mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
656 lines
26 KiB
656 lines
26 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
|
|
using namespace cv; |
|
using namespace cv::cuda; |
|
|
|
#if !defined HAVE_CUDA || defined(CUDA_DISABLER) |
|
|
|
void cv::cuda::warpAffine(InputArray, OutputArray, InputArray, Size, int, int, Scalar, Stream&) { throw_no_cuda(); } |
|
void cv::cuda::buildWarpAffineMaps(InputArray, bool, Size, OutputArray, OutputArray, Stream&) { throw_no_cuda(); } |
|
|
|
void cv::cuda::warpPerspective(InputArray, OutputArray, InputArray, Size, int, int, Scalar, Stream&) { throw_no_cuda(); } |
|
void cv::cuda::buildWarpPerspectiveMaps(InputArray, bool, Size, OutputArray, OutputArray, Stream&) { throw_no_cuda(); } |
|
|
|
void cv::cuda::buildWarpPlaneMaps(Size, Rect, InputArray, InputArray, InputArray, float, OutputArray, OutputArray, Stream&) { throw_no_cuda(); } |
|
void cv::cuda::buildWarpCylindricalMaps(Size, Rect, InputArray, InputArray, float, OutputArray, OutputArray, Stream&) { throw_no_cuda(); } |
|
void cv::cuda::buildWarpSphericalMaps(Size, Rect, InputArray, InputArray, float, OutputArray, OutputArray, Stream&) { throw_no_cuda(); } |
|
|
|
void cv::cuda::rotate(InputArray, OutputArray, Size, double, double, double, int, Stream&) { throw_no_cuda(); } |
|
|
|
#else // HAVE_CUDA |
|
|
|
namespace cv { namespace cuda { namespace device |
|
{ |
|
namespace imgproc |
|
{ |
|
void buildWarpAffineMaps_gpu(float coeffs[2 * 3], PtrStepSzf xmap, PtrStepSzf ymap, cudaStream_t stream); |
|
|
|
template <typename T> |
|
void warpAffine_gpu(PtrStepSzb src, PtrStepSzb srcWhole, int xoff, int yoff, float coeffs[2 * 3], PtrStepSzb dst, int interpolation, |
|
int borderMode, const float* borderValue, cudaStream_t stream, bool cc20); |
|
|
|
void buildWarpPerspectiveMaps_gpu(float coeffs[3 * 3], PtrStepSzf xmap, PtrStepSzf ymap, cudaStream_t stream); |
|
|
|
template <typename T> |
|
void warpPerspective_gpu(PtrStepSzb src, PtrStepSzb srcWhole, int xoff, int yoff, float coeffs[3 * 3], PtrStepSzb dst, int interpolation, |
|
int borderMode, const float* borderValue, cudaStream_t stream, bool cc20); |
|
} |
|
}}} |
|
|
|
void cv::cuda::buildWarpAffineMaps(InputArray _M, bool inverse, Size dsize, OutputArray _xmap, OutputArray _ymap, Stream& stream) |
|
{ |
|
using namespace cv::cuda::device::imgproc; |
|
|
|
Mat M = _M.getMat(); |
|
|
|
CV_Assert( M.rows == 2 && M.cols == 3 ); |
|
|
|
_xmap.create(dsize, CV_32FC1); |
|
_ymap.create(dsize, CV_32FC1); |
|
|
|
GpuMat xmap = _xmap.getGpuMat(); |
|
GpuMat ymap = _ymap.getGpuMat(); |
|
|
|
float coeffs[2 * 3]; |
|
Mat coeffsMat(2, 3, CV_32F, (void*)coeffs); |
|
|
|
if (inverse) |
|
M.convertTo(coeffsMat, coeffsMat.type()); |
|
else |
|
{ |
|
cv::Mat iM; |
|
invertAffineTransform(M, iM); |
|
iM.convertTo(coeffsMat, coeffsMat.type()); |
|
} |
|
|
|
buildWarpAffineMaps_gpu(coeffs, xmap, ymap, StreamAccessor::getStream(stream)); |
|
} |
|
|
|
void cv::cuda::buildWarpPerspectiveMaps(InputArray _M, bool inverse, Size dsize, OutputArray _xmap, OutputArray _ymap, Stream& stream) |
|
{ |
|
using namespace cv::cuda::device::imgproc; |
|
|
|
Mat M = _M.getMat(); |
|
|
|
CV_Assert( M.rows == 3 && M.cols == 3 ); |
|
|
|
_xmap.create(dsize, CV_32FC1); |
|
_ymap.create(dsize, CV_32FC1); |
|
|
|
GpuMat xmap = _xmap.getGpuMat(); |
|
GpuMat ymap = _ymap.getGpuMat(); |
|
|
|
float coeffs[3 * 3]; |
|
Mat coeffsMat(3, 3, CV_32F, (void*)coeffs); |
|
|
|
if (inverse) |
|
M.convertTo(coeffsMat, coeffsMat.type()); |
|
else |
|
{ |
|
cv::Mat iM; |
|
invert(M, iM); |
|
iM.convertTo(coeffsMat, coeffsMat.type()); |
|
} |
|
|
|
buildWarpPerspectiveMaps_gpu(coeffs, xmap, ymap, StreamAccessor::getStream(stream)); |
|
} |
|
|
|
namespace |
|
{ |
|
template <int DEPTH> struct NppWarpFunc |
|
{ |
|
typedef typename NPPTypeTraits<DEPTH>::npp_type npp_type; |
|
|
|
typedef NppStatus (*func_t)(const npp_type* pSrc, NppiSize srcSize, int srcStep, NppiRect srcRoi, npp_type* pDst, |
|
int dstStep, NppiRect dstRoi, const double coeffs[][3], |
|
int interpolation); |
|
}; |
|
|
|
template <int DEPTH, typename NppWarpFunc<DEPTH>::func_t func> struct NppWarp |
|
{ |
|
typedef typename NppWarpFunc<DEPTH>::npp_type npp_type; |
|
|
|
static void call(const cv::cuda::GpuMat& src, cv::cuda::GpuMat& dst, double coeffs[][3], int interpolation, cudaStream_t stream) |
|
{ |
|
static const int npp_inter[] = {NPPI_INTER_NN, NPPI_INTER_LINEAR, NPPI_INTER_CUBIC}; |
|
|
|
NppiSize srcsz; |
|
srcsz.height = src.rows; |
|
srcsz.width = src.cols; |
|
|
|
NppiRect srcroi; |
|
srcroi.x = 0; |
|
srcroi.y = 0; |
|
srcroi.height = src.rows; |
|
srcroi.width = src.cols; |
|
|
|
NppiRect dstroi; |
|
dstroi.x = 0; |
|
dstroi.y = 0; |
|
dstroi.height = dst.rows; |
|
dstroi.width = dst.cols; |
|
|
|
cv::cuda::NppStreamHandler h(stream); |
|
|
|
nppSafeCall( func(src.ptr<npp_type>(), srcsz, static_cast<int>(src.step), srcroi, |
|
dst.ptr<npp_type>(), static_cast<int>(dst.step), dstroi, |
|
coeffs, npp_inter[interpolation]) ); |
|
|
|
if (stream == 0) |
|
cudaSafeCall( cudaDeviceSynchronize() ); |
|
} |
|
}; |
|
} |
|
|
|
void cv::cuda::warpAffine(InputArray _src, OutputArray _dst, InputArray _M, Size dsize, int flags, int borderMode, Scalar borderValue, Stream& stream) |
|
{ |
|
GpuMat src = _src.getGpuMat(); |
|
Mat M = _M.getMat(); |
|
|
|
CV_Assert( M.rows == 2 && M.cols == 3 ); |
|
|
|
const int interpolation = flags & INTER_MAX; |
|
|
|
CV_Assert( src.depth() <= CV_32F && src.channels() <= 4 ); |
|
CV_Assert( interpolation == INTER_NEAREST || interpolation == INTER_LINEAR || interpolation == INTER_CUBIC ); |
|
CV_Assert( borderMode == BORDER_REFLECT101 || borderMode == BORDER_REPLICATE || borderMode == BORDER_CONSTANT || borderMode == BORDER_REFLECT || borderMode == BORDER_WRAP ); |
|
|
|
_dst.create(dsize, src.type()); |
|
GpuMat dst = _dst.getGpuMat(); |
|
|
|
Size wholeSize; |
|
Point ofs; |
|
src.locateROI(wholeSize, ofs); |
|
|
|
static const bool useNppTab[6][4][3] = |
|
{ |
|
{ |
|
{false, false, true}, |
|
{false, false, false}, |
|
{false, true, true}, |
|
{false, false, false} |
|
}, |
|
{ |
|
{false, false, false}, |
|
{false, false, false}, |
|
{false, false, false}, |
|
{false, false, false} |
|
}, |
|
{ |
|
{false, true, true}, |
|
{false, false, false}, |
|
{false, true, true}, |
|
{false, false, false} |
|
}, |
|
{ |
|
{false, false, false}, |
|
{false, false, false}, |
|
{false, false, false}, |
|
{false, false, false} |
|
}, |
|
{ |
|
{false, true, true}, |
|
{false, false, false}, |
|
{false, true, true}, |
|
{false, false, true} |
|
}, |
|
{ |
|
{false, true, true}, |
|
{false, false, false}, |
|
{false, true, true}, |
|
{false, false, true} |
|
} |
|
}; |
|
|
|
bool useNpp = borderMode == BORDER_CONSTANT && ofs.x == 0 && ofs.y == 0 && useNppTab[src.depth()][src.channels() - 1][interpolation]; |
|
// NPP bug on float data |
|
useNpp = useNpp && src.depth() != CV_32F; |
|
|
|
if (useNpp) |
|
{ |
|
typedef void (*func_t)(const cv::cuda::GpuMat& src, cv::cuda::GpuMat& dst, double coeffs[][3], int flags, cudaStream_t stream); |
|
|
|
static const func_t funcs[2][6][4] = |
|
{ |
|
{ |
|
{NppWarp<CV_8U, nppiWarpAffine_8u_C1R>::call, 0, NppWarp<CV_8U, nppiWarpAffine_8u_C3R>::call, NppWarp<CV_8U, nppiWarpAffine_8u_C4R>::call}, |
|
{0, 0, 0, 0}, |
|
{NppWarp<CV_16U, nppiWarpAffine_16u_C1R>::call, 0, NppWarp<CV_16U, nppiWarpAffine_16u_C3R>::call, NppWarp<CV_16U, nppiWarpAffine_16u_C4R>::call}, |
|
{0, 0, 0, 0}, |
|
{NppWarp<CV_32S, nppiWarpAffine_32s_C1R>::call, 0, NppWarp<CV_32S, nppiWarpAffine_32s_C3R>::call, NppWarp<CV_32S, nppiWarpAffine_32s_C4R>::call}, |
|
{NppWarp<CV_32F, nppiWarpAffine_32f_C1R>::call, 0, NppWarp<CV_32F, nppiWarpAffine_32f_C3R>::call, NppWarp<CV_32F, nppiWarpAffine_32f_C4R>::call} |
|
}, |
|
{ |
|
{NppWarp<CV_8U, nppiWarpAffineBack_8u_C1R>::call, 0, NppWarp<CV_8U, nppiWarpAffineBack_8u_C3R>::call, NppWarp<CV_8U, nppiWarpAffineBack_8u_C4R>::call}, |
|
{0, 0, 0, 0}, |
|
{NppWarp<CV_16U, nppiWarpAffineBack_16u_C1R>::call, 0, NppWarp<CV_16U, nppiWarpAffineBack_16u_C3R>::call, NppWarp<CV_16U, nppiWarpAffineBack_16u_C4R>::call}, |
|
{0, 0, 0, 0}, |
|
{NppWarp<CV_32S, nppiWarpAffineBack_32s_C1R>::call, 0, NppWarp<CV_32S, nppiWarpAffineBack_32s_C3R>::call, NppWarp<CV_32S, nppiWarpAffineBack_32s_C4R>::call}, |
|
{NppWarp<CV_32F, nppiWarpAffineBack_32f_C1R>::call, 0, NppWarp<CV_32F, nppiWarpAffineBack_32f_C3R>::call, NppWarp<CV_32F, nppiWarpAffineBack_32f_C4R>::call} |
|
} |
|
}; |
|
|
|
dst.setTo(borderValue, stream); |
|
|
|
double coeffs[2][3]; |
|
Mat coeffsMat(2, 3, CV_64F, (void*)coeffs); |
|
M.convertTo(coeffsMat, coeffsMat.type()); |
|
|
|
const func_t func = funcs[(flags & WARP_INVERSE_MAP) != 0][src.depth()][src.channels() - 1]; |
|
CV_Assert(func != 0); |
|
|
|
func(src, dst, coeffs, interpolation, StreamAccessor::getStream(stream)); |
|
} |
|
else |
|
{ |
|
using namespace cv::cuda::device::imgproc; |
|
|
|
typedef void (*func_t)(PtrStepSzb src, PtrStepSzb srcWhole, int xoff, int yoff, float coeffs[2 * 3], PtrStepSzb dst, int interpolation, |
|
int borderMode, const float* borderValue, cudaStream_t stream, bool cc20); |
|
|
|
static const func_t funcs[6][4] = |
|
{ |
|
{warpAffine_gpu<uchar> , 0 /*warpAffine_gpu<uchar2>*/ , warpAffine_gpu<uchar3> , warpAffine_gpu<uchar4> }, |
|
{0 /*warpAffine_gpu<schar>*/, 0 /*warpAffine_gpu<char2>*/ , 0 /*warpAffine_gpu<char3>*/, 0 /*warpAffine_gpu<char4>*/}, |
|
{warpAffine_gpu<ushort> , 0 /*warpAffine_gpu<ushort2>*/, warpAffine_gpu<ushort3> , warpAffine_gpu<ushort4> }, |
|
{warpAffine_gpu<short> , 0 /*warpAffine_gpu<short2>*/ , warpAffine_gpu<short3> , warpAffine_gpu<short4> }, |
|
{0 /*warpAffine_gpu<int>*/ , 0 /*warpAffine_gpu<int2>*/ , 0 /*warpAffine_gpu<int3>*/ , 0 /*warpAffine_gpu<int4>*/ }, |
|
{warpAffine_gpu<float> , 0 /*warpAffine_gpu<float2>*/ , warpAffine_gpu<float3> , warpAffine_gpu<float4> } |
|
}; |
|
|
|
const func_t func = funcs[src.depth()][src.channels() - 1]; |
|
CV_Assert(func != 0); |
|
|
|
float coeffs[2 * 3]; |
|
Mat coeffsMat(2, 3, CV_32F, (void*)coeffs); |
|
|
|
if (flags & WARP_INVERSE_MAP) |
|
M.convertTo(coeffsMat, coeffsMat.type()); |
|
else |
|
{ |
|
cv::Mat iM; |
|
invertAffineTransform(M, iM); |
|
iM.convertTo(coeffsMat, coeffsMat.type()); |
|
} |
|
|
|
Scalar_<float> borderValueFloat; |
|
borderValueFloat = borderValue; |
|
|
|
func(src, PtrStepSzb(wholeSize.height, wholeSize.width, src.datastart, src.step), ofs.x, ofs.y, coeffs, |
|
dst, interpolation, borderMode, borderValueFloat.val, StreamAccessor::getStream(stream), deviceSupports(FEATURE_SET_COMPUTE_20)); |
|
} |
|
} |
|
|
|
void cv::cuda::warpPerspective(InputArray _src, OutputArray _dst, InputArray _M, Size dsize, int flags, int borderMode, Scalar borderValue, Stream& stream) |
|
{ |
|
GpuMat src = _src.getGpuMat(); |
|
Mat M = _M.getMat(); |
|
|
|
CV_Assert( M.rows == 3 && M.cols == 3 ); |
|
|
|
const int interpolation = flags & INTER_MAX; |
|
|
|
CV_Assert( src.depth() <= CV_32F && src.channels() <= 4 ); |
|
CV_Assert( interpolation == INTER_NEAREST || interpolation == INTER_LINEAR || interpolation == INTER_CUBIC ); |
|
CV_Assert( borderMode == BORDER_REFLECT101 || borderMode == BORDER_REPLICATE || borderMode == BORDER_CONSTANT || borderMode == BORDER_REFLECT || borderMode == BORDER_WRAP) ; |
|
|
|
_dst.create(dsize, src.type()); |
|
GpuMat dst = _dst.getGpuMat(); |
|
|
|
Size wholeSize; |
|
Point ofs; |
|
src.locateROI(wholeSize, ofs); |
|
|
|
static const bool useNppTab[6][4][3] = |
|
{ |
|
{ |
|
{false, false, true}, |
|
{false, false, false}, |
|
{false, true, true}, |
|
{false, false, false} |
|
}, |
|
{ |
|
{false, false, false}, |
|
{false, false, false}, |
|
{false, false, false}, |
|
{false, false, false} |
|
}, |
|
{ |
|
{false, true, true}, |
|
{false, false, false}, |
|
{false, true, true}, |
|
{false, false, false} |
|
}, |
|
{ |
|
{false, false, false}, |
|
{false, false, false}, |
|
{false, false, false}, |
|
{false, false, false} |
|
}, |
|
{ |
|
{false, true, true}, |
|
{false, false, false}, |
|
{false, true, true}, |
|
{false, false, true} |
|
}, |
|
{ |
|
{false, true, true}, |
|
{false, false, false}, |
|
{false, true, true}, |
|
{false, false, true} |
|
} |
|
}; |
|
|
|
bool useNpp = borderMode == BORDER_CONSTANT && ofs.x == 0 && ofs.y == 0 && useNppTab[src.depth()][src.channels() - 1][interpolation]; |
|
// NPP bug on float data |
|
useNpp = useNpp && src.depth() != CV_32F; |
|
|
|
if (useNpp) |
|
{ |
|
typedef void (*func_t)(const cv::cuda::GpuMat& src, cv::cuda::GpuMat& dst, double coeffs[][3], int flags, cudaStream_t stream); |
|
|
|
static const func_t funcs[2][6][4] = |
|
{ |
|
{ |
|
{NppWarp<CV_8U, nppiWarpPerspective_8u_C1R>::call, 0, NppWarp<CV_8U, nppiWarpPerspective_8u_C3R>::call, NppWarp<CV_8U, nppiWarpPerspective_8u_C4R>::call}, |
|
{0, 0, 0, 0}, |
|
{NppWarp<CV_16U, nppiWarpPerspective_16u_C1R>::call, 0, NppWarp<CV_16U, nppiWarpPerspective_16u_C3R>::call, NppWarp<CV_16U, nppiWarpPerspective_16u_C4R>::call}, |
|
{0, 0, 0, 0}, |
|
{NppWarp<CV_32S, nppiWarpPerspective_32s_C1R>::call, 0, NppWarp<CV_32S, nppiWarpPerspective_32s_C3R>::call, NppWarp<CV_32S, nppiWarpPerspective_32s_C4R>::call}, |
|
{NppWarp<CV_32F, nppiWarpPerspective_32f_C1R>::call, 0, NppWarp<CV_32F, nppiWarpPerspective_32f_C3R>::call, NppWarp<CV_32F, nppiWarpPerspective_32f_C4R>::call} |
|
}, |
|
{ |
|
{NppWarp<CV_8U, nppiWarpPerspectiveBack_8u_C1R>::call, 0, NppWarp<CV_8U, nppiWarpPerspectiveBack_8u_C3R>::call, NppWarp<CV_8U, nppiWarpPerspectiveBack_8u_C4R>::call}, |
|
{0, 0, 0, 0}, |
|
{NppWarp<CV_16U, nppiWarpPerspectiveBack_16u_C1R>::call, 0, NppWarp<CV_16U, nppiWarpPerspectiveBack_16u_C3R>::call, NppWarp<CV_16U, nppiWarpPerspectiveBack_16u_C4R>::call}, |
|
{0, 0, 0, 0}, |
|
{NppWarp<CV_32S, nppiWarpPerspectiveBack_32s_C1R>::call, 0, NppWarp<CV_32S, nppiWarpPerspectiveBack_32s_C3R>::call, NppWarp<CV_32S, nppiWarpPerspectiveBack_32s_C4R>::call}, |
|
{NppWarp<CV_32F, nppiWarpPerspectiveBack_32f_C1R>::call, 0, NppWarp<CV_32F, nppiWarpPerspectiveBack_32f_C3R>::call, NppWarp<CV_32F, nppiWarpPerspectiveBack_32f_C4R>::call} |
|
} |
|
}; |
|
|
|
dst.setTo(borderValue, stream); |
|
|
|
double coeffs[3][3]; |
|
Mat coeffsMat(3, 3, CV_64F, (void*)coeffs); |
|
M.convertTo(coeffsMat, coeffsMat.type()); |
|
|
|
const func_t func = funcs[(flags & WARP_INVERSE_MAP) != 0][src.depth()][src.channels() - 1]; |
|
CV_Assert(func != 0); |
|
|
|
func(src, dst, coeffs, interpolation, StreamAccessor::getStream(stream)); |
|
} |
|
else |
|
{ |
|
using namespace cv::cuda::device::imgproc; |
|
|
|
typedef void (*func_t)(PtrStepSzb src, PtrStepSzb srcWhole, int xoff, int yoff, float coeffs[2 * 3], PtrStepSzb dst, int interpolation, |
|
int borderMode, const float* borderValue, cudaStream_t stream, bool cc20); |
|
|
|
static const func_t funcs[6][4] = |
|
{ |
|
{warpPerspective_gpu<uchar> , 0 /*warpPerspective_gpu<uchar2>*/ , warpPerspective_gpu<uchar3> , warpPerspective_gpu<uchar4> }, |
|
{0 /*warpPerspective_gpu<schar>*/, 0 /*warpPerspective_gpu<char2>*/ , 0 /*warpPerspective_gpu<char3>*/, 0 /*warpPerspective_gpu<char4>*/}, |
|
{warpPerspective_gpu<ushort> , 0 /*warpPerspective_gpu<ushort2>*/, warpPerspective_gpu<ushort3> , warpPerspective_gpu<ushort4> }, |
|
{warpPerspective_gpu<short> , 0 /*warpPerspective_gpu<short2>*/ , warpPerspective_gpu<short3> , warpPerspective_gpu<short4> }, |
|
{0 /*warpPerspective_gpu<int>*/ , 0 /*warpPerspective_gpu<int2>*/ , 0 /*warpPerspective_gpu<int3>*/ , 0 /*warpPerspective_gpu<int4>*/ }, |
|
{warpPerspective_gpu<float> , 0 /*warpPerspective_gpu<float2>*/ , warpPerspective_gpu<float3> , warpPerspective_gpu<float4> } |
|
}; |
|
|
|
const func_t func = funcs[src.depth()][src.channels() - 1]; |
|
CV_Assert(func != 0); |
|
|
|
float coeffs[3 * 3]; |
|
Mat coeffsMat(3, 3, CV_32F, (void*)coeffs); |
|
|
|
if (flags & WARP_INVERSE_MAP) |
|
M.convertTo(coeffsMat, coeffsMat.type()); |
|
else |
|
{ |
|
cv::Mat iM; |
|
invert(M, iM); |
|
iM.convertTo(coeffsMat, coeffsMat.type()); |
|
} |
|
|
|
Scalar_<float> borderValueFloat; |
|
borderValueFloat = borderValue; |
|
|
|
func(src, PtrStepSzb(wholeSize.height, wholeSize.width, src.datastart, src.step), ofs.x, ofs.y, coeffs, |
|
dst, interpolation, borderMode, borderValueFloat.val, StreamAccessor::getStream(stream), deviceSupports(FEATURE_SET_COMPUTE_20)); |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////////////// |
|
// buildWarpPlaneMaps |
|
|
|
namespace cv { namespace cuda { namespace device |
|
{ |
|
namespace imgproc |
|
{ |
|
void buildWarpPlaneMaps(int tl_u, int tl_v, PtrStepSzf map_x, PtrStepSzf map_y, |
|
const float k_rinv[9], const float r_kinv[9], const float t[3], float scale, |
|
cudaStream_t stream); |
|
} |
|
}}} |
|
|
|
void cv::cuda::buildWarpPlaneMaps(Size src_size, Rect dst_roi, InputArray _K, InputArray _R, InputArray _T, |
|
float scale, OutputArray _map_x, OutputArray _map_y, Stream& stream) |
|
{ |
|
(void) src_size; |
|
|
|
Mat K = _K.getMat(); |
|
Mat R = _R.getMat(); |
|
Mat T = _T.getMat(); |
|
|
|
CV_Assert( K.size() == Size(3,3) && K.type() == CV_32FC1 ); |
|
CV_Assert( R.size() == Size(3,3) && R.type() == CV_32FC1 ); |
|
CV_Assert( (T.size() == Size(3,1) || T.size() == Size(1,3)) && T.type() == CV_32FC1 && T.isContinuous() ); |
|
|
|
Mat K_Rinv = K * R.t(); |
|
Mat R_Kinv = R * K.inv(); |
|
CV_Assert( K_Rinv.isContinuous() ); |
|
CV_Assert( R_Kinv.isContinuous() ); |
|
|
|
_map_x.create(dst_roi.size(), CV_32FC1); |
|
_map_y.create(dst_roi.size(), CV_32FC1); |
|
|
|
GpuMat map_x = _map_x.getGpuMat(); |
|
GpuMat map_y = _map_y.getGpuMat(); |
|
|
|
device::imgproc::buildWarpPlaneMaps(dst_roi.tl().x, dst_roi.tl().y, map_x, map_y, K_Rinv.ptr<float>(), R_Kinv.ptr<float>(), |
|
T.ptr<float>(), scale, StreamAccessor::getStream(stream)); |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////////////// |
|
// buildWarpCylyndricalMaps |
|
|
|
namespace cv { namespace cuda { namespace device |
|
{ |
|
namespace imgproc |
|
{ |
|
void buildWarpCylindricalMaps(int tl_u, int tl_v, PtrStepSzf map_x, PtrStepSzf map_y, |
|
const float k_rinv[9], const float r_kinv[9], float scale, |
|
cudaStream_t stream); |
|
} |
|
}}} |
|
|
|
void cv::cuda::buildWarpCylindricalMaps(Size src_size, Rect dst_roi, InputArray _K, InputArray _R, float scale, |
|
OutputArray _map_x, OutputArray _map_y, Stream& stream) |
|
{ |
|
(void) src_size; |
|
|
|
Mat K = _K.getMat(); |
|
Mat R = _R.getMat(); |
|
|
|
CV_Assert( K.size() == Size(3,3) && K.type() == CV_32FC1 ); |
|
CV_Assert( R.size() == Size(3,3) && R.type() == CV_32FC1 ); |
|
|
|
Mat K_Rinv = K * R.t(); |
|
Mat R_Kinv = R * K.inv(); |
|
CV_Assert( K_Rinv.isContinuous() ); |
|
CV_Assert( R_Kinv.isContinuous() ); |
|
|
|
_map_x.create(dst_roi.size(), CV_32FC1); |
|
_map_y.create(dst_roi.size(), CV_32FC1); |
|
|
|
GpuMat map_x = _map_x.getGpuMat(); |
|
GpuMat map_y = _map_y.getGpuMat(); |
|
|
|
device::imgproc::buildWarpCylindricalMaps(dst_roi.tl().x, dst_roi.tl().y, map_x, map_y, K_Rinv.ptr<float>(), R_Kinv.ptr<float>(), scale, StreamAccessor::getStream(stream)); |
|
} |
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////// |
|
// buildWarpSphericalMaps |
|
|
|
namespace cv { namespace cuda { namespace device |
|
{ |
|
namespace imgproc |
|
{ |
|
void buildWarpSphericalMaps(int tl_u, int tl_v, PtrStepSzf map_x, PtrStepSzf map_y, |
|
const float k_rinv[9], const float r_kinv[9], float scale, |
|
cudaStream_t stream); |
|
} |
|
}}} |
|
|
|
void cv::cuda::buildWarpSphericalMaps(Size src_size, Rect dst_roi, InputArray _K, InputArray _R, float scale, |
|
OutputArray _map_x, OutputArray _map_y, Stream& stream) |
|
{ |
|
(void) src_size; |
|
|
|
Mat K = _K.getMat(); |
|
Mat R = _R.getMat(); |
|
|
|
CV_Assert( K.size() == Size(3,3) && K.type() == CV_32FC1 ); |
|
CV_Assert( R.size() == Size(3,3) && R.type() == CV_32FC1 ); |
|
|
|
Mat K_Rinv = K * R.t(); |
|
Mat R_Kinv = R * K.inv(); |
|
CV_Assert( K_Rinv.isContinuous() ); |
|
CV_Assert( R_Kinv.isContinuous() ); |
|
|
|
_map_x.create(dst_roi.size(), CV_32FC1); |
|
_map_y.create(dst_roi.size(), CV_32FC1); |
|
|
|
GpuMat map_x = _map_x.getGpuMat(); |
|
GpuMat map_y = _map_y.getGpuMat(); |
|
|
|
device::imgproc::buildWarpSphericalMaps(dst_roi.tl().x, dst_roi.tl().y, map_x, map_y, K_Rinv.ptr<float>(), R_Kinv.ptr<float>(), scale, StreamAccessor::getStream(stream)); |
|
} |
|
|
|
//////////////////////////////////////////////////////////////////////// |
|
// rotate |
|
|
|
namespace |
|
{ |
|
template <int DEPTH> struct NppRotateFunc |
|
{ |
|
typedef typename NPPTypeTraits<DEPTH>::npp_type npp_type; |
|
|
|
typedef NppStatus (*func_t)(const npp_type* pSrc, NppiSize oSrcSize, int nSrcStep, NppiRect oSrcROI, |
|
npp_type* pDst, int nDstStep, NppiRect oDstROI, |
|
double nAngle, double nShiftX, double nShiftY, int eInterpolation); |
|
}; |
|
|
|
template <int DEPTH, typename NppRotateFunc<DEPTH>::func_t func> struct NppRotate |
|
{ |
|
typedef typename NppRotateFunc<DEPTH>::npp_type npp_type; |
|
|
|
static void call(const GpuMat& src, GpuMat& dst, Size dsize, double angle, double xShift, double yShift, int interpolation, cudaStream_t stream) |
|
{ |
|
(void)dsize; |
|
static const int npp_inter[] = {NPPI_INTER_NN, NPPI_INTER_LINEAR, NPPI_INTER_CUBIC}; |
|
|
|
NppStreamHandler h(stream); |
|
|
|
NppiSize srcsz; |
|
srcsz.height = src.rows; |
|
srcsz.width = src.cols; |
|
NppiRect srcroi; |
|
srcroi.x = srcroi.y = 0; |
|
srcroi.height = src.rows; |
|
srcroi.width = src.cols; |
|
NppiRect dstroi; |
|
dstroi.x = dstroi.y = 0; |
|
dstroi.height = dst.rows; |
|
dstroi.width = dst.cols; |
|
|
|
nppSafeCall( func(src.ptr<npp_type>(), srcsz, static_cast<int>(src.step), srcroi, |
|
dst.ptr<npp_type>(), static_cast<int>(dst.step), dstroi, angle, xShift, yShift, npp_inter[interpolation]) ); |
|
|
|
if (stream == 0) |
|
cudaSafeCall( cudaDeviceSynchronize() ); |
|
} |
|
}; |
|
} |
|
|
|
void cv::cuda::rotate(InputArray _src, OutputArray _dst, Size dsize, double angle, double xShift, double yShift, int interpolation, Stream& stream) |
|
{ |
|
typedef void (*func_t)(const GpuMat& src, GpuMat& dst, Size dsize, double angle, double xShift, double yShift, int interpolation, cudaStream_t stream); |
|
static const func_t funcs[6][4] = |
|
{ |
|
{NppRotate<CV_8U, nppiRotate_8u_C1R>::call, 0, NppRotate<CV_8U, nppiRotate_8u_C3R>::call, NppRotate<CV_8U, nppiRotate_8u_C4R>::call}, |
|
{0,0,0,0}, |
|
{NppRotate<CV_16U, nppiRotate_16u_C1R>::call, 0, NppRotate<CV_16U, nppiRotate_16u_C3R>::call, NppRotate<CV_16U, nppiRotate_16u_C4R>::call}, |
|
{0,0,0,0}, |
|
{0,0,0,0}, |
|
{NppRotate<CV_32F, nppiRotate_32f_C1R>::call, 0, NppRotate<CV_32F, nppiRotate_32f_C3R>::call, NppRotate<CV_32F, nppiRotate_32f_C4R>::call} |
|
}; |
|
|
|
GpuMat src = _src.getGpuMat(); |
|
|
|
CV_Assert( src.depth() == CV_8U || src.depth() == CV_16U || src.depth() == CV_32F ); |
|
CV_Assert( src.channels() == 1 || src.channels() == 3 || src.channels() == 4 ); |
|
CV_Assert( interpolation == INTER_NEAREST || interpolation == INTER_LINEAR || interpolation == INTER_CUBIC ); |
|
|
|
_dst.create(dsize, src.type()); |
|
GpuMat dst = _dst.getGpuMat(); |
|
|
|
dst.setTo(Scalar::all(0), stream); |
|
|
|
funcs[src.depth()][src.channels() - 1](src, dst, dsize, angle, xShift, yShift, interpolation, StreamAccessor::getStream(stream)); |
|
} |
|
|
|
#endif // HAVE_CUDA
|
|
|