mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
517 lines
16 KiB
517 lines
16 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2014, Itseez Inc, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
|
|
namespace cv { namespace ml { |
|
|
|
static inline double |
|
log_ratio( double val ) |
|
{ |
|
const double eps = 1e-5; |
|
val = std::max( val, eps ); |
|
val = std::min( val, 1. - eps ); |
|
return log( val/(1. - val) ); |
|
} |
|
|
|
|
|
BoostTreeParams::BoostTreeParams() |
|
{ |
|
boostType = Boost::REAL; |
|
weakCount = 100; |
|
weightTrimRate = 0.95; |
|
} |
|
|
|
BoostTreeParams::BoostTreeParams( int _boostType, int _weak_count, |
|
double _weightTrimRate) |
|
{ |
|
boostType = _boostType; |
|
weakCount = _weak_count; |
|
weightTrimRate = _weightTrimRate; |
|
} |
|
|
|
class DTreesImplForBoost : public DTreesImpl |
|
{ |
|
public: |
|
DTreesImplForBoost() |
|
{ |
|
params.setCVFolds(0); |
|
params.setMaxDepth(1); |
|
} |
|
virtual ~DTreesImplForBoost() {} |
|
|
|
bool isClassifier() const { return true; } |
|
|
|
void clear() |
|
{ |
|
DTreesImpl::clear(); |
|
} |
|
|
|
void startTraining( const Ptr<TrainData>& trainData, int flags ) |
|
{ |
|
DTreesImpl::startTraining(trainData, flags); |
|
sumResult.assign(w->sidx.size(), 0.); |
|
|
|
if( bparams.boostType != Boost::DISCRETE ) |
|
{ |
|
_isClassifier = false; |
|
int i, n = (int)w->cat_responses.size(); |
|
w->ord_responses.resize(n); |
|
|
|
double a = -1, b = 1; |
|
if( bparams.boostType == Boost::LOGIT ) |
|
{ |
|
a = -2, b = 2; |
|
} |
|
for( i = 0; i < n; i++ ) |
|
w->ord_responses[i] = w->cat_responses[i] > 0 ? b : a; |
|
} |
|
|
|
normalizeWeights(); |
|
} |
|
|
|
void normalizeWeights() |
|
{ |
|
int i, n = (int)w->sidx.size(); |
|
double sumw = 0, a, b; |
|
for( i = 0; i < n; i++ ) |
|
sumw += w->sample_weights[w->sidx[i]]; |
|
if( sumw > DBL_EPSILON ) |
|
{ |
|
a = 1./sumw; |
|
b = 0; |
|
} |
|
else |
|
{ |
|
a = 0; |
|
b = 1; |
|
} |
|
for( i = 0; i < n; i++ ) |
|
{ |
|
double& wval = w->sample_weights[w->sidx[i]]; |
|
wval = wval*a + b; |
|
} |
|
} |
|
|
|
void endTraining() |
|
{ |
|
DTreesImpl::endTraining(); |
|
vector<double> e; |
|
std::swap(sumResult, e); |
|
} |
|
|
|
void scaleTree( int root, double scale ) |
|
{ |
|
int nidx = root, pidx = 0; |
|
Node *node = 0; |
|
|
|
// traverse the tree and save all the nodes in depth-first order |
|
for(;;) |
|
{ |
|
for(;;) |
|
{ |
|
node = &nodes[nidx]; |
|
node->value *= scale; |
|
if( node->left < 0 ) |
|
break; |
|
nidx = node->left; |
|
} |
|
|
|
for( pidx = node->parent; pidx >= 0 && nodes[pidx].right == nidx; |
|
nidx = pidx, pidx = nodes[pidx].parent ) |
|
; |
|
|
|
if( pidx < 0 ) |
|
break; |
|
|
|
nidx = nodes[pidx].right; |
|
} |
|
} |
|
|
|
void calcValue( int nidx, const vector<int>& _sidx ) |
|
{ |
|
DTreesImpl::calcValue(nidx, _sidx); |
|
WNode* node = &w->wnodes[nidx]; |
|
if( bparams.boostType == Boost::DISCRETE ) |
|
{ |
|
node->value = node->class_idx == 0 ? -1 : 1; |
|
} |
|
else if( bparams.boostType == Boost::REAL ) |
|
{ |
|
double p = (node->value+1)*0.5; |
|
node->value = 0.5*log_ratio(p); |
|
} |
|
} |
|
|
|
bool train( const Ptr<TrainData>& trainData, int flags ) |
|
{ |
|
startTraining(trainData, flags); |
|
int treeidx, ntrees = bparams.weakCount >= 0 ? bparams.weakCount : 10000; |
|
vector<int> sidx = w->sidx; |
|
|
|
for( treeidx = 0; treeidx < ntrees; treeidx++ ) |
|
{ |
|
int root = addTree( sidx ); |
|
if( root < 0 ) |
|
return false; |
|
updateWeightsAndTrim( treeidx, sidx ); |
|
} |
|
endTraining(); |
|
return true; |
|
} |
|
|
|
void updateWeightsAndTrim( int treeidx, vector<int>& sidx ) |
|
{ |
|
int i, n = (int)w->sidx.size(); |
|
int nvars = (int)varIdx.size(); |
|
double sumw = 0., C = 1.; |
|
cv::AutoBuffer<double> buf(n + nvars); |
|
double* result = buf; |
|
float* sbuf = (float*)(result + n); |
|
Mat sample(1, nvars, CV_32F, sbuf); |
|
int predictFlags = bparams.boostType == Boost::DISCRETE ? (PREDICT_MAX_VOTE | RAW_OUTPUT) : PREDICT_SUM; |
|
predictFlags |= COMPRESSED_INPUT; |
|
|
|
for( i = 0; i < n; i++ ) |
|
{ |
|
w->data->getSample(varIdx, w->sidx[i], sbuf ); |
|
result[i] = predictTrees(Range(treeidx, treeidx+1), sample, predictFlags); |
|
} |
|
|
|
// now update weights and other parameters for each type of boosting |
|
if( bparams.boostType == Boost::DISCRETE ) |
|
{ |
|
// Discrete AdaBoost: |
|
// weak_eval[i] (=f(x_i)) is in {-1,1} |
|
// err = sum(w_i*(f(x_i) != y_i))/sum(w_i) |
|
// C = log((1-err)/err) |
|
// w_i *= exp(C*(f(x_i) != y_i)) |
|
double err = 0.; |
|
|
|
for( i = 0; i < n; i++ ) |
|
{ |
|
int si = w->sidx[i]; |
|
double wval = w->sample_weights[si]; |
|
sumw += wval; |
|
err += wval*(result[i] != w->cat_responses[si]); |
|
} |
|
|
|
if( sumw != 0 ) |
|
err /= sumw; |
|
C = -log_ratio( err ); |
|
double scale = std::exp(C); |
|
|
|
sumw = 0; |
|
for( i = 0; i < n; i++ ) |
|
{ |
|
int si = w->sidx[i]; |
|
double wval = w->sample_weights[si]; |
|
if( result[i] != w->cat_responses[si] ) |
|
wval *= scale; |
|
sumw += wval; |
|
w->sample_weights[si] = wval; |
|
} |
|
|
|
scaleTree(roots[treeidx], C); |
|
} |
|
else if( bparams.boostType == Boost::REAL || bparams.boostType == Boost::GENTLE ) |
|
{ |
|
// Real AdaBoost: |
|
// weak_eval[i] = f(x_i) = 0.5*log(p(x_i)/(1-p(x_i))), p(x_i)=P(y=1|x_i) |
|
// w_i *= exp(-y_i*f(x_i)) |
|
|
|
// Gentle AdaBoost: |
|
// weak_eval[i] = f(x_i) in [-1,1] |
|
// w_i *= exp(-y_i*f(x_i)) |
|
for( i = 0; i < n; i++ ) |
|
{ |
|
int si = w->sidx[i]; |
|
CV_Assert( std::abs(w->ord_responses[si]) == 1 ); |
|
double wval = w->sample_weights[si]*std::exp(-result[i]*w->ord_responses[si]); |
|
sumw += wval; |
|
w->sample_weights[si] = wval; |
|
} |
|
} |
|
else if( bparams.boostType == Boost::LOGIT ) |
|
{ |
|
// LogitBoost: |
|
// weak_eval[i] = f(x_i) in [-z_max,z_max] |
|
// sum_response = F(x_i). |
|
// F(x_i) += 0.5*f(x_i) |
|
// p(x_i) = exp(F(x_i))/(exp(F(x_i)) + exp(-F(x_i))=1/(1+exp(-2*F(x_i))) |
|
// reuse weak_eval: weak_eval[i] <- p(x_i) |
|
// w_i = p(x_i)*1(1 - p(x_i)) |
|
// z_i = ((y_i+1)/2 - p(x_i))/(p(x_i)*(1 - p(x_i))) |
|
// store z_i to the data->data_root as the new target responses |
|
const double lb_weight_thresh = FLT_EPSILON; |
|
const double lb_z_max = 10.; |
|
|
|
for( i = 0; i < n; i++ ) |
|
{ |
|
int si = w->sidx[i]; |
|
sumResult[i] += 0.5*result[i]; |
|
double p = 1./(1 + std::exp(-2*sumResult[i])); |
|
double wval = std::max( p*(1 - p), lb_weight_thresh ), z; |
|
w->sample_weights[si] = wval; |
|
sumw += wval; |
|
if( w->ord_responses[si] > 0 ) |
|
{ |
|
z = 1./p; |
|
w->ord_responses[si] = std::min(z, lb_z_max); |
|
} |
|
else |
|
{ |
|
z = 1./(1-p); |
|
w->ord_responses[si] = -std::min(z, lb_z_max); |
|
} |
|
} |
|
} |
|
else |
|
CV_Error(CV_StsNotImplemented, "Unknown boosting type"); |
|
|
|
/*if( bparams.boostType != Boost::LOGIT ) |
|
{ |
|
double err = 0; |
|
for( i = 0; i < n; i++ ) |
|
{ |
|
sumResult[i] += result[i]*C; |
|
if( bparams.boostType != Boost::DISCRETE ) |
|
err += sumResult[i]*w->ord_responses[w->sidx[i]] < 0; |
|
else |
|
err += sumResult[i]*w->cat_responses[w->sidx[i]] < 0; |
|
} |
|
printf("%d trees. C=%.2f, training error=%.1f%%, working set size=%d (out of %d)\n", (int)roots.size(), C, err*100./n, (int)sidx.size(), n); |
|
}*/ |
|
|
|
// renormalize weights |
|
if( sumw > FLT_EPSILON ) |
|
normalizeWeights(); |
|
|
|
if( bparams.weightTrimRate <= 0. || bparams.weightTrimRate >= 1. ) |
|
return; |
|
|
|
for( i = 0; i < n; i++ ) |
|
result[i] = w->sample_weights[w->sidx[i]]; |
|
std::sort(result, result + n); |
|
|
|
// as weight trimming occurs immediately after updating the weights, |
|
// where they are renormalized, we assume that the weight sum = 1. |
|
sumw = 1. - bparams.weightTrimRate; |
|
|
|
for( i = 0; i < n; i++ ) |
|
{ |
|
double wval = result[i]; |
|
if( sumw <= 0 ) |
|
break; |
|
sumw -= wval; |
|
} |
|
|
|
double threshold = i < n ? result[i] : DBL_MAX; |
|
sidx.clear(); |
|
|
|
for( i = 0; i < n; i++ ) |
|
{ |
|
int si = w->sidx[i]; |
|
if( w->sample_weights[si] >= threshold ) |
|
sidx.push_back(si); |
|
} |
|
} |
|
|
|
float predictTrees( const Range& range, const Mat& sample, int flags0 ) const |
|
{ |
|
int flags = (flags0 & ~PREDICT_MASK) | PREDICT_SUM; |
|
float val = DTreesImpl::predictTrees(range, sample, flags); |
|
if( flags != flags0 ) |
|
{ |
|
int ival = (int)(val > 0); |
|
if( !(flags0 & RAW_OUTPUT) ) |
|
ival = classLabels[ival]; |
|
val = (float)ival; |
|
} |
|
return val; |
|
} |
|
|
|
void writeTrainingParams( FileStorage& fs ) const |
|
{ |
|
fs << "boosting_type" << |
|
(bparams.boostType == Boost::DISCRETE ? "DiscreteAdaboost" : |
|
bparams.boostType == Boost::REAL ? "RealAdaboost" : |
|
bparams.boostType == Boost::LOGIT ? "LogitBoost" : |
|
bparams.boostType == Boost::GENTLE ? "GentleAdaboost" : "Unknown"); |
|
|
|
DTreesImpl::writeTrainingParams(fs); |
|
fs << "weight_trimming_rate" << bparams.weightTrimRate; |
|
} |
|
|
|
void write( FileStorage& fs ) const |
|
{ |
|
if( roots.empty() ) |
|
CV_Error( CV_StsBadArg, "RTrees have not been trained" ); |
|
|
|
writeFormat(fs); |
|
writeParams(fs); |
|
|
|
int k, ntrees = (int)roots.size(); |
|
|
|
fs << "ntrees" << ntrees |
|
<< "trees" << "["; |
|
|
|
for( k = 0; k < ntrees; k++ ) |
|
{ |
|
fs << "{"; |
|
writeTree(fs, roots[k]); |
|
fs << "}"; |
|
} |
|
|
|
fs << "]"; |
|
} |
|
|
|
void readParams( const FileNode& fn ) |
|
{ |
|
DTreesImpl::readParams(fn); |
|
|
|
FileNode tparams_node = fn["training_params"]; |
|
// check for old layout |
|
String bts = (String)(fn["boosting_type"].empty() ? |
|
tparams_node["boosting_type"] : fn["boosting_type"]); |
|
bparams.boostType = (bts == "DiscreteAdaboost" ? Boost::DISCRETE : |
|
bts == "RealAdaboost" ? Boost::REAL : |
|
bts == "LogitBoost" ? Boost::LOGIT : |
|
bts == "GentleAdaboost" ? Boost::GENTLE : -1); |
|
_isClassifier = bparams.boostType == Boost::DISCRETE; |
|
// check for old layout |
|
bparams.weightTrimRate = (double)(fn["weight_trimming_rate"].empty() ? |
|
tparams_node["weight_trimming_rate"] : fn["weight_trimming_rate"]); |
|
} |
|
|
|
void read( const FileNode& fn ) |
|
{ |
|
clear(); |
|
|
|
int ntrees = (int)fn["ntrees"]; |
|
readParams(fn); |
|
|
|
FileNode trees_node = fn["trees"]; |
|
FileNodeIterator it = trees_node.begin(); |
|
CV_Assert( ntrees == (int)trees_node.size() ); |
|
|
|
for( int treeidx = 0; treeidx < ntrees; treeidx++, ++it ) |
|
{ |
|
FileNode nfn = (*it)["nodes"]; |
|
readTree(nfn); |
|
} |
|
} |
|
|
|
BoostTreeParams bparams; |
|
vector<double> sumResult; |
|
}; |
|
|
|
|
|
class BoostImpl : public Boost |
|
{ |
|
public: |
|
BoostImpl() {} |
|
virtual ~BoostImpl() {} |
|
|
|
CV_IMPL_PROPERTY(int, BoostType, impl.bparams.boostType) |
|
CV_IMPL_PROPERTY(int, WeakCount, impl.bparams.weakCount) |
|
CV_IMPL_PROPERTY(double, WeightTrimRate, impl.bparams.weightTrimRate) |
|
|
|
CV_WRAP_SAME_PROPERTY(int, MaxCategories, impl.params) |
|
CV_WRAP_SAME_PROPERTY(int, MaxDepth, impl.params) |
|
CV_WRAP_SAME_PROPERTY(int, MinSampleCount, impl.params) |
|
CV_WRAP_SAME_PROPERTY(int, CVFolds, impl.params) |
|
CV_WRAP_SAME_PROPERTY(bool, UseSurrogates, impl.params) |
|
CV_WRAP_SAME_PROPERTY(bool, Use1SERule, impl.params) |
|
CV_WRAP_SAME_PROPERTY(bool, TruncatePrunedTree, impl.params) |
|
CV_WRAP_SAME_PROPERTY(float, RegressionAccuracy, impl.params) |
|
CV_WRAP_SAME_PROPERTY_S(cv::Mat, Priors, impl.params) |
|
|
|
String getDefaultName() const { return "opencv_ml_boost"; } |
|
|
|
bool train( const Ptr<TrainData>& trainData, int flags ) |
|
{ |
|
return impl.train(trainData, flags); |
|
} |
|
|
|
float predict( InputArray samples, OutputArray results, int flags ) const |
|
{ |
|
return impl.predict(samples, results, flags); |
|
} |
|
|
|
void write( FileStorage& fs ) const |
|
{ |
|
impl.write(fs); |
|
} |
|
|
|
void read( const FileNode& fn ) |
|
{ |
|
impl.read(fn); |
|
} |
|
|
|
int getVarCount() const { return impl.getVarCount(); } |
|
|
|
bool isTrained() const { return impl.isTrained(); } |
|
bool isClassifier() const { return impl.isClassifier(); } |
|
|
|
const vector<int>& getRoots() const { return impl.getRoots(); } |
|
const vector<Node>& getNodes() const { return impl.getNodes(); } |
|
const vector<Split>& getSplits() const { return impl.getSplits(); } |
|
const vector<int>& getSubsets() const { return impl.getSubsets(); } |
|
|
|
DTreesImplForBoost impl; |
|
}; |
|
|
|
|
|
Ptr<Boost> Boost::create() |
|
{ |
|
return makePtr<BoostImpl>(); |
|
} |
|
|
|
Ptr<Boost> Boost::load(const String& filepath, const String& nodeName) |
|
{ |
|
return Algorithm::load<Boost>(filepath, nodeName); |
|
} |
|
|
|
}} |
|
|
|
/* End of file. */
|
|
|