mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
225 lines
8.5 KiB
225 lines
8.5 KiB
from __future__ import print_function |
|
from abc import ABCMeta, abstractmethod |
|
import numpy as np |
|
import sys |
|
import argparse |
|
import time |
|
|
|
from imagenet_cls_test_alexnet import CaffeModel, DnnCaffeModel |
|
try: |
|
import cv2 as cv |
|
except ImportError: |
|
raise ImportError('Can\'t find OpenCV Python module. If you\'ve built it from sources without installation, ' |
|
'configure environment variable PYTHONPATH to "opencv_build_dir/lib" directory (with "python3" subdirectory if required)') |
|
|
|
|
|
def get_metrics(conf_mat): |
|
pix_accuracy = np.trace(conf_mat) / np.sum(conf_mat) |
|
t = np.sum(conf_mat, 1) |
|
num_cl = np.count_nonzero(t) |
|
assert num_cl |
|
mean_accuracy = np.sum(np.nan_to_num(np.divide(np.diagonal(conf_mat), t))) / num_cl |
|
col_sum = np.sum(conf_mat, 0) |
|
mean_iou = np.sum( |
|
np.nan_to_num(np.divide(np.diagonal(conf_mat), (t + col_sum - np.diagonal(conf_mat))))) / num_cl |
|
return pix_accuracy, mean_accuracy, mean_iou |
|
|
|
|
|
def eval_segm_result(net_out): |
|
assert type(net_out) is np.ndarray |
|
assert len(net_out.shape) == 4 |
|
|
|
channels_dim = 1 |
|
y_dim = channels_dim + 1 |
|
x_dim = y_dim + 1 |
|
res = np.zeros(net_out.shape).astype(np.int) |
|
for i in range(net_out.shape[y_dim]): |
|
for j in range(net_out.shape[x_dim]): |
|
max_ch = np.argmax(net_out[..., i, j]) |
|
res[0, max_ch, i, j] = 1 |
|
return res |
|
|
|
|
|
def get_conf_mat(gt, prob): |
|
assert type(gt) is np.ndarray |
|
assert type(prob) is np.ndarray |
|
|
|
conf_mat = np.zeros((gt.shape[0], gt.shape[0])) |
|
for ch_gt in range(conf_mat.shape[0]): |
|
gt_channel = gt[ch_gt, ...] |
|
for ch_pr in range(conf_mat.shape[1]): |
|
prob_channel = prob[ch_pr, ...] |
|
conf_mat[ch_gt][ch_pr] = np.count_nonzero(np.multiply(gt_channel, prob_channel)) |
|
return conf_mat |
|
|
|
|
|
class MeanChannelsPreproc: |
|
def __init__(self): |
|
pass |
|
|
|
@staticmethod |
|
def process(img): |
|
image_data = np.array(img).transpose(2, 0, 1).astype(np.float32) |
|
mean = np.ones(image_data.shape) |
|
mean[0] *= 104 |
|
mean[1] *= 117 |
|
mean[2] *= 123 |
|
image_data -= mean |
|
image_data = np.expand_dims(image_data, 0) |
|
return image_data |
|
|
|
|
|
class DatasetImageFetch(object): |
|
__metaclass__ = ABCMeta |
|
data_prepoc = object |
|
|
|
@abstractmethod |
|
def __iter__(self): |
|
pass |
|
|
|
@abstractmethod |
|
def next(self): |
|
pass |
|
|
|
@staticmethod |
|
def pix_to_c(pix): |
|
return pix[0] * 256 * 256 + pix[1] * 256 + pix[2] |
|
|
|
@staticmethod |
|
def color_to_gt(color_img, colors): |
|
num_classes = len(colors) |
|
gt = np.zeros((num_classes, color_img.shape[0], color_img.shape[1])).astype(np.int) |
|
for img_y in range(color_img.shape[0]): |
|
for img_x in range(color_img.shape[1]): |
|
c = DatasetImageFetch.pix_to_c(color_img[img_y][img_x]) |
|
if c in colors: |
|
cls = colors.index(c) |
|
gt[cls][img_y][img_x] = 1 |
|
return gt |
|
|
|
|
|
class PASCALDataFetch(DatasetImageFetch): |
|
img_dir = '' |
|
segm_dir = '' |
|
names = [] |
|
colors = [] |
|
i = 0 |
|
|
|
def __init__(self, img_dir, segm_dir, names_file, segm_cls_colors_file, preproc): |
|
self.img_dir = img_dir |
|
self.segm_dir = segm_dir |
|
self.colors = self.read_colors(segm_cls_colors_file) |
|
self.data_prepoc = preproc |
|
self.i = 0 |
|
|
|
with open(names_file) as f: |
|
for l in f.readlines(): |
|
self.names.append(l.rstrip()) |
|
|
|
@staticmethod |
|
def read_colors(img_classes_file): |
|
result = [] |
|
with open(img_classes_file) as f: |
|
for l in f.readlines(): |
|
color = np.array(map(int, l.split()[1:])) |
|
result.append(DatasetImageFetch.pix_to_c(color)) |
|
return result |
|
|
|
def __iter__(self): |
|
return self |
|
|
|
def next(self): |
|
if self.i < len(self.names): |
|
name = self.names[self.i] |
|
self.i += 1 |
|
segm_file = self.segm_dir + name + ".png" |
|
img_file = self.img_dir + name + ".jpg" |
|
gt = self.color_to_gt(cv.imread(segm_file, cv.IMREAD_COLOR)[:, :, ::-1], self.colors) |
|
img = self.data_prepoc.process(cv.imread(img_file, cv.IMREAD_COLOR)[:, :, ::-1]) |
|
return img, gt |
|
else: |
|
self.i = 0 |
|
raise StopIteration |
|
|
|
def get_num_classes(self): |
|
return len(self.colors) |
|
|
|
|
|
class SemSegmEvaluation: |
|
log = sys.stdout |
|
|
|
def __init__(self, log_path,): |
|
self.log = open(log_path, 'w') |
|
|
|
def process(self, frameworks, data_fetcher): |
|
samples_handled = 0 |
|
|
|
conf_mats = [np.zeros((data_fetcher.get_num_classes(), data_fetcher.get_num_classes())) for i in range(len(frameworks))] |
|
blobs_l1_diff = [0] * len(frameworks) |
|
blobs_l1_diff_count = [0] * len(frameworks) |
|
blobs_l_inf_diff = [sys.float_info.min] * len(frameworks) |
|
inference_time = [0.0] * len(frameworks) |
|
|
|
for in_blob, gt in data_fetcher: |
|
frameworks_out = [] |
|
samples_handled += 1 |
|
for i in range(len(frameworks)): |
|
start = time.time() |
|
out = frameworks[i].get_output(in_blob) |
|
end = time.time() |
|
segm = eval_segm_result(out) |
|
conf_mats[i] += get_conf_mat(gt, segm[0]) |
|
frameworks_out.append(out) |
|
inference_time[i] += end - start |
|
|
|
pix_acc, mean_acc, miou = get_metrics(conf_mats[i]) |
|
|
|
name = frameworks[i].get_name() |
|
print(samples_handled, 'Pixel accuracy, %s:' % name, 100 * pix_acc, file=self.log) |
|
print(samples_handled, 'Mean accuracy, %s:' % name, 100 * mean_acc, file=self.log) |
|
print(samples_handled, 'Mean IOU, %s:' % name, 100 * miou, file=self.log) |
|
print("Inference time, ms ", \ |
|
frameworks[i].get_name(), inference_time[i] / samples_handled * 1000, file=self.log) |
|
|
|
for i in range(1, len(frameworks)): |
|
log_str = frameworks[0].get_name() + " vs " + frameworks[i].get_name() + ':' |
|
diff = np.abs(frameworks_out[0] - frameworks_out[i]) |
|
l1_diff = np.sum(diff) / diff.size |
|
print(samples_handled, "L1 difference", log_str, l1_diff, file=self.log) |
|
blobs_l1_diff[i] += l1_diff |
|
blobs_l1_diff_count[i] += 1 |
|
if np.max(diff) > blobs_l_inf_diff[i]: |
|
blobs_l_inf_diff[i] = np.max(diff) |
|
print(samples_handled, "L_INF difference", log_str, blobs_l_inf_diff[i], file=self.log) |
|
|
|
self.log.flush() |
|
|
|
for i in range(1, len(blobs_l1_diff)): |
|
log_str = frameworks[0].get_name() + " vs " + frameworks[i].get_name() + ':' |
|
print('Final l1 diff', log_str, blobs_l1_diff[i] / blobs_l1_diff_count[i], file=self.log) |
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--imgs_dir", help="path to PASCAL VOC 2012 images dir, data/VOC2012/JPEGImages") |
|
parser.add_argument("--segm_dir", help="path to PASCAL VOC 2012 segmentation dir, data/VOC2012/SegmentationClass/") |
|
parser.add_argument("--val_names", help="path to file with validation set image names, download it here: " |
|
"https://github.com/shelhamer/fcn.berkeleyvision.org/blob/master/data/pascal/seg11valid.txt") |
|
parser.add_argument("--cls_file", help="path to file with colors for classes, download it here: " |
|
"https://github.com/opencv/opencv/blob/5.x/samples/data/dnn/pascal-classes.txt") |
|
parser.add_argument("--prototxt", help="path to caffe prototxt, download it here: " |
|
"https://github.com/opencv/opencv/blob/5.x/samples/data/dnn/fcn8s-heavy-pascal.prototxt") |
|
parser.add_argument("--caffemodel", help="path to caffemodel file, download it here: " |
|
"http://dl.caffe.berkeleyvision.org/fcn8s-heavy-pascal.caffemodel") |
|
parser.add_argument("--log", help="path to logging file") |
|
parser.add_argument("--in_blob", help="name for input blob", default='data') |
|
parser.add_argument("--out_blob", help="name for output blob", default='score') |
|
args = parser.parse_args() |
|
|
|
prep = MeanChannelsPreproc() |
|
df = PASCALDataFetch(args.imgs_dir, args.segm_dir, args.val_names, args.cls_file, prep) |
|
|
|
fw = [CaffeModel(args.prototxt, args.caffemodel, args.in_blob, args.out_blob, True), |
|
DnnCaffeModel(args.prototxt, args.caffemodel, '', args.out_blob)] |
|
|
|
segm_eval = SemSegmEvaluation(args.log) |
|
segm_eval.process(fw, df)
|
|
|