mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
152 lines
6.4 KiB
152 lines
6.4 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#ifndef __OPENCV_CUDABGSEGM_HPP__ |
|
#define __OPENCV_CUDABGSEGM_HPP__ |
|
|
|
#ifndef __cplusplus |
|
# error cudabgsegm.hpp header must be compiled as C++ |
|
#endif |
|
|
|
#include "opencv2/core/cuda.hpp" |
|
#include "opencv2/video/background_segm.hpp" |
|
|
|
namespace cv { namespace cuda { |
|
|
|
//////////////////////////////////////////////////// |
|
// MOG |
|
|
|
class CV_EXPORTS BackgroundSubtractorMOG : public cv::BackgroundSubtractorMOG |
|
{ |
|
public: |
|
using cv::BackgroundSubtractorMOG::apply; |
|
using cv::BackgroundSubtractorMOG::getBackgroundImage; |
|
|
|
virtual void apply(InputArray image, OutputArray fgmask, double learningRate, Stream& stream) = 0; |
|
|
|
virtual void getBackgroundImage(OutputArray backgroundImage, Stream& stream) const = 0; |
|
}; |
|
|
|
CV_EXPORTS Ptr<cuda::BackgroundSubtractorMOG> |
|
createBackgroundSubtractorMOG(int history = 200, int nmixtures = 5, |
|
double backgroundRatio = 0.7, double noiseSigma = 0); |
|
|
|
//////////////////////////////////////////////////// |
|
// MOG2 |
|
|
|
class CV_EXPORTS BackgroundSubtractorMOG2 : public cv::BackgroundSubtractorMOG2 |
|
{ |
|
public: |
|
using cv::BackgroundSubtractorMOG2::apply; |
|
using cv::BackgroundSubtractorMOG2::getBackgroundImage; |
|
|
|
virtual void apply(InputArray image, OutputArray fgmask, double learningRate, Stream& stream) = 0; |
|
|
|
virtual void getBackgroundImage(OutputArray backgroundImage, Stream& stream) const = 0; |
|
}; |
|
|
|
CV_EXPORTS Ptr<cuda::BackgroundSubtractorMOG2> |
|
createBackgroundSubtractorMOG2(int history = 500, double varThreshold = 16, |
|
bool detectShadows = true); |
|
|
|
//////////////////////////////////////////////////// |
|
// GMG |
|
|
|
class CV_EXPORTS BackgroundSubtractorGMG : public cv::BackgroundSubtractorGMG |
|
{ |
|
public: |
|
using cv::BackgroundSubtractorGMG::apply; |
|
|
|
virtual void apply(InputArray image, OutputArray fgmask, double learningRate, Stream& stream) = 0; |
|
}; |
|
|
|
CV_EXPORTS Ptr<cuda::BackgroundSubtractorGMG> |
|
createBackgroundSubtractorGMG(int initializationFrames = 120, double decisionThreshold = 0.8); |
|
|
|
//////////////////////////////////////////////////// |
|
// FGD |
|
|
|
/** |
|
* Foreground Object Detection from Videos Containing Complex Background. |
|
* Liyuan Li, Weimin Huang, Irene Y.H. Gu, and Qi Tian. |
|
* ACM MM2003 9p |
|
*/ |
|
class CV_EXPORTS BackgroundSubtractorFGD : public cv::BackgroundSubtractor |
|
{ |
|
public: |
|
virtual void getForegroundRegions(OutputArrayOfArrays foreground_regions) = 0; |
|
}; |
|
|
|
struct CV_EXPORTS FGDParams |
|
{ |
|
int Lc; // Quantized levels per 'color' component. Power of two, typically 32, 64 or 128. |
|
int N1c; // Number of color vectors used to model normal background color variation at a given pixel. |
|
int N2c; // Number of color vectors retained at given pixel. Must be > N1c, typically ~ 5/3 of N1c. |
|
// Used to allow the first N1c vectors to adapt over time to changing background. |
|
|
|
int Lcc; // Quantized levels per 'color co-occurrence' component. Power of two, typically 16, 32 or 64. |
|
int N1cc; // Number of color co-occurrence vectors used to model normal background color variation at a given pixel. |
|
int N2cc; // Number of color co-occurrence vectors retained at given pixel. Must be > N1cc, typically ~ 5/3 of N1cc. |
|
// Used to allow the first N1cc vectors to adapt over time to changing background. |
|
|
|
bool is_obj_without_holes; // If TRUE we ignore holes within foreground blobs. Defaults to TRUE. |
|
int perform_morphing; // Number of erode-dilate-erode foreground-blob cleanup iterations. |
|
// These erase one-pixel junk blobs and merge almost-touching blobs. Default value is 1. |
|
|
|
float alpha1; // How quickly we forget old background pixel values seen. Typically set to 0.1. |
|
float alpha2; // "Controls speed of feature learning". Depends on T. Typical value circa 0.005. |
|
float alpha3; // Alternate to alpha2, used (e.g.) for quicker initial convergence. Typical value 0.1. |
|
|
|
float delta; // Affects color and color co-occurrence quantization, typically set to 2. |
|
float T; // A percentage value which determines when new features can be recognized as new background. (Typically 0.9). |
|
float minArea; // Discard foreground blobs whose bounding box is smaller than this threshold. |
|
|
|
// default Params |
|
FGDParams(); |
|
}; |
|
|
|
CV_EXPORTS Ptr<cuda::BackgroundSubtractorFGD> |
|
createBackgroundSubtractorFGD(const FGDParams& params = FGDParams()); |
|
|
|
}} // namespace cv { namespace cuda { |
|
|
|
#endif /* __OPENCV_CUDABGSEGM_HPP__ */
|
|
|