mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
183 lines
5.3 KiB
183 lines
5.3 KiB
/* dtrtrs.f -- translated by f2c (version 20061008). |
|
You must link the resulting object file with libf2c: |
|
on Microsoft Windows system, link with libf2c.lib; |
|
on Linux or Unix systems, link with .../path/to/libf2c.a -lm |
|
or, if you install libf2c.a in a standard place, with -lf2c -lm |
|
-- in that order, at the end of the command line, as in |
|
cc *.o -lf2c -lm |
|
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., |
|
|
|
http://www.netlib.org/f2c/libf2c.zip |
|
*/ |
|
|
|
#include "clapack.h" |
|
|
|
|
|
/* Table of constant values */ |
|
|
|
static doublereal c_b12 = 1.; |
|
|
|
/* Subroutine */ int dtrtrs_(char *uplo, char *trans, char *diag, integer *n, |
|
integer *nrhs, doublereal *a, integer *lda, doublereal *b, integer * |
|
ldb, integer *info) |
|
{ |
|
/* System generated locals */ |
|
integer a_dim1, a_offset, b_dim1, b_offset, i__1; |
|
|
|
/* Local variables */ |
|
extern logical lsame_(char *, char *); |
|
extern /* Subroutine */ int dtrsm_(char *, char *, char *, char *, |
|
integer *, integer *, doublereal *, doublereal *, integer *, |
|
doublereal *, integer *), xerbla_( |
|
char *, integer *); |
|
logical nounit; |
|
|
|
|
|
/* -- LAPACK routine (version 3.2) -- */ |
|
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ |
|
/* November 2006 */ |
|
|
|
/* .. Scalar Arguments .. */ |
|
/* .. */ |
|
/* .. Array Arguments .. */ |
|
/* .. */ |
|
|
|
/* Purpose */ |
|
/* ======= */ |
|
|
|
/* DTRTRS solves a triangular system of the form */ |
|
|
|
/* A * X = B or A**T * X = B, */ |
|
|
|
/* where A is a triangular matrix of order N, and B is an N-by-NRHS */ |
|
/* matrix. A check is made to verify that A is nonsingular. */ |
|
|
|
/* Arguments */ |
|
/* ========= */ |
|
|
|
/* UPLO (input) CHARACTER*1 */ |
|
/* = 'U': A is upper triangular; */ |
|
/* = 'L': A is lower triangular. */ |
|
|
|
/* TRANS (input) CHARACTER*1 */ |
|
/* Specifies the form of the system of equations: */ |
|
/* = 'N': A * X = B (No transpose) */ |
|
/* = 'T': A**T * X = B (Transpose) */ |
|
/* = 'C': A**H * X = B (Conjugate transpose = Transpose) */ |
|
|
|
/* DIAG (input) CHARACTER*1 */ |
|
/* = 'N': A is non-unit triangular; */ |
|
/* = 'U': A is unit triangular. */ |
|
|
|
/* N (input) INTEGER */ |
|
/* The order of the matrix A. N >= 0. */ |
|
|
|
/* NRHS (input) INTEGER */ |
|
/* The number of right hand sides, i.e., the number of columns */ |
|
/* of the matrix B. NRHS >= 0. */ |
|
|
|
/* A (input) DOUBLE PRECISION array, dimension (LDA,N) */ |
|
/* The triangular matrix A. If UPLO = 'U', the leading N-by-N */ |
|
/* upper triangular part of the array A contains the upper */ |
|
/* triangular matrix, and the strictly lower triangular part of */ |
|
/* A is not referenced. If UPLO = 'L', the leading N-by-N lower */ |
|
/* triangular part of the array A contains the lower triangular */ |
|
/* matrix, and the strictly upper triangular part of A is not */ |
|
/* referenced. If DIAG = 'U', the diagonal elements of A are */ |
|
/* also not referenced and are assumed to be 1. */ |
|
|
|
/* LDA (input) INTEGER */ |
|
/* The leading dimension of the array A. LDA >= max(1,N). */ |
|
|
|
/* B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) */ |
|
/* On entry, the right hand side matrix B. */ |
|
/* On exit, if INFO = 0, the solution matrix X. */ |
|
|
|
/* LDB (input) INTEGER */ |
|
/* The leading dimension of the array B. LDB >= max(1,N). */ |
|
|
|
/* INFO (output) INTEGER */ |
|
/* = 0: successful exit */ |
|
/* < 0: if INFO = -i, the i-th argument had an illegal value */ |
|
/* > 0: if INFO = i, the i-th diagonal element of A is zero, */ |
|
/* indicating that the matrix is singular and the solutions */ |
|
/* X have not been computed. */ |
|
|
|
/* ===================================================================== */ |
|
|
|
/* .. Parameters .. */ |
|
/* .. */ |
|
/* .. Local Scalars .. */ |
|
/* .. */ |
|
/* .. External Functions .. */ |
|
/* .. */ |
|
/* .. External Subroutines .. */ |
|
/* .. */ |
|
/* .. Intrinsic Functions .. */ |
|
/* .. */ |
|
/* .. Executable Statements .. */ |
|
|
|
/* Test the input parameters. */ |
|
|
|
/* Parameter adjustments */ |
|
a_dim1 = *lda; |
|
a_offset = 1 + a_dim1; |
|
a -= a_offset; |
|
b_dim1 = *ldb; |
|
b_offset = 1 + b_dim1; |
|
b -= b_offset; |
|
|
|
/* Function Body */ |
|
*info = 0; |
|
nounit = lsame_(diag, "N"); |
|
if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) { |
|
*info = -1; |
|
} else if (! lsame_(trans, "N") && ! lsame_(trans, |
|
"T") && ! lsame_(trans, "C")) { |
|
*info = -2; |
|
} else if (! nounit && ! lsame_(diag, "U")) { |
|
*info = -3; |
|
} else if (*n < 0) { |
|
*info = -4; |
|
} else if (*nrhs < 0) { |
|
*info = -5; |
|
} else if (*lda < max(1,*n)) { |
|
*info = -7; |
|
} else if (*ldb < max(1,*n)) { |
|
*info = -9; |
|
} |
|
if (*info != 0) { |
|
i__1 = -(*info); |
|
xerbla_("DTRTRS", &i__1); |
|
return 0; |
|
} |
|
|
|
/* Quick return if possible */ |
|
|
|
if (*n == 0) { |
|
return 0; |
|
} |
|
|
|
/* Check for singularity. */ |
|
|
|
if (nounit) { |
|
i__1 = *n; |
|
for (*info = 1; *info <= i__1; ++(*info)) { |
|
if (a[*info + *info * a_dim1] == 0.) { |
|
return 0; |
|
} |
|
/* L10: */ |
|
} |
|
} |
|
*info = 0; |
|
|
|
/* Solve A * x = b or A' * x = b. */ |
|
|
|
dtrsm_("Left", uplo, trans, diag, n, nrhs, &c_b12, &a[a_offset], lda, &b[ |
|
b_offset], ldb); |
|
|
|
return 0; |
|
|
|
/* End of DTRTRS */ |
|
|
|
} /* dtrtrs_ */
|
|
|