Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
364 lines
14 KiB
364 lines
14 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved. |
|
// Copyright (C) 2017, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "../precomp.hpp" |
|
#include "layers_common.hpp" |
|
#include "../op_inf_engine.hpp" |
|
#include "../ie_ngraph.hpp" |
|
|
|
namespace cv { namespace dnn { |
|
|
|
class NormalizeBBoxLayerImpl CV_FINAL : public NormalizeBBoxLayer |
|
{ |
|
public: |
|
NormalizeBBoxLayerImpl(const LayerParams& params) |
|
{ |
|
setParamsFrom(params); |
|
pnorm = params.get<float>("p", 2); |
|
epsilon = params.get<float>("eps", 1e-10f); |
|
acrossSpatial = params.get<bool>("across_spatial", true); |
|
startAxis = params.get<int>("start_axis", 1); |
|
CV_Assert(!params.has("across_spatial") || !params.has("end_axis")); |
|
endAxis = params.get<int>("end_axis", acrossSpatial ? -1 : startAxis); |
|
CV_Assert(pnorm > 0); |
|
} |
|
|
|
virtual bool supportBackend(int backendId) CV_OVERRIDE |
|
{ |
|
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 || backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) |
|
{ |
|
if (pnorm != 2) |
|
return false; |
|
|
|
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && preferableTarget == DNN_TARGET_MYRIAD) |
|
return !acrossSpatial; |
|
|
|
return startAxis == 1; |
|
} |
|
return backendId == DNN_BACKEND_OPENCV; |
|
} |
|
|
|
bool getMemoryShapes(const std::vector<MatShape> &inputs, |
|
const int requiredOutputs, |
|
std::vector<MatShape> &outputs, |
|
std::vector<MatShape> &internals) const CV_OVERRIDE |
|
{ |
|
CV_Assert(inputs.size() == 1); |
|
Layer::getMemoryShapes(inputs, requiredOutputs, outputs, internals); |
|
internals.resize(1, inputs[0]); |
|
internals[0][0] = 1; // Batch size. |
|
return true; |
|
} |
|
|
|
void finalize(InputArrayOfArrays inputs_arr, OutputArrayOfArrays) CV_OVERRIDE |
|
{ |
|
std::vector<Mat> inputs; |
|
inputs_arr.getMatVector(inputs); |
|
CV_Assert(inputs.size() == 1); |
|
endAxis = endAxis == -1 ? (inputs[0].dims - 1) : endAxis; |
|
startAxis = startAxis == -1 ? (inputs[0].dims - 1) : startAxis; |
|
acrossSpatial = (startAxis == 1 && endAxis == inputs[0].dims - 1); |
|
} |
|
|
|
#ifdef HAVE_OPENCL |
|
bool forward_ocl(InputArrayOfArrays inputs_, OutputArrayOfArrays outputs_, OutputArrayOfArrays internals_) |
|
{ |
|
std::vector<UMat> inputs; |
|
std::vector<UMat> outputs; |
|
std::vector<UMat> internals; |
|
|
|
if (inputs_.depth() == CV_16S) |
|
return false; |
|
|
|
inputs_.getUMatVector(inputs); |
|
outputs_.getUMatVector(outputs); |
|
internals_.getUMatVector(internals); |
|
|
|
CV_Assert(inputs.size() == 1 && outputs.size() == 1); |
|
CV_Assert(inputs[0].total() == outputs[0].total()); |
|
|
|
const UMat& inp0 = inputs[0]; |
|
UMat& buffer = internals[0]; |
|
startAxis = normalize_axis(startAxis, inp0.dims); |
|
endAxis = normalize_axis(endAxis, inp0.dims); |
|
|
|
size_t num = total(shape(inp0.size), 0, startAxis); |
|
size_t numPlanes = total(shape(inp0.size), startAxis, endAxis + 1); |
|
size_t planeSize = inp0.total() / (num * numPlanes); |
|
MatShape s = shape(1, inputs[0].total()); |
|
UMat inp = inputs[0].reshape(1, s.size(), &s[0]).reshape(1, num); |
|
UMat out = outputs[0].reshape(1, s.size(), &s[0]).reshape(1, num); |
|
for (size_t i = 0; i < num; ++i) |
|
{ |
|
s = shape(numPlanes, planeSize); |
|
UMat src = inp.row(i).reshape(1, s.size(), &s[0]); |
|
UMat dst = out.row(i).reshape(1, s.size(), &s[0]); |
|
|
|
UMat abs_mat; |
|
absdiff(src, cv::Scalar::all(0), abs_mat); |
|
pow(abs_mat, pnorm, buffer); |
|
|
|
if (planeSize == 1) |
|
{ |
|
// add eps to avoid overflow |
|
float absSum = sum(buffer)[0] + epsilon; |
|
float norm = pow(absSum, 1.0f / pnorm); |
|
multiply(src, 1.0f / norm, dst); |
|
} |
|
else |
|
{ |
|
Mat norm; |
|
reduce(buffer, norm, 0, REDUCE_SUM); |
|
norm += epsilon; |
|
|
|
// compute inverted norm to call multiply instead divide |
|
cv::pow(norm, -1.0f / pnorm, norm); |
|
|
|
repeat(norm, numPlanes, 1, buffer); |
|
multiply(src, buffer, dst); |
|
} |
|
|
|
if (!blobs.empty()) |
|
{ |
|
// scale the output |
|
Mat scale = blobs[0]; |
|
if (scale.total() == 1) |
|
{ |
|
// _scale: 1 x 1 |
|
multiply(dst, scale.at<float>(0, 0), dst); |
|
} |
|
else |
|
{ |
|
// _scale: _channels x 1 |
|
CV_Assert(scale.total() == numPlanes); |
|
repeat(scale, 1, dst.cols, buffer); |
|
multiply(dst, buffer, dst); |
|
} |
|
} |
|
} |
|
return true; |
|
} |
|
#endif |
|
|
|
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE |
|
{ |
|
CV_TRACE_FUNCTION(); |
|
CV_TRACE_ARG_VALUE(name, "name", name.c_str()); |
|
|
|
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget), |
|
forward_ocl(inputs_arr, outputs_arr, internals_arr)) |
|
|
|
if (inputs_arr.depth() == CV_16S) |
|
{ |
|
forward_fallback(inputs_arr, outputs_arr, internals_arr); |
|
return; |
|
} |
|
|
|
std::vector<Mat> inputs, outputs, internals; |
|
inputs_arr.getMatVector(inputs); |
|
outputs_arr.getMatVector(outputs); |
|
internals_arr.getMatVector(internals); |
|
|
|
CV_Assert(inputs.size() == 1 && outputs.size() == 1); |
|
CV_Assert(inputs[0].total() == outputs[0].total()); |
|
|
|
const Mat& inp0 = inputs[0]; |
|
Mat& buffer = internals[0]; |
|
startAxis = normalize_axis(startAxis, inp0.dims); |
|
endAxis = normalize_axis(endAxis, inp0.dims); |
|
|
|
const float* inpData = inp0.ptr<float>(); |
|
float* outData = outputs[0].ptr<float>(); |
|
|
|
size_t num = total(shape(inp0.size), 0, startAxis); |
|
size_t numPlanes = total(shape(inp0.size), startAxis, endAxis + 1); |
|
CV_Assert(num * numPlanes != 0); |
|
size_t planeSize = inp0.total() / (num * numPlanes); |
|
for (size_t n = 0; n < num; ++n) |
|
{ |
|
Mat src = Mat(numPlanes, planeSize, CV_32F, (void*)inpData); |
|
Mat dst = Mat(numPlanes, planeSize, CV_32F, (void*)outData); |
|
cv::pow(abs(src), pnorm, buffer); |
|
|
|
if (planeSize == 1) |
|
{ |
|
// add eps to avoid overflow |
|
float absSum = sum(buffer)[0] + epsilon; |
|
float norm = pow(absSum, 1.0f / pnorm); |
|
multiply(src, 1.0f / norm, dst); |
|
} |
|
else |
|
{ |
|
Mat norm; |
|
reduce(buffer, norm, 0, REDUCE_SUM); |
|
norm += epsilon; |
|
|
|
// compute inverted norm to call multiply instead divide |
|
cv::pow(norm, -1.0f / pnorm, norm); |
|
|
|
repeat(norm, numPlanes, 1, buffer); |
|
multiply(src, buffer, dst); |
|
} |
|
|
|
if (!blobs.empty()) |
|
{ |
|
// scale the output |
|
Mat scale = blobs[0]; |
|
if (scale.total() == 1) |
|
{ |
|
// _scale: 1 x 1 |
|
dst *= scale.at<float>(0, 0); |
|
} |
|
else |
|
{ |
|
// _scale: _channels x 1 |
|
CV_Assert(scale.total() == numPlanes); |
|
repeat(scale, 1, dst.cols, buffer); |
|
multiply(dst, buffer, dst); |
|
} |
|
} |
|
inpData += numPlanes * planeSize; |
|
outData += numPlanes * planeSize; |
|
} |
|
} |
|
|
|
#ifdef HAVE_DNN_IE_NN_BUILDER_2019 |
|
virtual Ptr<BackendNode> initInfEngine(const std::vector<Ptr<BackendWrapper> >& inputs) CV_OVERRIDE |
|
{ |
|
InferenceEngine::DataPtr input = infEngineDataNode(inputs[0]); |
|
std::vector<size_t> dims = input->getDims(); |
|
if (dims.size() == 4) |
|
{ |
|
InferenceEngine::Builder::NormalizeLayer ieLayer(name); |
|
|
|
ieLayer.setChannelShared(false); |
|
ieLayer.setAcrossMaps(acrossSpatial); |
|
ieLayer.setEpsilon(epsilon); |
|
|
|
InferenceEngine::Builder::Layer l = ieLayer; |
|
const int numChannels = dims[1]; |
|
InferenceEngine::Blob::Ptr weights; |
|
if (blobs.empty()) |
|
{ |
|
weights = InferenceEngine::make_shared_blob<float>({ |
|
InferenceEngine::Precision::FP32, |
|
{(size_t)numChannels}, InferenceEngine::Layout::C |
|
}); |
|
weights->allocate(); |
|
|
|
Mat weightsMat = infEngineBlobToMat(weights).reshape(1, numChannels); |
|
Mat(numChannels, 1, CV_32F, Scalar(1)).copyTo(weightsMat); |
|
l.getParameters()["channel_shared"] = false; |
|
} |
|
else |
|
{ |
|
CV_Assert(numChannels == blobs[0].total()); |
|
weights = wrapToInfEngineBlob(blobs[0], {(size_t)numChannels}, InferenceEngine::Layout::C); |
|
l.getParameters()["channel_shared"] = blobs[0].total() == 1; |
|
} |
|
addConstantData("weights", weights, l); |
|
l.getParameters()["across_spatial"] = acrossSpatial; |
|
return Ptr<BackendNode>(new InfEngineBackendNode(l)); |
|
} |
|
else |
|
{ |
|
InferenceEngine::Builder::GRNLayer ieLayer(name); |
|
ieLayer.setBeta(epsilon); |
|
|
|
InferenceEngine::Builder::Layer l = ieLayer; |
|
l.getParameters()["bias"] = epsilon; |
|
|
|
return Ptr<BackendNode>(new InfEngineBackendNode(l)); |
|
} |
|
} |
|
#endif // HAVE_DNN_IE_NN_BUILDER_2019 |
|
|
|
#ifdef HAVE_DNN_NGRAPH |
|
virtual Ptr<BackendNode> initNgraph(const std::vector<Ptr<BackendWrapper> >& inputs, |
|
const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE |
|
{ |
|
auto& ieInpNode = nodes[0].dynamicCast<InfEngineNgraphNode>()->node; |
|
const size_t batch = ieInpNode->get_shape()[0]; |
|
const size_t numChannels = ieInpNode->get_shape()[1]; |
|
|
|
std::vector<int64_t> axes_data; |
|
if (!acrossSpatial) { |
|
axes_data.push_back(1); |
|
} else { |
|
axes_data.resize(ieInpNode->get_shape().size()); |
|
std::iota(axes_data.begin(), axes_data.end(), 0); |
|
} |
|
auto axes = std::make_shared<ngraph::op::Constant>(ngraph::element::i64, ngraph::Shape{axes_data.size()}, axes_data); |
|
auto norm = std::make_shared<ngraph::op::NormalizeL2>(ieInpNode, axes, epsilon, ngraph::op::EpsMode::ADD); |
|
|
|
CV_Assert(blobs.empty() || numChannels == blobs[0].total()); |
|
std::vector<size_t> shape(ieInpNode->get_shape().size(), 1); |
|
shape[0] = blobs.empty() ? 1 : batch; |
|
shape[1] = numChannels; |
|
std::shared_ptr<ngraph::op::Constant> weight; |
|
if (blobs.empty()) |
|
{ |
|
std::vector<float> ones(numChannels, 1); |
|
weight = std::make_shared<ngraph::op::Constant>(ngraph::element::f32, ngraph::Shape(shape), ones.data()); |
|
} |
|
else |
|
{ |
|
weight = std::make_shared<ngraph::op::Constant>( |
|
ngraph::element::f32, ngraph::Shape(shape), blobs[0].data); |
|
} |
|
auto mul = std::make_shared<ngraph::op::v0::Multiply>(norm, weight, ngraph::op::AutoBroadcastType::NUMPY); |
|
return Ptr<BackendNode>(new InfEngineNgraphNode(mul)); |
|
} |
|
#endif // HAVE_DNN_NGRAPH |
|
|
|
private: |
|
int startAxis, endAxis; |
|
}; |
|
|
|
|
|
Ptr<NormalizeBBoxLayer> NormalizeBBoxLayer::create(const LayerParams ¶ms) |
|
{ |
|
return Ptr<NormalizeBBoxLayer>(new NormalizeBBoxLayerImpl(params)); |
|
} |
|
|
|
} |
|
}
|
|
|