mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
180 lines
4.9 KiB
180 lines
4.9 KiB
/* slauu2.f -- translated by f2c (version 20061008). |
|
You must link the resulting object file with libf2c: |
|
on Microsoft Windows system, link with libf2c.lib; |
|
on Linux or Unix systems, link with .../path/to/libf2c.a -lm |
|
or, if you install libf2c.a in a standard place, with -lf2c -lm |
|
-- in that order, at the end of the command line, as in |
|
cc *.o -lf2c -lm |
|
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., |
|
|
|
http://www.netlib.org/f2c/libf2c.zip |
|
*/ |
|
|
|
#include "clapack.h" |
|
|
|
|
|
/* Table of constant values */ |
|
|
|
static real c_b7 = 1.f; |
|
static integer c__1 = 1; |
|
|
|
/* Subroutine */ int slauu2_(char *uplo, integer *n, real *a, integer *lda, |
|
integer *info) |
|
{ |
|
/* System generated locals */ |
|
integer a_dim1, a_offset, i__1, i__2, i__3; |
|
|
|
/* Local variables */ |
|
integer i__; |
|
real aii; |
|
extern doublereal sdot_(integer *, real *, integer *, real *, integer *); |
|
extern logical lsame_(char *, char *); |
|
extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *), |
|
sgemv_(char *, integer *, integer *, real *, real *, integer *, |
|
real *, integer *, real *, real *, integer *); |
|
logical upper; |
|
extern /* Subroutine */ int xerbla_(char *, integer *); |
|
|
|
|
|
/* -- LAPACK auxiliary routine (version 3.2) -- */ |
|
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ |
|
/* November 2006 */ |
|
|
|
/* .. Scalar Arguments .. */ |
|
/* .. */ |
|
/* .. Array Arguments .. */ |
|
/* .. */ |
|
|
|
/* Purpose */ |
|
/* ======= */ |
|
|
|
/* SLAUU2 computes the product U * U' or L' * L, where the triangular */ |
|
/* factor U or L is stored in the upper or lower triangular part of */ |
|
/* the array A. */ |
|
|
|
/* If UPLO = 'U' or 'u' then the upper triangle of the result is stored, */ |
|
/* overwriting the factor U in A. */ |
|
/* If UPLO = 'L' or 'l' then the lower triangle of the result is stored, */ |
|
/* overwriting the factor L in A. */ |
|
|
|
/* This is the unblocked form of the algorithm, calling Level 2 BLAS. */ |
|
|
|
/* Arguments */ |
|
/* ========= */ |
|
|
|
/* UPLO (input) CHARACTER*1 */ |
|
/* Specifies whether the triangular factor stored in the array A */ |
|
/* is upper or lower triangular: */ |
|
/* = 'U': Upper triangular */ |
|
/* = 'L': Lower triangular */ |
|
|
|
/* N (input) INTEGER */ |
|
/* The order of the triangular factor U or L. N >= 0. */ |
|
|
|
/* A (input/output) REAL array, dimension (LDA,N) */ |
|
/* On entry, the triangular factor U or L. */ |
|
/* On exit, if UPLO = 'U', the upper triangle of A is */ |
|
/* overwritten with the upper triangle of the product U * U'; */ |
|
/* if UPLO = 'L', the lower triangle of A is overwritten with */ |
|
/* the lower triangle of the product L' * L. */ |
|
|
|
/* LDA (input) INTEGER */ |
|
/* The leading dimension of the array A. LDA >= max(1,N). */ |
|
|
|
/* INFO (output) INTEGER */ |
|
/* = 0: successful exit */ |
|
/* < 0: if INFO = -k, the k-th argument had an illegal value */ |
|
|
|
/* ===================================================================== */ |
|
|
|
/* .. Parameters .. */ |
|
/* .. */ |
|
/* .. Local Scalars .. */ |
|
/* .. */ |
|
/* .. External Functions .. */ |
|
/* .. */ |
|
/* .. External Subroutines .. */ |
|
/* .. */ |
|
/* .. Intrinsic Functions .. */ |
|
/* .. */ |
|
/* .. Executable Statements .. */ |
|
|
|
/* Test the input parameters. */ |
|
|
|
/* Parameter adjustments */ |
|
a_dim1 = *lda; |
|
a_offset = 1 + a_dim1; |
|
a -= a_offset; |
|
|
|
/* Function Body */ |
|
*info = 0; |
|
upper = lsame_(uplo, "U"); |
|
if (! upper && ! lsame_(uplo, "L")) { |
|
*info = -1; |
|
} else if (*n < 0) { |
|
*info = -2; |
|
} else if (*lda < max(1,*n)) { |
|
*info = -4; |
|
} |
|
if (*info != 0) { |
|
i__1 = -(*info); |
|
xerbla_("SLAUU2", &i__1); |
|
return 0; |
|
} |
|
|
|
/* Quick return if possible */ |
|
|
|
if (*n == 0) { |
|
return 0; |
|
} |
|
|
|
if (upper) { |
|
|
|
/* Compute the product U * U'. */ |
|
|
|
i__1 = *n; |
|
for (i__ = 1; i__ <= i__1; ++i__) { |
|
aii = a[i__ + i__ * a_dim1]; |
|
if (i__ < *n) { |
|
i__2 = *n - i__ + 1; |
|
a[i__ + i__ * a_dim1] = sdot_(&i__2, &a[i__ + i__ * a_dim1], |
|
lda, &a[i__ + i__ * a_dim1], lda); |
|
i__2 = i__ - 1; |
|
i__3 = *n - i__; |
|
sgemv_("No transpose", &i__2, &i__3, &c_b7, &a[(i__ + 1) * |
|
a_dim1 + 1], lda, &a[i__ + (i__ + 1) * a_dim1], lda, & |
|
aii, &a[i__ * a_dim1 + 1], &c__1); |
|
} else { |
|
sscal_(&i__, &aii, &a[i__ * a_dim1 + 1], &c__1); |
|
} |
|
/* L10: */ |
|
} |
|
|
|
} else { |
|
|
|
/* Compute the product L' * L. */ |
|
|
|
i__1 = *n; |
|
for (i__ = 1; i__ <= i__1; ++i__) { |
|
aii = a[i__ + i__ * a_dim1]; |
|
if (i__ < *n) { |
|
i__2 = *n - i__ + 1; |
|
a[i__ + i__ * a_dim1] = sdot_(&i__2, &a[i__ + i__ * a_dim1], & |
|
c__1, &a[i__ + i__ * a_dim1], &c__1); |
|
i__2 = *n - i__; |
|
i__3 = i__ - 1; |
|
sgemv_("Transpose", &i__2, &i__3, &c_b7, &a[i__ + 1 + a_dim1], |
|
lda, &a[i__ + 1 + i__ * a_dim1], &c__1, &aii, &a[i__ |
|
+ a_dim1], lda); |
|
} else { |
|
sscal_(&i__, &aii, &a[i__ + a_dim1], lda); |
|
} |
|
/* L20: */ |
|
} |
|
} |
|
|
|
return 0; |
|
|
|
/* End of SLAUU2 */ |
|
|
|
} /* slauu2_ */
|
|
|