mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
283 lines
8.7 KiB
283 lines
8.7 KiB
/* slaeda.f -- translated by f2c (version 20061008). |
|
You must link the resulting object file with libf2c: |
|
on Microsoft Windows system, link with libf2c.lib; |
|
on Linux or Unix systems, link with .../path/to/libf2c.a -lm |
|
or, if you install libf2c.a in a standard place, with -lf2c -lm |
|
-- in that order, at the end of the command line, as in |
|
cc *.o -lf2c -lm |
|
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., |
|
|
|
http://www.netlib.org/f2c/libf2c.zip |
|
*/ |
|
|
|
#include "clapack.h" |
|
|
|
|
|
/* Table of constant values */ |
|
|
|
static integer c__2 = 2; |
|
static integer c__1 = 1; |
|
static real c_b24 = 1.f; |
|
static real c_b26 = 0.f; |
|
|
|
/* Subroutine */ int slaeda_(integer *n, integer *tlvls, integer *curlvl, |
|
integer *curpbm, integer *prmptr, integer *perm, integer *givptr, |
|
integer *givcol, real *givnum, real *q, integer *qptr, real *z__, |
|
real *ztemp, integer *info) |
|
{ |
|
/* System generated locals */ |
|
integer i__1, i__2, i__3; |
|
|
|
/* Builtin functions */ |
|
integer pow_ii(integer *, integer *); |
|
double sqrt(doublereal); |
|
|
|
/* Local variables */ |
|
integer i__, k, mid, ptr, curr; |
|
extern /* Subroutine */ int srot_(integer *, real *, integer *, real *, |
|
integer *, real *, real *); |
|
integer bsiz1, bsiz2, psiz1, psiz2, zptr1; |
|
extern /* Subroutine */ int sgemv_(char *, integer *, integer *, real *, |
|
real *, integer *, real *, integer *, real *, real *, integer *), scopy_(integer *, real *, integer *, real *, integer *), |
|
xerbla_(char *, integer *); |
|
|
|
|
|
/* -- LAPACK routine (version 3.2) -- */ |
|
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ |
|
/* November 2006 */ |
|
|
|
/* .. Scalar Arguments .. */ |
|
/* .. */ |
|
/* .. Array Arguments .. */ |
|
/* .. */ |
|
|
|
/* Purpose */ |
|
/* ======= */ |
|
|
|
/* SLAEDA computes the Z vector corresponding to the merge step in the */ |
|
/* CURLVLth step of the merge process with TLVLS steps for the CURPBMth */ |
|
/* problem. */ |
|
|
|
/* Arguments */ |
|
/* ========= */ |
|
|
|
/* N (input) INTEGER */ |
|
/* The dimension of the symmetric tridiagonal matrix. N >= 0. */ |
|
|
|
/* TLVLS (input) INTEGER */ |
|
/* The total number of merging levels in the overall divide and */ |
|
/* conquer tree. */ |
|
|
|
/* CURLVL (input) INTEGER */ |
|
/* The current level in the overall merge routine, */ |
|
/* 0 <= curlvl <= tlvls. */ |
|
|
|
/* CURPBM (input) INTEGER */ |
|
/* The current problem in the current level in the overall */ |
|
/* merge routine (counting from upper left to lower right). */ |
|
|
|
/* PRMPTR (input) INTEGER array, dimension (N lg N) */ |
|
/* Contains a list of pointers which indicate where in PERM a */ |
|
/* level's permutation is stored. PRMPTR(i+1) - PRMPTR(i) */ |
|
/* indicates the size of the permutation and incidentally the */ |
|
/* size of the full, non-deflated problem. */ |
|
|
|
/* PERM (input) INTEGER array, dimension (N lg N) */ |
|
/* Contains the permutations (from deflation and sorting) to be */ |
|
/* applied to each eigenblock. */ |
|
|
|
/* GIVPTR (input) INTEGER array, dimension (N lg N) */ |
|
/* Contains a list of pointers which indicate where in GIVCOL a */ |
|
/* level's Givens rotations are stored. GIVPTR(i+1) - GIVPTR(i) */ |
|
/* indicates the number of Givens rotations. */ |
|
|
|
/* GIVCOL (input) INTEGER array, dimension (2, N lg N) */ |
|
/* Each pair of numbers indicates a pair of columns to take place */ |
|
/* in a Givens rotation. */ |
|
|
|
/* GIVNUM (input) REAL array, dimension (2, N lg N) */ |
|
/* Each number indicates the S value to be used in the */ |
|
/* corresponding Givens rotation. */ |
|
|
|
/* Q (input) REAL array, dimension (N**2) */ |
|
/* Contains the square eigenblocks from previous levels, the */ |
|
/* starting positions for blocks are given by QPTR. */ |
|
|
|
/* QPTR (input) INTEGER array, dimension (N+2) */ |
|
/* Contains a list of pointers which indicate where in Q an */ |
|
/* eigenblock is stored. SQRT( QPTR(i+1) - QPTR(i) ) indicates */ |
|
/* the size of the block. */ |
|
|
|
/* Z (output) REAL array, dimension (N) */ |
|
/* On output this vector contains the updating vector (the last */ |
|
/* row of the first sub-eigenvector matrix and the first row of */ |
|
/* the second sub-eigenvector matrix). */ |
|
|
|
/* ZTEMP (workspace) REAL array, dimension (N) */ |
|
|
|
/* INFO (output) INTEGER */ |
|
/* = 0: successful exit. */ |
|
/* < 0: if INFO = -i, the i-th argument had an illegal value. */ |
|
|
|
/* Further Details */ |
|
/* =============== */ |
|
|
|
/* Based on contributions by */ |
|
/* Jeff Rutter, Computer Science Division, University of California */ |
|
/* at Berkeley, USA */ |
|
|
|
/* ===================================================================== */ |
|
|
|
/* .. Parameters .. */ |
|
/* .. */ |
|
/* .. Local Scalars .. */ |
|
/* .. */ |
|
/* .. External Subroutines .. */ |
|
/* .. */ |
|
/* .. Intrinsic Functions .. */ |
|
/* .. */ |
|
/* .. Executable Statements .. */ |
|
|
|
/* Test the input parameters. */ |
|
|
|
/* Parameter adjustments */ |
|
--ztemp; |
|
--z__; |
|
--qptr; |
|
--q; |
|
givnum -= 3; |
|
givcol -= 3; |
|
--givptr; |
|
--perm; |
|
--prmptr; |
|
|
|
/* Function Body */ |
|
*info = 0; |
|
|
|
if (*n < 0) { |
|
*info = -1; |
|
} |
|
if (*info != 0) { |
|
i__1 = -(*info); |
|
xerbla_("SLAEDA", &i__1); |
|
return 0; |
|
} |
|
|
|
/* Quick return if possible */ |
|
|
|
if (*n == 0) { |
|
return 0; |
|
} |
|
|
|
/* Determine location of first number in second half. */ |
|
|
|
mid = *n / 2 + 1; |
|
|
|
/* Gather last/first rows of appropriate eigenblocks into center of Z */ |
|
|
|
ptr = 1; |
|
|
|
/* Determine location of lowest level subproblem in the full storage */ |
|
/* scheme */ |
|
|
|
i__1 = *curlvl - 1; |
|
curr = ptr + *curpbm * pow_ii(&c__2, curlvl) + pow_ii(&c__2, &i__1) - 1; |
|
|
|
/* Determine size of these matrices. We add HALF to the value of */ |
|
/* the SQRT in case the machine underestimates one of these square */ |
|
/* roots. */ |
|
|
|
bsiz1 = (integer) (sqrt((real) (qptr[curr + 1] - qptr[curr])) + .5f); |
|
bsiz2 = (integer) (sqrt((real) (qptr[curr + 2] - qptr[curr + 1])) + .5f); |
|
i__1 = mid - bsiz1 - 1; |
|
for (k = 1; k <= i__1; ++k) { |
|
z__[k] = 0.f; |
|
/* L10: */ |
|
} |
|
scopy_(&bsiz1, &q[qptr[curr] + bsiz1 - 1], &bsiz1, &z__[mid - bsiz1], & |
|
c__1); |
|
scopy_(&bsiz2, &q[qptr[curr + 1]], &bsiz2, &z__[mid], &c__1); |
|
i__1 = *n; |
|
for (k = mid + bsiz2; k <= i__1; ++k) { |
|
z__[k] = 0.f; |
|
/* L20: */ |
|
} |
|
|
|
/* Loop thru remaining levels 1 -> CURLVL applying the Givens */ |
|
/* rotations and permutation and then multiplying the center matrices */ |
|
/* against the current Z. */ |
|
|
|
ptr = pow_ii(&c__2, tlvls) + 1; |
|
i__1 = *curlvl - 1; |
|
for (k = 1; k <= i__1; ++k) { |
|
i__2 = *curlvl - k; |
|
i__3 = *curlvl - k - 1; |
|
curr = ptr + *curpbm * pow_ii(&c__2, &i__2) + pow_ii(&c__2, &i__3) - |
|
1; |
|
psiz1 = prmptr[curr + 1] - prmptr[curr]; |
|
psiz2 = prmptr[curr + 2] - prmptr[curr + 1]; |
|
zptr1 = mid - psiz1; |
|
|
|
/* Apply Givens at CURR and CURR+1 */ |
|
|
|
i__2 = givptr[curr + 1] - 1; |
|
for (i__ = givptr[curr]; i__ <= i__2; ++i__) { |
|
srot_(&c__1, &z__[zptr1 + givcol[(i__ << 1) + 1] - 1], &c__1, & |
|
z__[zptr1 + givcol[(i__ << 1) + 2] - 1], &c__1, &givnum[( |
|
i__ << 1) + 1], &givnum[(i__ << 1) + 2]); |
|
/* L30: */ |
|
} |
|
i__2 = givptr[curr + 2] - 1; |
|
for (i__ = givptr[curr + 1]; i__ <= i__2; ++i__) { |
|
srot_(&c__1, &z__[mid - 1 + givcol[(i__ << 1) + 1]], &c__1, &z__[ |
|
mid - 1 + givcol[(i__ << 1) + 2]], &c__1, &givnum[(i__ << |
|
1) + 1], &givnum[(i__ << 1) + 2]); |
|
/* L40: */ |
|
} |
|
psiz1 = prmptr[curr + 1] - prmptr[curr]; |
|
psiz2 = prmptr[curr + 2] - prmptr[curr + 1]; |
|
i__2 = psiz1 - 1; |
|
for (i__ = 0; i__ <= i__2; ++i__) { |
|
ztemp[i__ + 1] = z__[zptr1 + perm[prmptr[curr] + i__] - 1]; |
|
/* L50: */ |
|
} |
|
i__2 = psiz2 - 1; |
|
for (i__ = 0; i__ <= i__2; ++i__) { |
|
ztemp[psiz1 + i__ + 1] = z__[mid + perm[prmptr[curr + 1] + i__] - |
|
1]; |
|
/* L60: */ |
|
} |
|
|
|
/* Multiply Blocks at CURR and CURR+1 */ |
|
|
|
/* Determine size of these matrices. We add HALF to the value of */ |
|
/* the SQRT in case the machine underestimates one of these */ |
|
/* square roots. */ |
|
|
|
bsiz1 = (integer) (sqrt((real) (qptr[curr + 1] - qptr[curr])) + .5f); |
|
bsiz2 = (integer) (sqrt((real) (qptr[curr + 2] - qptr[curr + 1])) + |
|
.5f); |
|
if (bsiz1 > 0) { |
|
sgemv_("T", &bsiz1, &bsiz1, &c_b24, &q[qptr[curr]], &bsiz1, & |
|
ztemp[1], &c__1, &c_b26, &z__[zptr1], &c__1); |
|
} |
|
i__2 = psiz1 - bsiz1; |
|
scopy_(&i__2, &ztemp[bsiz1 + 1], &c__1, &z__[zptr1 + bsiz1], &c__1); |
|
if (bsiz2 > 0) { |
|
sgemv_("T", &bsiz2, &bsiz2, &c_b24, &q[qptr[curr + 1]], &bsiz2, & |
|
ztemp[psiz1 + 1], &c__1, &c_b26, &z__[mid], &c__1); |
|
} |
|
i__2 = psiz2 - bsiz2; |
|
scopy_(&i__2, &ztemp[psiz1 + bsiz2 + 1], &c__1, &z__[mid + bsiz2], & |
|
c__1); |
|
|
|
i__2 = *tlvls - k; |
|
ptr += pow_ii(&c__2, &i__2); |
|
/* L70: */ |
|
} |
|
|
|
return 0; |
|
|
|
/* End of SLAEDA */ |
|
|
|
} /* slaeda_ */
|
|
|