mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
517 lines
16 KiB
517 lines
16 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2016, Itseez Inc, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
#include "limits" |
|
|
|
#include <iostream> |
|
|
|
using std::cout; |
|
using std::endl; |
|
|
|
/****************************************************************************************\ |
|
* Stochastic Gradient Descent SVM Classifier * |
|
\****************************************************************************************/ |
|
|
|
namespace cv |
|
{ |
|
namespace ml |
|
{ |
|
|
|
class SVMSGDImpl : public SVMSGD |
|
{ |
|
|
|
public: |
|
SVMSGDImpl(); |
|
|
|
virtual ~SVMSGDImpl() {} |
|
|
|
virtual bool train(const Ptr<TrainData>& data, int); |
|
|
|
virtual float predict( InputArray samples, OutputArray results=noArray(), int flags = 0 ) const; |
|
|
|
virtual bool isClassifier() const; |
|
|
|
virtual bool isTrained() const; |
|
|
|
virtual void clear(); |
|
|
|
virtual void write(FileStorage &fs) const; |
|
|
|
virtual void read(const FileNode &fn); |
|
|
|
virtual Mat getWeights(){ return weights_; } |
|
|
|
virtual float getShift(){ return shift_; } |
|
|
|
virtual int getVarCount() const { return weights_.cols; } |
|
|
|
virtual String getDefaultName() const {return "opencv_ml_svmsgd";} |
|
|
|
virtual void setOptimalParameters(int svmsgdType = ASGD, int marginType = SOFT_MARGIN); |
|
|
|
CV_IMPL_PROPERTY(int, SvmsgdType, params.svmsgdType) |
|
CV_IMPL_PROPERTY(int, MarginType, params.marginType) |
|
CV_IMPL_PROPERTY(float, MarginRegularization, params.marginRegularization) |
|
CV_IMPL_PROPERTY(float, InitialStepSize, params.initialStepSize) |
|
CV_IMPL_PROPERTY(float, StepDecreasingPower, params.stepDecreasingPower) |
|
CV_IMPL_PROPERTY_S(cv::TermCriteria, TermCriteria, params.termCrit) |
|
|
|
private: |
|
void updateWeights(InputArray sample, bool positive, float stepSize, Mat &weights); |
|
|
|
void writeParams( FileStorage &fs ) const; |
|
|
|
void readParams( const FileNode &fn ); |
|
|
|
static inline bool isPositive(float val) { return val > 0; } |
|
|
|
static void normalizeSamples(Mat &matrix, Mat &average, float &multiplier); |
|
|
|
float calcShift(InputArray _samples, InputArray _responses) const; |
|
|
|
static void makeExtendedTrainSamples(const Mat &trainSamples, Mat &extendedTrainSamples, Mat &average, float &multiplier); |
|
|
|
// Vector with SVM weights |
|
Mat weights_; |
|
float shift_; |
|
|
|
// Parameters for learning |
|
struct SVMSGDParams |
|
{ |
|
float marginRegularization; |
|
float initialStepSize; |
|
float stepDecreasingPower; |
|
TermCriteria termCrit; |
|
int svmsgdType; |
|
int marginType; |
|
}; |
|
|
|
SVMSGDParams params; |
|
}; |
|
|
|
Ptr<SVMSGD> SVMSGD::create() |
|
{ |
|
return makePtr<SVMSGDImpl>(); |
|
} |
|
|
|
Ptr<SVMSGD> SVMSGD::load(const String& filepath, const String& nodeName) |
|
{ |
|
return Algorithm::load<SVMSGD>(filepath, nodeName); |
|
} |
|
|
|
|
|
void SVMSGDImpl::normalizeSamples(Mat &samples, Mat &average, float &multiplier) |
|
{ |
|
int featuresCount = samples.cols; |
|
int samplesCount = samples.rows; |
|
|
|
average = Mat(1, featuresCount, samples.type()); |
|
CV_Assert(average.type() == CV_32FC1); |
|
for (int featureIndex = 0; featureIndex < featuresCount; featureIndex++) |
|
{ |
|
average.at<float>(featureIndex) = static_cast<float>(mean(samples.col(featureIndex))[0]); |
|
} |
|
|
|
for (int sampleIndex = 0; sampleIndex < samplesCount; sampleIndex++) |
|
{ |
|
samples.row(sampleIndex) -= average; |
|
} |
|
|
|
double normValue = norm(samples); |
|
|
|
multiplier = static_cast<float>(sqrt(static_cast<double>(samples.total())) / normValue); |
|
|
|
samples *= multiplier; |
|
} |
|
|
|
void SVMSGDImpl::makeExtendedTrainSamples(const Mat &trainSamples, Mat &extendedTrainSamples, Mat &average, float &multiplier) |
|
{ |
|
Mat normalizedTrainSamples = trainSamples.clone(); |
|
int samplesCount = normalizedTrainSamples.rows; |
|
|
|
normalizeSamples(normalizedTrainSamples, average, multiplier); |
|
|
|
Mat onesCol = Mat::ones(samplesCount, 1, CV_32F); |
|
cv::hconcat(normalizedTrainSamples, onesCol, extendedTrainSamples); |
|
} |
|
|
|
void SVMSGDImpl::updateWeights(InputArray _sample, bool positive, float stepSize, Mat& weights) |
|
{ |
|
Mat sample = _sample.getMat(); |
|
|
|
int response = positive ? 1 : -1; // ensure that trainResponses are -1 or 1 |
|
|
|
if ( sample.dot(weights) * response > 1) |
|
{ |
|
// Not a support vector, only apply weight decay |
|
weights *= (1.f - stepSize * params.marginRegularization); |
|
} |
|
else |
|
{ |
|
// It's a support vector, add it to the weights |
|
weights -= (stepSize * params.marginRegularization) * weights - (stepSize * response) * sample; |
|
} |
|
} |
|
|
|
float SVMSGDImpl::calcShift(InputArray _samples, InputArray _responses) const |
|
{ |
|
float margin[2] = { std::numeric_limits<float>::max(), std::numeric_limits<float>::max() }; |
|
|
|
Mat trainSamples = _samples.getMat(); |
|
int trainSamplesCount = trainSamples.rows; |
|
|
|
Mat trainResponses = _responses.getMat(); |
|
|
|
CV_Assert(trainResponses.type() == CV_32FC1); |
|
for (int samplesIndex = 0; samplesIndex < trainSamplesCount; samplesIndex++) |
|
{ |
|
Mat currentSample = trainSamples.row(samplesIndex); |
|
float dotProduct = static_cast<float>(currentSample.dot(weights_)); |
|
|
|
bool positive = isPositive(trainResponses.at<float>(samplesIndex)); |
|
int index = positive ? 0 : 1; |
|
float signToMul = positive ? 1.f : -1.f; |
|
float curMargin = dotProduct * signToMul; |
|
|
|
if (curMargin < margin[index]) |
|
{ |
|
margin[index] = curMargin; |
|
} |
|
} |
|
|
|
return -(margin[0] - margin[1]) / 2.f; |
|
} |
|
|
|
bool SVMSGDImpl::train(const Ptr<TrainData>& data, int) |
|
{ |
|
clear(); |
|
CV_Assert( isClassifier() ); //toDo: consider |
|
|
|
Mat trainSamples = data->getTrainSamples(); |
|
|
|
int featureCount = trainSamples.cols; |
|
Mat trainResponses = data->getTrainResponses(); // (trainSamplesCount x 1) matrix |
|
|
|
CV_Assert(trainResponses.rows == trainSamples.rows); |
|
|
|
if (trainResponses.empty()) |
|
{ |
|
return false; |
|
} |
|
|
|
int positiveCount = countNonZero(trainResponses >= 0); |
|
int negativeCount = countNonZero(trainResponses < 0); |
|
|
|
if ( positiveCount <= 0 || negativeCount <= 0 ) |
|
{ |
|
weights_ = Mat::zeros(1, featureCount, CV_32F); |
|
shift_ = (positiveCount > 0) ? 1.f : -1.f; |
|
return true; |
|
} |
|
|
|
Mat extendedTrainSamples; |
|
Mat average; |
|
float multiplier = 0; |
|
makeExtendedTrainSamples(trainSamples, extendedTrainSamples, average, multiplier); |
|
|
|
int extendedTrainSamplesCount = extendedTrainSamples.rows; |
|
int extendedFeatureCount = extendedTrainSamples.cols; |
|
|
|
Mat extendedWeights = Mat::zeros(1, extendedFeatureCount, CV_32F); |
|
Mat previousWeights = Mat::zeros(1, extendedFeatureCount, CV_32F); |
|
Mat averageExtendedWeights; |
|
if (params.svmsgdType == ASGD) |
|
{ |
|
averageExtendedWeights = Mat::zeros(1, extendedFeatureCount, CV_32F); |
|
} |
|
|
|
RNG rng(0); |
|
|
|
CV_Assert (params.termCrit.type & TermCriteria::COUNT || params.termCrit.type & TermCriteria::EPS); |
|
int maxCount = (params.termCrit.type & TermCriteria::COUNT) ? params.termCrit.maxCount : INT_MAX; |
|
double epsilon = (params.termCrit.type & TermCriteria::EPS) ? params.termCrit.epsilon : 0; |
|
|
|
double err = DBL_MAX; |
|
CV_Assert (trainResponses.type() == CV_32FC1); |
|
// Stochastic gradient descent SVM |
|
for (int iter = 0; (iter < maxCount) && (err > epsilon); iter++) |
|
{ |
|
int randomNumber = rng.uniform(0, extendedTrainSamplesCount); //generate sample number |
|
|
|
Mat currentSample = extendedTrainSamples.row(randomNumber); |
|
|
|
float stepSize = params.initialStepSize * std::pow((1 + params.marginRegularization * params.initialStepSize * (float)iter), (-params.stepDecreasingPower)); //update stepSize |
|
|
|
updateWeights( currentSample, isPositive(trainResponses.at<float>(randomNumber)), stepSize, extendedWeights ); |
|
|
|
//average weights (only for ASGD model) |
|
if (params.svmsgdType == ASGD) |
|
{ |
|
averageExtendedWeights = ((float)iter/ (1 + (float)iter)) * averageExtendedWeights + extendedWeights / (1 + (float) iter); |
|
err = norm(averageExtendedWeights - previousWeights); |
|
averageExtendedWeights.copyTo(previousWeights); |
|
} |
|
else |
|
{ |
|
err = norm(extendedWeights - previousWeights); |
|
extendedWeights.copyTo(previousWeights); |
|
} |
|
} |
|
|
|
if (params.svmsgdType == ASGD) |
|
{ |
|
extendedWeights = averageExtendedWeights; |
|
} |
|
|
|
Rect roi(0, 0, featureCount, 1); |
|
weights_ = extendedWeights(roi); |
|
weights_ *= multiplier; |
|
|
|
CV_Assert((params.marginType == SOFT_MARGIN || params.marginType == HARD_MARGIN) && (extendedWeights.type() == CV_32FC1)); |
|
|
|
if (params.marginType == SOFT_MARGIN) |
|
{ |
|
shift_ = extendedWeights.at<float>(featureCount) - static_cast<float>(weights_.dot(average)); |
|
} |
|
else |
|
{ |
|
shift_ = calcShift(trainSamples, trainResponses); |
|
} |
|
|
|
return true; |
|
} |
|
|
|
float SVMSGDImpl::predict( InputArray _samples, OutputArray _results, int ) const |
|
{ |
|
float result = 0; |
|
cv::Mat samples = _samples.getMat(); |
|
int nSamples = samples.rows; |
|
cv::Mat results; |
|
|
|
CV_Assert( samples.cols == weights_.cols && samples.type() == CV_32FC1); |
|
|
|
if( _results.needed() ) |
|
{ |
|
_results.create( nSamples, 1, samples.type() ); |
|
results = _results.getMat(); |
|
} |
|
else |
|
{ |
|
CV_Assert( nSamples == 1 ); |
|
results = Mat(1, 1, CV_32FC1, &result); |
|
} |
|
|
|
for (int sampleIndex = 0; sampleIndex < nSamples; sampleIndex++) |
|
{ |
|
Mat currentSample = samples.row(sampleIndex); |
|
float criterion = static_cast<float>(currentSample.dot(weights_)) + shift_; |
|
results.at<float>(sampleIndex) = (criterion >= 0) ? 1.f : -1.f; |
|
} |
|
|
|
return result; |
|
} |
|
|
|
bool SVMSGDImpl::isClassifier() const |
|
{ |
|
return (params.svmsgdType == SGD || params.svmsgdType == ASGD) |
|
&& |
|
(params.marginType == SOFT_MARGIN || params.marginType == HARD_MARGIN) |
|
&& |
|
(params.marginRegularization > 0) && (params.initialStepSize > 0) && (params.stepDecreasingPower >= 0); |
|
} |
|
|
|
bool SVMSGDImpl::isTrained() const |
|
{ |
|
return !weights_.empty(); |
|
} |
|
|
|
void SVMSGDImpl::write(FileStorage& fs) const |
|
{ |
|
if( !isTrained() ) |
|
CV_Error( CV_StsParseError, "SVMSGD model data is invalid, it hasn't been trained" ); |
|
|
|
writeFormat(fs); |
|
writeParams( fs ); |
|
|
|
fs << "weights" << weights_; |
|
fs << "shift" << shift_; |
|
} |
|
|
|
void SVMSGDImpl::writeParams( FileStorage& fs ) const |
|
{ |
|
String SvmsgdTypeStr; |
|
|
|
switch (params.svmsgdType) |
|
{ |
|
case SGD: |
|
SvmsgdTypeStr = "SGD"; |
|
break; |
|
case ASGD: |
|
SvmsgdTypeStr = "ASGD"; |
|
break; |
|
default: |
|
SvmsgdTypeStr = format("Unknown_%d", params.svmsgdType); |
|
} |
|
|
|
fs << "svmsgdType" << SvmsgdTypeStr; |
|
|
|
String marginTypeStr; |
|
|
|
switch (params.marginType) |
|
{ |
|
case SOFT_MARGIN: |
|
marginTypeStr = "SOFT_MARGIN"; |
|
break; |
|
case HARD_MARGIN: |
|
marginTypeStr = "HARD_MARGIN"; |
|
break; |
|
default: |
|
marginTypeStr = format("Unknown_%d", params.marginType); |
|
} |
|
|
|
fs << "marginType" << marginTypeStr; |
|
|
|
fs << "marginRegularization" << params.marginRegularization; |
|
fs << "initialStepSize" << params.initialStepSize; |
|
fs << "stepDecreasingPower" << params.stepDecreasingPower; |
|
|
|
fs << "term_criteria" << "{:"; |
|
if( params.termCrit.type & TermCriteria::EPS ) |
|
fs << "epsilon" << params.termCrit.epsilon; |
|
if( params.termCrit.type & TermCriteria::COUNT ) |
|
fs << "iterations" << params.termCrit.maxCount; |
|
fs << "}"; |
|
} |
|
void SVMSGDImpl::readParams( const FileNode& fn ) |
|
{ |
|
String svmsgdTypeStr = (String)fn["svmsgdType"]; |
|
int svmsgdType = |
|
svmsgdTypeStr == "SGD" ? SGD : |
|
svmsgdTypeStr == "ASGD" ? ASGD : -1; |
|
|
|
if( svmsgdType < 0 ) |
|
CV_Error( CV_StsParseError, "Missing or invalid SVMSGD type" ); |
|
|
|
params.svmsgdType = svmsgdType; |
|
|
|
String marginTypeStr = (String)fn["marginType"]; |
|
int marginType = |
|
marginTypeStr == "SOFT_MARGIN" ? SOFT_MARGIN : |
|
marginTypeStr == "HARD_MARGIN" ? HARD_MARGIN : -1; |
|
|
|
if( marginType < 0 ) |
|
CV_Error( CV_StsParseError, "Missing or invalid margin type" ); |
|
|
|
params.marginType = marginType; |
|
|
|
CV_Assert ( fn["marginRegularization"].isReal() ); |
|
params.marginRegularization = (float)fn["marginRegularization"]; |
|
|
|
CV_Assert ( fn["initialStepSize"].isReal() ); |
|
params.initialStepSize = (float)fn["initialStepSize"]; |
|
|
|
CV_Assert ( fn["stepDecreasingPower"].isReal() ); |
|
params.stepDecreasingPower = (float)fn["stepDecreasingPower"]; |
|
|
|
FileNode tcnode = fn["term_criteria"]; |
|
CV_Assert(!tcnode.empty()); |
|
params.termCrit.epsilon = (double)tcnode["epsilon"]; |
|
params.termCrit.maxCount = (int)tcnode["iterations"]; |
|
params.termCrit.type = (params.termCrit.epsilon > 0 ? TermCriteria::EPS : 0) + |
|
(params.termCrit.maxCount > 0 ? TermCriteria::COUNT : 0); |
|
CV_Assert ((params.termCrit.type & TermCriteria::COUNT || params.termCrit.type & TermCriteria::EPS)); |
|
} |
|
|
|
void SVMSGDImpl::read(const FileNode& fn) |
|
{ |
|
clear(); |
|
|
|
readParams(fn); |
|
|
|
fn["weights"] >> weights_; |
|
fn["shift"] >> shift_; |
|
} |
|
|
|
void SVMSGDImpl::clear() |
|
{ |
|
weights_.release(); |
|
shift_ = 0; |
|
} |
|
|
|
|
|
SVMSGDImpl::SVMSGDImpl() |
|
{ |
|
clear(); |
|
setOptimalParameters(); |
|
} |
|
|
|
void SVMSGDImpl::setOptimalParameters(int svmsgdType, int marginType) |
|
{ |
|
switch (svmsgdType) |
|
{ |
|
case SGD: |
|
params.svmsgdType = SGD; |
|
params.marginType = (marginType == SOFT_MARGIN) ? SOFT_MARGIN : |
|
(marginType == HARD_MARGIN) ? HARD_MARGIN : -1; |
|
params.marginRegularization = 0.0001f; |
|
params.initialStepSize = 0.05f; |
|
params.stepDecreasingPower = 1.f; |
|
params.termCrit = TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 100000, 0.00001); |
|
break; |
|
|
|
case ASGD: |
|
params.svmsgdType = ASGD; |
|
params.marginType = (marginType == SOFT_MARGIN) ? SOFT_MARGIN : |
|
(marginType == HARD_MARGIN) ? HARD_MARGIN : -1; |
|
params.marginRegularization = 0.00001f; |
|
params.initialStepSize = 0.05f; |
|
params.stepDecreasingPower = 0.75f; |
|
params.termCrit = TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 100000, 0.00001); |
|
break; |
|
|
|
default: |
|
CV_Error( CV_StsParseError, "SVMSGD model data is invalid" ); |
|
} |
|
} |
|
} //ml |
|
} //cv
|
|
|