mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
159 lines
4.4 KiB
159 lines
4.4 KiB
.. _akazeMatching: |
|
|
|
|
|
AKAZE local features matching |
|
****************************** |
|
|
|
Introduction |
|
------------------ |
|
|
|
In this tutorial we will learn how to use [AKAZE]_ local features to detect and match keypoints on two images. |
|
|
|
We will find keypoints on a pair of images with given homography matrix, |
|
match them and count the number of inliers (i. e. matches that fit in the given homography). |
|
|
|
You can find expanded version of this example here: https://github.com/pablofdezalc/test_kaze_akaze_opencv |
|
|
|
.. [AKAZE] Fast Explicit Diffusion for Accelerated Features in Nonlinear Scale Spaces. Pablo F. Alcantarilla, Jesús Nuevo and Adrien Bartoli. In British Machine Vision Conference (BMVC), Bristol, UK, September 2013. |
|
|
|
Data |
|
------------------ |
|
We are going to use images 1 and 3 from *Graffity* sequence of Oxford dataset. |
|
|
|
.. image:: images/graf.png |
|
:height: 200pt |
|
:width: 320pt |
|
:alt: Graffity |
|
:align: center |
|
|
|
Homography is given by a 3 by 3 matrix: |
|
|
|
.. code-block:: none |
|
|
|
7.6285898e-01 -2.9922929e-01 2.2567123e+02 |
|
3.3443473e-01 1.0143901e+00 -7.6999973e+01 |
|
3.4663091e-04 -1.4364524e-05 1.0000000e+00 |
|
|
|
You can find the images (*graf1.png*, *graf3.png*) and homography (*H1to3p.xml*) in *opencv/samples/cpp*. |
|
|
|
Source Code |
|
=========== |
|
.. literalinclude:: ../../../../samples/cpp/tutorial_code/features2D/AKAZE_match.cpp |
|
:language: cpp |
|
:linenos: |
|
:tab-width: 4 |
|
|
|
Explanation |
|
=========== |
|
|
|
#. **Load images and homography** |
|
|
|
.. code-block:: cpp |
|
|
|
Mat img1 = imread("graf1.png", IMREAD_GRAYSCALE); |
|
Mat img2 = imread("graf3.png", IMREAD_GRAYSCALE); |
|
|
|
Mat homography; |
|
FileStorage fs("H1to3p.xml", FileStorage::READ); |
|
fs.getFirstTopLevelNode() >> homography; |
|
|
|
We are loading grayscale images here. Homography is stored in the xml created with FileStorage. |
|
|
|
#. **Detect keypoints and compute descriptors using AKAZE** |
|
|
|
.. code-block:: cpp |
|
|
|
vector<KeyPoint> kpts1, kpts2; |
|
Mat desc1, desc2; |
|
|
|
AKAZE akaze; |
|
akaze(img1, noArray(), kpts1, desc1); |
|
akaze(img2, noArray(), kpts2, desc2); |
|
|
|
We create AKAZE object and use it's *operator()* functionality. Since we don't need the *mask* parameter, *noArray()* is used. |
|
|
|
#. **Use brute-force matcher to find 2-nn matches** |
|
|
|
.. code-block:: cpp |
|
|
|
BFMatcher matcher(NORM_HAMMING); |
|
vector< vector<DMatch> > nn_matches; |
|
matcher.knnMatch(desc1, desc2, nn_matches, 2); |
|
|
|
We use Hamming distance, because AKAZE uses binary descriptor by default. |
|
|
|
#. **Use 2-nn matches to find correct keypoint matches** |
|
|
|
.. code-block:: cpp |
|
|
|
for(size_t i = 0; i < nn_matches.size(); i++) { |
|
DMatch first = nn_matches[i][0]; |
|
float dist1 = nn_matches[i][0].distance; |
|
float dist2 = nn_matches[i][1].distance; |
|
|
|
if(dist1 < nn_match_ratio * dist2) { |
|
matched1.push_back(kpts1[first.queryIdx]); |
|
matched2.push_back(kpts2[first.trainIdx]); |
|
} |
|
} |
|
|
|
If the closest match is *ratio* closer than the second closest one, then the match is correct. |
|
|
|
#. **Check if our matches fit in the homography model** |
|
|
|
.. code-block:: cpp |
|
|
|
for(int i = 0; i < matched1.size(); i++) { |
|
Mat col = Mat::ones(3, 1, CV_64F); |
|
col.at<double>(0) = matched1[i].pt.x; |
|
col.at<double>(1) = matched1[i].pt.y; |
|
|
|
col = homography * col; |
|
col /= col.at<double>(2); |
|
float dist = sqrt( pow(col.at<double>(0) - matched2[i].pt.x, 2) + |
|
pow(col.at<double>(1) - matched2[i].pt.y, 2)); |
|
|
|
if(dist < inlier_threshold) { |
|
int new_i = inliers1.size(); |
|
inliers1.push_back(matched1[i]); |
|
inliers2.push_back(matched2[i]); |
|
good_matches.push_back(DMatch(new_i, new_i, 0)); |
|
} |
|
} |
|
|
|
If the distance from first keypoint's projection to the second keypoint is less than threshold, then it it fits in the homography. |
|
|
|
We create a new set of matches for the inliers, because it is required by the drawing function. |
|
|
|
#. **Output results** |
|
|
|
.. code-block:: cpp |
|
|
|
Mat res; |
|
drawMatches(img1, inliers1, img2, inliers2, good_matches, res); |
|
imwrite("res.png", res); |
|
... |
|
|
|
Here we save the resulting image and print some statistics. |
|
|
|
Results |
|
======= |
|
|
|
Found matches |
|
-------------- |
|
|
|
.. image:: images/res.png |
|
:height: 200pt |
|
:width: 320pt |
|
:alt: Matches |
|
:align: center |
|
|
|
A-KAZE Matching Results |
|
-------------------------- |
|
|
|
.. code-block:: none |
|
Keypoints 1: 2943 |
|
Keypoints 2: 3511 |
|
Matches: 447 |
|
Inliers: 308 |
|
Inlier Ratio: 0.689038
|
|
|