mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
216 lines
6.2 KiB
216 lines
6.2 KiB
/* slasq1.f -- translated by f2c (version 20061008). |
|
You must link the resulting object file with libf2c: |
|
on Microsoft Windows system, link with libf2c.lib; |
|
on Linux or Unix systems, link with .../path/to/libf2c.a -lm |
|
or, if you install libf2c.a in a standard place, with -lf2c -lm |
|
-- in that order, at the end of the command line, as in |
|
cc *.o -lf2c -lm |
|
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., |
|
|
|
http://www.netlib.org/f2c/libf2c.zip |
|
*/ |
|
|
|
#include "clapack.h" |
|
|
|
|
|
/* Table of constant values */ |
|
|
|
static integer c__1 = 1; |
|
static integer c__2 = 2; |
|
static integer c__0 = 0; |
|
|
|
/* Subroutine */ int slasq1_(integer *n, real *d__, real *e, real *work, |
|
integer *info) |
|
{ |
|
/* System generated locals */ |
|
integer i__1, i__2; |
|
real r__1, r__2, r__3; |
|
|
|
/* Builtin functions */ |
|
double sqrt(doublereal); |
|
|
|
/* Local variables */ |
|
integer i__; |
|
real eps; |
|
extern /* Subroutine */ int slas2_(real *, real *, real *, real *, real *) |
|
; |
|
real scale; |
|
integer iinfo; |
|
real sigmn, sigmx; |
|
extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *, |
|
integer *), slasq2_(integer *, real *, integer *); |
|
extern doublereal slamch_(char *); |
|
real safmin; |
|
extern /* Subroutine */ int xerbla_(char *, integer *), slascl_( |
|
char *, integer *, integer *, real *, real *, integer *, integer * |
|
, real *, integer *, integer *), slasrt_(char *, integer * |
|
, real *, integer *); |
|
|
|
|
|
/* -- LAPACK routine (version 3.2) -- */ |
|
|
|
/* -- Contributed by Osni Marques of the Lawrence Berkeley National -- */ |
|
/* -- Laboratory and Beresford Parlett of the Univ. of California at -- */ |
|
/* -- Berkeley -- */ |
|
/* -- November 2008 -- */ |
|
|
|
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ |
|
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ |
|
|
|
/* .. Scalar Arguments .. */ |
|
/* .. */ |
|
/* .. Array Arguments .. */ |
|
/* .. */ |
|
|
|
/* Purpose */ |
|
/* ======= */ |
|
|
|
/* SLASQ1 computes the singular values of a real N-by-N bidiagonal */ |
|
/* matrix with diagonal D and off-diagonal E. The singular values */ |
|
/* are computed to high relative accuracy, in the absence of */ |
|
/* denormalization, underflow and overflow. The algorithm was first */ |
|
/* presented in */ |
|
|
|
/* "Accurate singular values and differential qd algorithms" by K. V. */ |
|
/* Fernando and B. N. Parlett, Numer. Math., Vol-67, No. 2, pp. 191-230, */ |
|
/* 1994, */ |
|
|
|
/* and the present implementation is described in "An implementation of */ |
|
/* the dqds Algorithm (Positive Case)", LAPACK Working Note. */ |
|
|
|
/* Arguments */ |
|
/* ========= */ |
|
|
|
/* N (input) INTEGER */ |
|
/* The number of rows and columns in the matrix. N >= 0. */ |
|
|
|
/* D (input/output) REAL array, dimension (N) */ |
|
/* On entry, D contains the diagonal elements of the */ |
|
/* bidiagonal matrix whose SVD is desired. On normal exit, */ |
|
/* D contains the singular values in decreasing order. */ |
|
|
|
/* E (input/output) REAL array, dimension (N) */ |
|
/* On entry, elements E(1:N-1) contain the off-diagonal elements */ |
|
/* of the bidiagonal matrix whose SVD is desired. */ |
|
/* On exit, E is overwritten. */ |
|
|
|
/* WORK (workspace) REAL array, dimension (4*N) */ |
|
|
|
/* INFO (output) INTEGER */ |
|
/* = 0: successful exit */ |
|
/* < 0: if INFO = -i, the i-th argument had an illegal value */ |
|
/* > 0: the algorithm failed */ |
|
/* = 1, a split was marked by a positive value in E */ |
|
/* = 2, current block of Z not diagonalized after 30*N */ |
|
/* iterations (in inner while loop) */ |
|
/* = 3, termination criterion of outer while loop not met */ |
|
/* (program created more than N unreduced blocks) */ |
|
|
|
/* ===================================================================== */ |
|
|
|
/* .. Parameters .. */ |
|
/* .. */ |
|
/* .. Local Scalars .. */ |
|
/* .. */ |
|
/* .. External Subroutines .. */ |
|
/* .. */ |
|
/* .. External Functions .. */ |
|
/* .. */ |
|
/* .. Intrinsic Functions .. */ |
|
/* .. */ |
|
/* .. Executable Statements .. */ |
|
|
|
/* Parameter adjustments */ |
|
--work; |
|
--e; |
|
--d__; |
|
|
|
/* Function Body */ |
|
*info = 0; |
|
if (*n < 0) { |
|
*info = -2; |
|
i__1 = -(*info); |
|
xerbla_("SLASQ1", &i__1); |
|
return 0; |
|
} else if (*n == 0) { |
|
return 0; |
|
} else if (*n == 1) { |
|
d__[1] = dabs(d__[1]); |
|
return 0; |
|
} else if (*n == 2) { |
|
slas2_(&d__[1], &e[1], &d__[2], &sigmn, &sigmx); |
|
d__[1] = sigmx; |
|
d__[2] = sigmn; |
|
return 0; |
|
} |
|
|
|
/* Estimate the largest singular value. */ |
|
|
|
sigmx = 0.f; |
|
i__1 = *n - 1; |
|
for (i__ = 1; i__ <= i__1; ++i__) { |
|
d__[i__] = (r__1 = d__[i__], dabs(r__1)); |
|
/* Computing MAX */ |
|
r__2 = sigmx, r__3 = (r__1 = e[i__], dabs(r__1)); |
|
sigmx = dmax(r__2,r__3); |
|
/* L10: */ |
|
} |
|
d__[*n] = (r__1 = d__[*n], dabs(r__1)); |
|
|
|
/* Early return if SIGMX is zero (matrix is already diagonal). */ |
|
|
|
if (sigmx == 0.f) { |
|
slasrt_("D", n, &d__[1], &iinfo); |
|
return 0; |
|
} |
|
|
|
i__1 = *n; |
|
for (i__ = 1; i__ <= i__1; ++i__) { |
|
/* Computing MAX */ |
|
r__1 = sigmx, r__2 = d__[i__]; |
|
sigmx = dmax(r__1,r__2); |
|
/* L20: */ |
|
} |
|
|
|
/* Copy D and E into WORK (in the Z format) and scale (squaring the */ |
|
/* input data makes scaling by a power of the radix pointless). */ |
|
|
|
eps = slamch_("Precision"); |
|
safmin = slamch_("Safe minimum"); |
|
scale = sqrt(eps / safmin); |
|
scopy_(n, &d__[1], &c__1, &work[1], &c__2); |
|
i__1 = *n - 1; |
|
scopy_(&i__1, &e[1], &c__1, &work[2], &c__2); |
|
i__1 = (*n << 1) - 1; |
|
i__2 = (*n << 1) - 1; |
|
slascl_("G", &c__0, &c__0, &sigmx, &scale, &i__1, &c__1, &work[1], &i__2, |
|
&iinfo); |
|
|
|
/* Compute the q's and e's. */ |
|
|
|
i__1 = (*n << 1) - 1; |
|
for (i__ = 1; i__ <= i__1; ++i__) { |
|
/* Computing 2nd power */ |
|
r__1 = work[i__]; |
|
work[i__] = r__1 * r__1; |
|
/* L30: */ |
|
} |
|
work[*n * 2] = 0.f; |
|
|
|
slasq2_(n, &work[1], info); |
|
|
|
if (*info == 0) { |
|
i__1 = *n; |
|
for (i__ = 1; i__ <= i__1; ++i__) { |
|
d__[i__] = sqrt(work[i__]); |
|
/* L40: */ |
|
} |
|
slascl_("G", &c__0, &c__0, &scale, &sigmx, n, &c__1, &d__[1], n, & |
|
iinfo); |
|
} |
|
|
|
return 0; |
|
|
|
/* End of SLASQ1 */ |
|
|
|
} /* slasq1_ */
|
|
|