Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
97 lines
2.7 KiB
97 lines
2.7 KiB
/////////////////////////////////////////////////////////////////////////////////////// |
|
// sample_logistic_regression.cpp |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
|
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
|
|
// This is a sample program demostrating classification of digits 0 and 1 using Logistic Regression |
|
|
|
// AUTHOR: |
|
// Rahul Kavi rahulkavi[at]live[at]com |
|
// |
|
|
|
#include <iostream> |
|
|
|
#include <opencv2/core/core.hpp> |
|
#include <opencv2/ml/ml.hpp> |
|
|
|
using namespace std; |
|
using namespace cv; |
|
|
|
|
|
int main() |
|
{ |
|
Mat data_temp, labels_temp; |
|
Mat data, labels; |
|
Mat responses, result; |
|
|
|
FileStorage f; |
|
|
|
cout<<"*****************************************************************************************"<<endl; |
|
cout<<"\"data01.xml\" contains digits 0 and 1 of 20 samples each, collected on an Android device"<<endl; |
|
cout<<"Each of the collected images are of size 28 x 28 re-arranged to 1 x 784 matrix"<<endl; |
|
cout<<"*****************************************************************************************\n\n"<<endl; |
|
|
|
cout<<"loading the dataset\n"<<endl; |
|
|
|
f.open("data01.xml", FileStorage::READ); |
|
|
|
f["datamat"] >> data_temp; |
|
f["labelsmat"] >> labels_temp; |
|
|
|
data_temp.convertTo(data, CV_32F); |
|
labels_temp.convertTo(labels, CV_32F); |
|
|
|
cout<<"initializing Logisitc Regression Parameters\n"<<endl; |
|
|
|
CvLR_TrainParams params = CvLR_TrainParams(); |
|
|
|
params.alpha = 0.001; |
|
params.num_iters = 10; |
|
params.norm = CvLR::REG_L2; |
|
params.regularized = 1; |
|
params.train_method = CvLR::BATCH; |
|
|
|
cout<<"training Logisitc Regression classifier\n"<<endl; |
|
|
|
CvLR lr_(data, labels, params); |
|
|
|
cout<<"predicting the trained dataset\n"<<endl; |
|
|
|
lr_.predict(data, responses); |
|
|
|
labels.convertTo(labels, CV_32S); |
|
|
|
cout<<"Original Label :: Predicted Label"<<endl; |
|
result = (labels == responses)/255; |
|
for(int i=0;i<labels.rows;i++) |
|
{ |
|
cout<<labels.at<int>(i,0)<<" :: "<< responses.at<int>(i,0)<<endl; |
|
} |
|
// calculate accuracy |
|
cout<<"accuracy: "<<((double)cv::sum(result)[0]/result.rows)*100<<"%\n"; |
|
|
|
// save the classfier |
|
lr_.save("NewLR_Trained.xml"); |
|
|
|
// load the classifier onto new object |
|
CvLR lr2; |
|
cout<<"loading a new classifier"<<endl; |
|
|
|
lr2.load("NewLR_Trained.xml"); |
|
|
|
Mat responses2; |
|
|
|
// predict using loaded classifier |
|
cout<<"predicting the dataset using the loaded classfier\n"<<endl; |
|
|
|
lr2.predict(data, responses2); |
|
|
|
// calculate accuracy |
|
result = (labels == responses2)/255; |
|
cout<<"accuracy using loaded classifier: "<<((double)cv::sum(result)[0]/result.rows)*100<<"%\n"; |
|
|
|
return 0; |
|
}
|
|
|