 64 * MIN_WORK_ITEMS) |
|
WSZ = 64; |
|
|
|
opts += cv::format(" -DWSZ=%d", (int)WSZ); |
|
|
|
std::ostringstream kernel_suffix; |
|
kernel_suffix << dims << 'x' << elemSize << "_bsz" << block_size; |
|
kernel_suffix << "__src_"; |
|
for (int d = 0; d < dims; d++) |
|
{ |
|
kernel_suffix << input.size[dims - 1 - d] << '_'; |
|
} |
|
kernel_suffix << '_'; |
|
/*for (int d = 0; d < dims; d++) |
|
{ |
|
kernel_suffix << input.step[dims - 1 - d] << '_'; |
|
} |
|
kernel_suffix << '_';*/ |
|
|
|
kernel_suffix << "dst_"; |
|
for (int d = 0; d < dims; d++) |
|
{ |
|
kernel_suffix << output.size[dims - 1 - d] << '_'; |
|
} |
|
/*kernel_suffix << '_'; |
|
for (int d = 0; d < dims; d++) |
|
{ |
|
kernel_suffix << output.step[dims - 1 - d] << '_'; |
|
}*/ |
|
kernel_suffix << "_slice_"; |
|
for (int d = 0; d < dims; d++) |
|
{ |
|
kernel_suffix << range[dims - 1 - d].start << '_'; |
|
} |
|
for (int d = 0; d < dims; d++) |
|
{ |
|
kernel_suffix << '_' << range[dims - 1 - d].end; |
|
} |
|
|
|
std::string kernel_suffix_str = kernel_suffix.str(); |
|
opts += cv::format(" -DSLICE_KERNEL_SUFFIX=%s", kernel_suffix_str.c_str()); |
|
|
|
ocl.kernel_name = cv::format("slice_%s", kernel_suffix_str.c_str()); |
|
ocl.build_opts = opts; |
|
ocl.local_size[0] = WSZ; |
|
ocl.local_size[1] = 1; |
|
ocl.global_size[0] = WSZ; |
|
ocl.global_size[1] = num_blocks; |
|
} // for outputs.size() |
|
} // ocl_prepare |
|
|
|
bool forward_ocl(InputArrayOfArrays inputs_, OutputArrayOfArrays outputs_, OutputArrayOfArrays internals_) |
|
{ |
|
CV_TRACE_FUNCTION(); |
|
|
|
std::vector<UMat> inputs; |
|
std::vector<UMat> outputs; |
|
|
|
inputs_.getUMatVector(inputs); |
|
outputs_.getUMatVector(outputs); |
|
|
|
CV_Assert(outputs.size() == finalSliceRanges.size()); |
|
|
|
const UMat& input = inputs[0]; |
|
const int dims = input.dims; |
|
if (dims > 5) |
|
{ |
|
CV_LOG_INFO(NULL, "DNN/OpenCL/Slice: implementation doesn't support dims=" << dims << ". Fallback to CPU"); |
|
return false; |
|
} |
|
|
|
if (ocl_exec_cache.empty()) |
|
{ |
|
ocl_prepare(inputs, outputs); |
|
} |
|
CV_CheckEQ(ocl_exec_cache.size(), outputs.size(), ""); |
|
|
|
for (size_t i = 0; i < outputs.size(); i++) |
|
{ |
|
const OpenCLExecInfo& ocl = ocl_exec_cache[i]; |
|
|
|
UMat& output = outputs[i]; |
|
|
|
ocl::Kernel kernel(ocl.kernel_name.c_str(), ocl::dnn::slice_oclsrc, ocl.build_opts); |
|
if (kernel.empty()) |
|
return false; |
|
bool ret = kernel.args( |
|
ocl::KernelArg::PtrReadOnly(input), |
|
ocl::KernelArg::PtrWriteOnly(output) |
|
) |
|
.run(2, (size_t*)ocl.global_size, (size_t*)ocl.local_size, false); |
|
if (!ret) |
|
return false; |
|
} // for outputs.size() |
|
|
|
return true; |
|
} // forward_ocl |
|
#endif |
|
|
|
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE |
|
{ |
|
CV_TRACE_FUNCTION(); |
|
CV_TRACE_ARG_VALUE(name, "name", name.c_str()); |
|
|
|
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget), |
|
forward_ocl(inputs_arr, outputs_arr, internals_arr)) |
|
|
|
std::vector<Mat> inputs, outputs; |
|
inputs_arr.getMatVector(inputs); |
|
outputs_arr.getMatVector(outputs); |
|
|
|
const Mat& inpMat = inputs[0]; |
|
CV_Assert(outputs.size() == finalSliceRanges.size()); |
|
for (size_t i = 0; i < outputs.size(); i++) |
|
{ |
|
inpMat(finalSliceRanges[i]).copyTo(outputs[i]); |
|
} |
|
} |
|
|
|
#ifdef HAVE_DNN_IE_NN_BUILDER_2019 |
|
#if INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2019R1) |
|
virtual Ptr<BackendNode> initInfEngine(const std::vector<Ptr<BackendWrapper> >& inputs) CV_OVERRIDE |
|
{ |
|
CV_Assert_N(finalSliceRanges.size() == 1, inputs.size() <= 2); |
|
|
|
std::vector<size_t> axes, offsets, dims; |
|
int from, to, step; |
|
int numDims = finalSliceRanges[0].size(); |
|
if (preferableTarget == DNN_TARGET_MYRIAD) |
|
{ |
|
from = axis; |
|
to = numDims; |
|
step = 1; |
|
} |
|
else |
|
{ |
|
from = numDims - 1; |
|
to = axis - 1; |
|
step = -1; |
|
} |
|
for (int i = from; i != to; i += step) |
|
{ |
|
axes.push_back(i); |
|
offsets.push_back(finalSliceRanges[0][i].start); |
|
dims.push_back(finalSliceRanges[0][i].size()); |
|
} |
|
|
|
InferenceEngine::Builder::Layer ieLayer(name); |
|
ieLayer.setName(name); |
|
ieLayer.setType("Crop"); |
|
ieLayer.getParameters()["axis"] = axes; |
|
ieLayer.getParameters()["dim"] = dims; |
|
ieLayer.getParameters()["offset"] = offsets; |
|
ieLayer.setInputPorts(std::vector<InferenceEngine::Port>(2)); |
|
ieLayer.setOutputPorts(std::vector<InferenceEngine::Port>(1)); |
|
|
|
if (inputs.size() != 2) |
|
{ |
|
std::vector<size_t> outShape(numDims); |
|
for (int i = 0; i < numDims; ++i) |
|
outShape[i] = finalSliceRanges[0][i].size(); |
|
|
|
ieLayer.getInputPorts()[1].setParameter("type", "weights"); |
|
|
|
auto shapeSource = InferenceEngine::make_shared_blob<float>({ |
|
InferenceEngine::Precision::FP32, outShape, |
|
InferenceEngine::Layout::ANY |
|
}); |
|
shapeSource->allocate(); |
|
addConstantData("weights", shapeSource, ieLayer); |
|
} |
|
return Ptr<BackendNode>(new InfEngineBackendNode(ieLayer)); |
|
} |
|
#endif |
|
#endif |
|
|
|
#ifdef HAVE_DNN_NGRAPH |
|
virtual Ptr<BackendNode> initNgraph(const std::vector<Ptr<BackendWrapper> >& inputs, |
|
const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE |
|
{ |
|
CV_Assert_N(nodes.size() <= 2); |
|
auto& ieInpNode = nodes[0].dynamicCast<InfEngineNgraphNode>()->node; |
|
CV_Assert(finalSliceRanges[0].size() == ieInpNode->get_shape().size()); |
|
|
|
std::vector<int64_t> offsets, dims; |
|
for (int i = 0; i < finalSliceRanges[0].size(); ++i) |
|
{ |
|
offsets.push_back(finalSliceRanges[0][i].start); |
|
dims.push_back(finalSliceRanges[0][i].end); |
|
} |
|
|
|
auto lower_bounds = std::make_shared<ngraph::op::Constant>(ngraph::element::i64, |
|
ngraph::Shape{offsets.size()}, offsets.data()); |
|
auto upper_bounds = std::make_shared<ngraph::op::Constant>(ngraph::element::i64, |
|
ngraph::Shape{dims.size()}, dims.data()); |
|
auto strides = std::make_shared<ngraph::op::Constant>(ngraph::element::i64, |
|
ngraph::Shape{dims.size()}, std::vector<int64_t>((int64_t)dims.size(), 1)); |
|
|
|
auto slice = std::make_shared<ngraph::op::v1::StridedSlice>(ieInpNode, |
|
lower_bounds, upper_bounds, strides, std::vector<int64_t>{}, std::vector<int64_t>{}); |
|
|
|
return Ptr<BackendNode>(new InfEngineNgraphNode(slice)); |
|
} |
|
#endif // HAVE_DNN_NGRAPH |
|
|
|
protected: |
|
// The actual non-negative values determined from @p sliceRanges depends on input size. |
|
std::vector<std::vector<Range> > finalSliceRanges; |
|
bool hasDynamicShapes; |
|
bool shapesInitialized; |
|
}; |
|
|
|
class CropLayerImpl CV_FINAL : public SliceLayerImpl |
|
{ |
|
public: |
|
CropLayerImpl(const LayerParams& params) : SliceLayerImpl(LayerParams()) |
|
{ |
|
setParamsFrom(params); |
|
axis = params.get<int>("axis", 2); |
|
const DictValue *paramOffset = params.ptr("offset"); |
|
|
|
if (paramOffset) |
|
{ |
|
for (int i = 0; i < paramOffset->size(); i++) |
|
offset.push_back(paramOffset->get<int>(i)); |
|
} |
|
} |
|
|
|
bool getMemoryShapes(const std::vector<MatShape> &inputs, |
|
const int requiredOutputs, |
|
std::vector<MatShape> &outputs, |
|
std::vector<MatShape> &internals) const CV_OVERRIDE |
|
{ |
|
CV_Assert(inputs.size() == 2); |
|
|
|
MatShape dstShape = inputs[0]; |
|
int start = normalize_axis(axis, dstShape); |
|
for (int i = start; i < dstShape.size(); i++) |
|
{ |
|
dstShape[i] = inputs[1][i]; |
|
} |
|
outputs.resize(1, dstShape); |
|
return false; |
|
} |
|
|
|
void finalize(InputArrayOfArrays inputs_arr, OutputArrayOfArrays) CV_OVERRIDE |
|
{ |
|
std::vector<Mat> inputs; |
|
inputs_arr.getMatVector(inputs); |
|
CV_Assert(2 == inputs.size()); |
|
|
|
const Mat &inpBlob = inputs[0]; |
|
const Mat &inpSzBlob = inputs[1]; |
|
|
|
int dims = inpBlob.dims; |
|
int start_axis = normalize_axis(axis, dims); |
|
|
|
std::vector<int> offset_final(dims, 0); |
|
if (offset.size() == 1) |
|
{ |
|
for (int i = start_axis; i < dims; i++) |
|
offset_final[i] = offset[0]; |
|
} |
|
else if (offset.size() > 1) |
|
{ |
|
if ((int)offset.size() != dims - start_axis) |
|
CV_Error(Error::StsBadArg, "number of offset values specified must be " |
|
"equal to the number of dimensions following axis."); |
|
|
|
for (int i = start_axis; i < dims; i++) |
|
offset_final[i] = offset[i - start_axis]; |
|
} |
|
|
|
finalSliceRanges.resize(1); |
|
finalSliceRanges[0].resize(dims); |
|
for (int i = 0; i < start_axis; i++) |
|
{ |
|
finalSliceRanges[0][i] = Range(0, inpBlob.size[i]); |
|
} |
|
for (int i = start_axis; i < dims; i++) |
|
{ |
|
if (offset_final[i] < 0 || offset_final[i] + inpSzBlob.size[i] > inpBlob.size[i]) |
|
CV_Error(Error::StsBadArg, "invalid crop parameters or blob sizes"); |
|
|
|
finalSliceRanges[0][i] = Range(offset_final[i], offset_final[i] + inpSzBlob.size[i]); |
|
} |
|
} |
|
|
|
private: |
|
std::vector<int> offset; |
|
}; |
|
|
|
Ptr<SliceLayer> SliceLayer::create(const LayerParams& params) |
|
{ |
|
return Ptr<SliceLayer>(new SliceLayerImpl(params)); |
|
} |
|
|
|
Ptr<Layer> CropLayer::create(const LayerParams& params) |
|
{ |
|
return Ptr<Layer>(new CropLayerImpl(params)); |
|
} |
|
|
|
} |
|
}
|
|
|