mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
432 lines
14 KiB
432 lines
14 KiB
/* slabrd.f -- translated by f2c (version 20061008). |
|
You must link the resulting object file with libf2c: |
|
on Microsoft Windows system, link with libf2c.lib; |
|
on Linux or Unix systems, link with .../path/to/libf2c.a -lm |
|
or, if you install libf2c.a in a standard place, with -lf2c -lm |
|
-- in that order, at the end of the command line, as in |
|
cc *.o -lf2c -lm |
|
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., |
|
|
|
http://www.netlib.org/f2c/libf2c.zip |
|
*/ |
|
|
|
#include "clapack.h" |
|
|
|
|
|
/* Table of constant values */ |
|
|
|
static real c_b4 = -1.f; |
|
static real c_b5 = 1.f; |
|
static integer c__1 = 1; |
|
static real c_b16 = 0.f; |
|
|
|
/* Subroutine */ int slabrd_(integer *m, integer *n, integer *nb, real *a, |
|
integer *lda, real *d__, real *e, real *tauq, real *taup, real *x, |
|
integer *ldx, real *y, integer *ldy) |
|
{ |
|
/* System generated locals */ |
|
integer a_dim1, a_offset, x_dim1, x_offset, y_dim1, y_offset, i__1, i__2, |
|
i__3; |
|
|
|
/* Local variables */ |
|
integer i__; |
|
extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *), |
|
sgemv_(char *, integer *, integer *, real *, real *, integer *, |
|
real *, integer *, real *, real *, integer *), slarfg_( |
|
integer *, real *, real *, integer *, real *); |
|
|
|
|
|
/* -- LAPACK auxiliary routine (version 3.2) -- */ |
|
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ |
|
/* November 2006 */ |
|
|
|
/* .. Scalar Arguments .. */ |
|
/* .. */ |
|
/* .. Array Arguments .. */ |
|
/* .. */ |
|
|
|
/* Purpose */ |
|
/* ======= */ |
|
|
|
/* SLABRD reduces the first NB rows and columns of a real general */ |
|
/* m by n matrix A to upper or lower bidiagonal form by an orthogonal */ |
|
/* transformation Q' * A * P, and returns the matrices X and Y which */ |
|
/* are needed to apply the transformation to the unreduced part of A. */ |
|
|
|
/* If m >= n, A is reduced to upper bidiagonal form; if m < n, to lower */ |
|
/* bidiagonal form. */ |
|
|
|
/* This is an auxiliary routine called by SGEBRD */ |
|
|
|
/* Arguments */ |
|
/* ========= */ |
|
|
|
/* M (input) INTEGER */ |
|
/* The number of rows in the matrix A. */ |
|
|
|
/* N (input) INTEGER */ |
|
/* The number of columns in the matrix A. */ |
|
|
|
/* NB (input) INTEGER */ |
|
/* The number of leading rows and columns of A to be reduced. */ |
|
|
|
/* A (input/output) REAL array, dimension (LDA,N) */ |
|
/* On entry, the m by n general matrix to be reduced. */ |
|
/* On exit, the first NB rows and columns of the matrix are */ |
|
/* overwritten; the rest of the array is unchanged. */ |
|
/* If m >= n, elements on and below the diagonal in the first NB */ |
|
/* columns, with the array TAUQ, represent the orthogonal */ |
|
/* matrix Q as a product of elementary reflectors; and */ |
|
/* elements above the diagonal in the first NB rows, with the */ |
|
/* array TAUP, represent the orthogonal matrix P as a product */ |
|
/* of elementary reflectors. */ |
|
/* If m < n, elements below the diagonal in the first NB */ |
|
/* columns, with the array TAUQ, represent the orthogonal */ |
|
/* matrix Q as a product of elementary reflectors, and */ |
|
/* elements on and above the diagonal in the first NB rows, */ |
|
/* with the array TAUP, represent the orthogonal matrix P as */ |
|
/* a product of elementary reflectors. */ |
|
/* See Further Details. */ |
|
|
|
/* LDA (input) INTEGER */ |
|
/* The leading dimension of the array A. LDA >= max(1,M). */ |
|
|
|
/* D (output) REAL array, dimension (NB) */ |
|
/* The diagonal elements of the first NB rows and columns of */ |
|
/* the reduced matrix. D(i) = A(i,i). */ |
|
|
|
/* E (output) REAL array, dimension (NB) */ |
|
/* The off-diagonal elements of the first NB rows and columns of */ |
|
/* the reduced matrix. */ |
|
|
|
/* TAUQ (output) REAL array dimension (NB) */ |
|
/* The scalar factors of the elementary reflectors which */ |
|
/* represent the orthogonal matrix Q. See Further Details. */ |
|
|
|
/* TAUP (output) REAL array, dimension (NB) */ |
|
/* The scalar factors of the elementary reflectors which */ |
|
/* represent the orthogonal matrix P. See Further Details. */ |
|
|
|
/* X (output) REAL array, dimension (LDX,NB) */ |
|
/* The m-by-nb matrix X required to update the unreduced part */ |
|
/* of A. */ |
|
|
|
/* LDX (input) INTEGER */ |
|
/* The leading dimension of the array X. LDX >= M. */ |
|
|
|
/* Y (output) REAL array, dimension (LDY,NB) */ |
|
/* The n-by-nb matrix Y required to update the unreduced part */ |
|
/* of A. */ |
|
|
|
/* LDY (input) INTEGER */ |
|
/* The leading dimension of the array Y. LDY >= N. */ |
|
|
|
/* Further Details */ |
|
/* =============== */ |
|
|
|
/* The matrices Q and P are represented as products of elementary */ |
|
/* reflectors: */ |
|
|
|
/* Q = H(1) H(2) . . . H(nb) and P = G(1) G(2) . . . G(nb) */ |
|
|
|
/* Each H(i) and G(i) has the form: */ |
|
|
|
/* H(i) = I - tauq * v * v' and G(i) = I - taup * u * u' */ |
|
|
|
/* where tauq and taup are real scalars, and v and u are real vectors. */ |
|
|
|
/* If m >= n, v(1:i-1) = 0, v(i) = 1, and v(i:m) is stored on exit in */ |
|
/* A(i:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+1:n) is stored on exit in */ |
|
/* A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i). */ |
|
|
|
/* If m < n, v(1:i) = 0, v(i+1) = 1, and v(i+1:m) is stored on exit in */ |
|
/* A(i+2:m,i); u(1:i-1) = 0, u(i) = 1, and u(i:n) is stored on exit in */ |
|
/* A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i). */ |
|
|
|
/* The elements of the vectors v and u together form the m-by-nb matrix */ |
|
/* V and the nb-by-n matrix U' which are needed, with X and Y, to apply */ |
|
/* the transformation to the unreduced part of the matrix, using a block */ |
|
/* update of the form: A := A - V*Y' - X*U'. */ |
|
|
|
/* The contents of A on exit are illustrated by the following examples */ |
|
/* with nb = 2: */ |
|
|
|
/* m = 6 and n = 5 (m > n): m = 5 and n = 6 (m < n): */ |
|
|
|
/* ( 1 1 u1 u1 u1 ) ( 1 u1 u1 u1 u1 u1 ) */ |
|
/* ( v1 1 1 u2 u2 ) ( 1 1 u2 u2 u2 u2 ) */ |
|
/* ( v1 v2 a a a ) ( v1 1 a a a a ) */ |
|
/* ( v1 v2 a a a ) ( v1 v2 a a a a ) */ |
|
/* ( v1 v2 a a a ) ( v1 v2 a a a a ) */ |
|
/* ( v1 v2 a a a ) */ |
|
|
|
/* where a denotes an element of the original matrix which is unchanged, */ |
|
/* vi denotes an element of the vector defining H(i), and ui an element */ |
|
/* of the vector defining G(i). */ |
|
|
|
/* ===================================================================== */ |
|
|
|
/* .. Parameters .. */ |
|
/* .. */ |
|
/* .. Local Scalars .. */ |
|
/* .. */ |
|
/* .. External Subroutines .. */ |
|
/* .. */ |
|
/* .. Intrinsic Functions .. */ |
|
/* .. */ |
|
/* .. Executable Statements .. */ |
|
|
|
/* Quick return if possible */ |
|
|
|
/* Parameter adjustments */ |
|
a_dim1 = *lda; |
|
a_offset = 1 + a_dim1; |
|
a -= a_offset; |
|
--d__; |
|
--e; |
|
--tauq; |
|
--taup; |
|
x_dim1 = *ldx; |
|
x_offset = 1 + x_dim1; |
|
x -= x_offset; |
|
y_dim1 = *ldy; |
|
y_offset = 1 + y_dim1; |
|
y -= y_offset; |
|
|
|
/* Function Body */ |
|
if (*m <= 0 || *n <= 0) { |
|
return 0; |
|
} |
|
|
|
if (*m >= *n) { |
|
|
|
/* Reduce to upper bidiagonal form */ |
|
|
|
i__1 = *nb; |
|
for (i__ = 1; i__ <= i__1; ++i__) { |
|
|
|
/* Update A(i:m,i) */ |
|
|
|
i__2 = *m - i__ + 1; |
|
i__3 = i__ - 1; |
|
sgemv_("No transpose", &i__2, &i__3, &c_b4, &a[i__ + a_dim1], lda, |
|
&y[i__ + y_dim1], ldy, &c_b5, &a[i__ + i__ * a_dim1], & |
|
c__1); |
|
i__2 = *m - i__ + 1; |
|
i__3 = i__ - 1; |
|
sgemv_("No transpose", &i__2, &i__3, &c_b4, &x[i__ + x_dim1], ldx, |
|
&a[i__ * a_dim1 + 1], &c__1, &c_b5, &a[i__ + i__ * |
|
a_dim1], &c__1); |
|
|
|
/* Generate reflection Q(i) to annihilate A(i+1:m,i) */ |
|
|
|
i__2 = *m - i__ + 1; |
|
/* Computing MIN */ |
|
i__3 = i__ + 1; |
|
slarfg_(&i__2, &a[i__ + i__ * a_dim1], &a[min(i__3, *m)+ i__ * |
|
a_dim1], &c__1, &tauq[i__]); |
|
d__[i__] = a[i__ + i__ * a_dim1]; |
|
if (i__ < *n) { |
|
a[i__ + i__ * a_dim1] = 1.f; |
|
|
|
/* Compute Y(i+1:n,i) */ |
|
|
|
i__2 = *m - i__ + 1; |
|
i__3 = *n - i__; |
|
sgemv_("Transpose", &i__2, &i__3, &c_b5, &a[i__ + (i__ + 1) * |
|
a_dim1], lda, &a[i__ + i__ * a_dim1], &c__1, &c_b16, & |
|
y[i__ + 1 + i__ * y_dim1], &c__1); |
|
i__2 = *m - i__ + 1; |
|
i__3 = i__ - 1; |
|
sgemv_("Transpose", &i__2, &i__3, &c_b5, &a[i__ + a_dim1], |
|
lda, &a[i__ + i__ * a_dim1], &c__1, &c_b16, &y[i__ * |
|
y_dim1 + 1], &c__1); |
|
i__2 = *n - i__; |
|
i__3 = i__ - 1; |
|
sgemv_("No transpose", &i__2, &i__3, &c_b4, &y[i__ + 1 + |
|
y_dim1], ldy, &y[i__ * y_dim1 + 1], &c__1, &c_b5, &y[ |
|
i__ + 1 + i__ * y_dim1], &c__1); |
|
i__2 = *m - i__ + 1; |
|
i__3 = i__ - 1; |
|
sgemv_("Transpose", &i__2, &i__3, &c_b5, &x[i__ + x_dim1], |
|
ldx, &a[i__ + i__ * a_dim1], &c__1, &c_b16, &y[i__ * |
|
y_dim1 + 1], &c__1); |
|
i__2 = i__ - 1; |
|
i__3 = *n - i__; |
|
sgemv_("Transpose", &i__2, &i__3, &c_b4, &a[(i__ + 1) * |
|
a_dim1 + 1], lda, &y[i__ * y_dim1 + 1], &c__1, &c_b5, |
|
&y[i__ + 1 + i__ * y_dim1], &c__1); |
|
i__2 = *n - i__; |
|
sscal_(&i__2, &tauq[i__], &y[i__ + 1 + i__ * y_dim1], &c__1); |
|
|
|
/* Update A(i,i+1:n) */ |
|
|
|
i__2 = *n - i__; |
|
sgemv_("No transpose", &i__2, &i__, &c_b4, &y[i__ + 1 + |
|
y_dim1], ldy, &a[i__ + a_dim1], lda, &c_b5, &a[i__ + ( |
|
i__ + 1) * a_dim1], lda); |
|
i__2 = i__ - 1; |
|
i__3 = *n - i__; |
|
sgemv_("Transpose", &i__2, &i__3, &c_b4, &a[(i__ + 1) * |
|
a_dim1 + 1], lda, &x[i__ + x_dim1], ldx, &c_b5, &a[ |
|
i__ + (i__ + 1) * a_dim1], lda); |
|
|
|
/* Generate reflection P(i) to annihilate A(i,i+2:n) */ |
|
|
|
i__2 = *n - i__; |
|
/* Computing MIN */ |
|
i__3 = i__ + 2; |
|
slarfg_(&i__2, &a[i__ + (i__ + 1) * a_dim1], &a[i__ + min( |
|
i__3, *n)* a_dim1], lda, &taup[i__]); |
|
e[i__] = a[i__ + (i__ + 1) * a_dim1]; |
|
a[i__ + (i__ + 1) * a_dim1] = 1.f; |
|
|
|
/* Compute X(i+1:m,i) */ |
|
|
|
i__2 = *m - i__; |
|
i__3 = *n - i__; |
|
sgemv_("No transpose", &i__2, &i__3, &c_b5, &a[i__ + 1 + (i__ |
|
+ 1) * a_dim1], lda, &a[i__ + (i__ + 1) * a_dim1], |
|
lda, &c_b16, &x[i__ + 1 + i__ * x_dim1], &c__1); |
|
i__2 = *n - i__; |
|
sgemv_("Transpose", &i__2, &i__, &c_b5, &y[i__ + 1 + y_dim1], |
|
ldy, &a[i__ + (i__ + 1) * a_dim1], lda, &c_b16, &x[ |
|
i__ * x_dim1 + 1], &c__1); |
|
i__2 = *m - i__; |
|
sgemv_("No transpose", &i__2, &i__, &c_b4, &a[i__ + 1 + |
|
a_dim1], lda, &x[i__ * x_dim1 + 1], &c__1, &c_b5, &x[ |
|
i__ + 1 + i__ * x_dim1], &c__1); |
|
i__2 = i__ - 1; |
|
i__3 = *n - i__; |
|
sgemv_("No transpose", &i__2, &i__3, &c_b5, &a[(i__ + 1) * |
|
a_dim1 + 1], lda, &a[i__ + (i__ + 1) * a_dim1], lda, & |
|
c_b16, &x[i__ * x_dim1 + 1], &c__1); |
|
i__2 = *m - i__; |
|
i__3 = i__ - 1; |
|
sgemv_("No transpose", &i__2, &i__3, &c_b4, &x[i__ + 1 + |
|
x_dim1], ldx, &x[i__ * x_dim1 + 1], &c__1, &c_b5, &x[ |
|
i__ + 1 + i__ * x_dim1], &c__1); |
|
i__2 = *m - i__; |
|
sscal_(&i__2, &taup[i__], &x[i__ + 1 + i__ * x_dim1], &c__1); |
|
} |
|
/* L10: */ |
|
} |
|
} else { |
|
|
|
/* Reduce to lower bidiagonal form */ |
|
|
|
i__1 = *nb; |
|
for (i__ = 1; i__ <= i__1; ++i__) { |
|
|
|
/* Update A(i,i:n) */ |
|
|
|
i__2 = *n - i__ + 1; |
|
i__3 = i__ - 1; |
|
sgemv_("No transpose", &i__2, &i__3, &c_b4, &y[i__ + y_dim1], ldy, |
|
&a[i__ + a_dim1], lda, &c_b5, &a[i__ + i__ * a_dim1], |
|
lda); |
|
i__2 = i__ - 1; |
|
i__3 = *n - i__ + 1; |
|
sgemv_("Transpose", &i__2, &i__3, &c_b4, &a[i__ * a_dim1 + 1], |
|
lda, &x[i__ + x_dim1], ldx, &c_b5, &a[i__ + i__ * a_dim1], |
|
lda); |
|
|
|
/* Generate reflection P(i) to annihilate A(i,i+1:n) */ |
|
|
|
i__2 = *n - i__ + 1; |
|
/* Computing MIN */ |
|
i__3 = i__ + 1; |
|
slarfg_(&i__2, &a[i__ + i__ * a_dim1], &a[i__ + min(i__3, *n)* |
|
a_dim1], lda, &taup[i__]); |
|
d__[i__] = a[i__ + i__ * a_dim1]; |
|
if (i__ < *m) { |
|
a[i__ + i__ * a_dim1] = 1.f; |
|
|
|
/* Compute X(i+1:m,i) */ |
|
|
|
i__2 = *m - i__; |
|
i__3 = *n - i__ + 1; |
|
sgemv_("No transpose", &i__2, &i__3, &c_b5, &a[i__ + 1 + i__ * |
|
a_dim1], lda, &a[i__ + i__ * a_dim1], lda, &c_b16, & |
|
x[i__ + 1 + i__ * x_dim1], &c__1); |
|
i__2 = *n - i__ + 1; |
|
i__3 = i__ - 1; |
|
sgemv_("Transpose", &i__2, &i__3, &c_b5, &y[i__ + y_dim1], |
|
ldy, &a[i__ + i__ * a_dim1], lda, &c_b16, &x[i__ * |
|
x_dim1 + 1], &c__1); |
|
i__2 = *m - i__; |
|
i__3 = i__ - 1; |
|
sgemv_("No transpose", &i__2, &i__3, &c_b4, &a[i__ + 1 + |
|
a_dim1], lda, &x[i__ * x_dim1 + 1], &c__1, &c_b5, &x[ |
|
i__ + 1 + i__ * x_dim1], &c__1); |
|
i__2 = i__ - 1; |
|
i__3 = *n - i__ + 1; |
|
sgemv_("No transpose", &i__2, &i__3, &c_b5, &a[i__ * a_dim1 + |
|
1], lda, &a[i__ + i__ * a_dim1], lda, &c_b16, &x[i__ * |
|
x_dim1 + 1], &c__1); |
|
i__2 = *m - i__; |
|
i__3 = i__ - 1; |
|
sgemv_("No transpose", &i__2, &i__3, &c_b4, &x[i__ + 1 + |
|
x_dim1], ldx, &x[i__ * x_dim1 + 1], &c__1, &c_b5, &x[ |
|
i__ + 1 + i__ * x_dim1], &c__1); |
|
i__2 = *m - i__; |
|
sscal_(&i__2, &taup[i__], &x[i__ + 1 + i__ * x_dim1], &c__1); |
|
|
|
/* Update A(i+1:m,i) */ |
|
|
|
i__2 = *m - i__; |
|
i__3 = i__ - 1; |
|
sgemv_("No transpose", &i__2, &i__3, &c_b4, &a[i__ + 1 + |
|
a_dim1], lda, &y[i__ + y_dim1], ldy, &c_b5, &a[i__ + |
|
1 + i__ * a_dim1], &c__1); |
|
i__2 = *m - i__; |
|
sgemv_("No transpose", &i__2, &i__, &c_b4, &x[i__ + 1 + |
|
x_dim1], ldx, &a[i__ * a_dim1 + 1], &c__1, &c_b5, &a[ |
|
i__ + 1 + i__ * a_dim1], &c__1); |
|
|
|
/* Generate reflection Q(i) to annihilate A(i+2:m,i) */ |
|
|
|
i__2 = *m - i__; |
|
/* Computing MIN */ |
|
i__3 = i__ + 2; |
|
slarfg_(&i__2, &a[i__ + 1 + i__ * a_dim1], &a[min(i__3, *m)+ |
|
i__ * a_dim1], &c__1, &tauq[i__]); |
|
e[i__] = a[i__ + 1 + i__ * a_dim1]; |
|
a[i__ + 1 + i__ * a_dim1] = 1.f; |
|
|
|
/* Compute Y(i+1:n,i) */ |
|
|
|
i__2 = *m - i__; |
|
i__3 = *n - i__; |
|
sgemv_("Transpose", &i__2, &i__3, &c_b5, &a[i__ + 1 + (i__ + |
|
1) * a_dim1], lda, &a[i__ + 1 + i__ * a_dim1], &c__1, |
|
&c_b16, &y[i__ + 1 + i__ * y_dim1], &c__1); |
|
i__2 = *m - i__; |
|
i__3 = i__ - 1; |
|
sgemv_("Transpose", &i__2, &i__3, &c_b5, &a[i__ + 1 + a_dim1], |
|
lda, &a[i__ + 1 + i__ * a_dim1], &c__1, &c_b16, &y[ |
|
i__ * y_dim1 + 1], &c__1); |
|
i__2 = *n - i__; |
|
i__3 = i__ - 1; |
|
sgemv_("No transpose", &i__2, &i__3, &c_b4, &y[i__ + 1 + |
|
y_dim1], ldy, &y[i__ * y_dim1 + 1], &c__1, &c_b5, &y[ |
|
i__ + 1 + i__ * y_dim1], &c__1); |
|
i__2 = *m - i__; |
|
sgemv_("Transpose", &i__2, &i__, &c_b5, &x[i__ + 1 + x_dim1], |
|
ldx, &a[i__ + 1 + i__ * a_dim1], &c__1, &c_b16, &y[ |
|
i__ * y_dim1 + 1], &c__1); |
|
i__2 = *n - i__; |
|
sgemv_("Transpose", &i__, &i__2, &c_b4, &a[(i__ + 1) * a_dim1 |
|
+ 1], lda, &y[i__ * y_dim1 + 1], &c__1, &c_b5, &y[i__ |
|
+ 1 + i__ * y_dim1], &c__1); |
|
i__2 = *n - i__; |
|
sscal_(&i__2, &tauq[i__], &y[i__ + 1 + i__ * y_dim1], &c__1); |
|
} |
|
/* L20: */ |
|
} |
|
} |
|
return 0; |
|
|
|
/* End of SLABRD */ |
|
|
|
} /* slabrd_ */
|
|
|