mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
490 lines
12 KiB
490 lines
12 KiB
/* dtrsm.f -- translated by f2c (version 20061008). |
|
You must link the resulting object file with libf2c: |
|
on Microsoft Windows system, link with libf2c.lib; |
|
on Linux or Unix systems, link with .../path/to/libf2c.a -lm |
|
or, if you install libf2c.a in a standard place, with -lf2c -lm |
|
-- in that order, at the end of the command line, as in |
|
cc *.o -lf2c -lm |
|
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., |
|
|
|
http://www.netlib.org/f2c/libf2c.zip |
|
*/ |
|
|
|
#include "clapack.h" |
|
|
|
|
|
/* Subroutine */ int dtrsm_(char *side, char *uplo, char *transa, char *diag, |
|
integer *m, integer *n, doublereal *alpha, doublereal *a, integer * |
|
lda, doublereal *b, integer *ldb) |
|
{ |
|
/* System generated locals */ |
|
integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3; |
|
|
|
/* Local variables */ |
|
integer i__, j, k, info; |
|
doublereal temp; |
|
logical lside; |
|
extern logical lsame_(char *, char *); |
|
integer nrowa; |
|
logical upper; |
|
extern /* Subroutine */ int xerbla_(char *, integer *); |
|
logical nounit; |
|
|
|
/* .. Scalar Arguments .. */ |
|
/* .. */ |
|
/* .. Array Arguments .. */ |
|
/* .. */ |
|
|
|
/* Purpose */ |
|
/* ======= */ |
|
|
|
/* DTRSM solves one of the matrix equations */ |
|
|
|
/* op( A )*X = alpha*B, or X*op( A ) = alpha*B, */ |
|
|
|
/* where alpha is a scalar, X and B are m by n matrices, A is a unit, or */ |
|
/* non-unit, upper or lower triangular matrix and op( A ) is one of */ |
|
|
|
/* op( A ) = A or op( A ) = A'. */ |
|
|
|
/* The matrix X is overwritten on B. */ |
|
|
|
/* Arguments */ |
|
/* ========== */ |
|
|
|
/* SIDE - CHARACTER*1. */ |
|
/* On entry, SIDE specifies whether op( A ) appears on the left */ |
|
/* or right of X as follows: */ |
|
|
|
/* SIDE = 'L' or 'l' op( A )*X = alpha*B. */ |
|
|
|
/* SIDE = 'R' or 'r' X*op( A ) = alpha*B. */ |
|
|
|
/* Unchanged on exit. */ |
|
|
|
/* UPLO - CHARACTER*1. */ |
|
/* On entry, UPLO specifies whether the matrix A is an upper or */ |
|
/* lower triangular matrix as follows: */ |
|
|
|
/* UPLO = 'U' or 'u' A is an upper triangular matrix. */ |
|
|
|
/* UPLO = 'L' or 'l' A is a lower triangular matrix. */ |
|
|
|
/* Unchanged on exit. */ |
|
|
|
/* TRANSA - CHARACTER*1. */ |
|
/* On entry, TRANSA specifies the form of op( A ) to be used in */ |
|
/* the matrix multiplication as follows: */ |
|
|
|
/* TRANSA = 'N' or 'n' op( A ) = A. */ |
|
|
|
/* TRANSA = 'T' or 't' op( A ) = A'. */ |
|
|
|
/* TRANSA = 'C' or 'c' op( A ) = A'. */ |
|
|
|
/* Unchanged on exit. */ |
|
|
|
/* DIAG - CHARACTER*1. */ |
|
/* On entry, DIAG specifies whether or not A is unit triangular */ |
|
/* as follows: */ |
|
|
|
/* DIAG = 'U' or 'u' A is assumed to be unit triangular. */ |
|
|
|
/* DIAG = 'N' or 'n' A is not assumed to be unit */ |
|
/* triangular. */ |
|
|
|
/* Unchanged on exit. */ |
|
|
|
/* M - INTEGER. */ |
|
/* On entry, M specifies the number of rows of B. M must be at */ |
|
/* least zero. */ |
|
/* Unchanged on exit. */ |
|
|
|
/* N - INTEGER. */ |
|
/* On entry, N specifies the number of columns of B. N must be */ |
|
/* at least zero. */ |
|
/* Unchanged on exit. */ |
|
|
|
/* ALPHA - DOUBLE PRECISION. */ |
|
/* On entry, ALPHA specifies the scalar alpha. When alpha is */ |
|
/* zero then A is not referenced and B need not be set before */ |
|
/* entry. */ |
|
/* Unchanged on exit. */ |
|
|
|
/* A - DOUBLE PRECISION array of DIMENSION ( LDA, k ), where k is m */ |
|
/* when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'. */ |
|
/* Before entry with UPLO = 'U' or 'u', the leading k by k */ |
|
/* upper triangular part of the array A must contain the upper */ |
|
/* triangular matrix and the strictly lower triangular part of */ |
|
/* A is not referenced. */ |
|
/* Before entry with UPLO = 'L' or 'l', the leading k by k */ |
|
/* lower triangular part of the array A must contain the lower */ |
|
/* triangular matrix and the strictly upper triangular part of */ |
|
/* A is not referenced. */ |
|
/* Note that when DIAG = 'U' or 'u', the diagonal elements of */ |
|
/* A are not referenced either, but are assumed to be unity. */ |
|
/* Unchanged on exit. */ |
|
|
|
/* LDA - INTEGER. */ |
|
/* On entry, LDA specifies the first dimension of A as declared */ |
|
/* in the calling (sub) program. When SIDE = 'L' or 'l' then */ |
|
/* LDA must be at least max( 1, m ), when SIDE = 'R' or 'r' */ |
|
/* then LDA must be at least max( 1, n ). */ |
|
/* Unchanged on exit. */ |
|
|
|
/* B - DOUBLE PRECISION array of DIMENSION ( LDB, n ). */ |
|
/* Before entry, the leading m by n part of the array B must */ |
|
/* contain the right-hand side matrix B, and on exit is */ |
|
/* overwritten by the solution matrix X. */ |
|
|
|
/* LDB - INTEGER. */ |
|
/* On entry, LDB specifies the first dimension of B as declared */ |
|
/* in the calling (sub) program. LDB must be at least */ |
|
/* max( 1, m ). */ |
|
/* Unchanged on exit. */ |
|
|
|
|
|
/* Level 3 Blas routine. */ |
|
|
|
|
|
/* -- Written on 8-February-1989. */ |
|
/* Jack Dongarra, Argonne National Laboratory. */ |
|
/* Iain Duff, AERE Harwell. */ |
|
/* Jeremy Du Croz, Numerical Algorithms Group Ltd. */ |
|
/* Sven Hammarling, Numerical Algorithms Group Ltd. */ |
|
|
|
|
|
/* .. External Functions .. */ |
|
/* .. */ |
|
/* .. External Subroutines .. */ |
|
/* .. */ |
|
/* .. Intrinsic Functions .. */ |
|
/* .. */ |
|
/* .. Local Scalars .. */ |
|
/* .. */ |
|
/* .. Parameters .. */ |
|
/* .. */ |
|
|
|
/* Test the input parameters. */ |
|
|
|
/* Parameter adjustments */ |
|
a_dim1 = *lda; |
|
a_offset = 1 + a_dim1; |
|
a -= a_offset; |
|
b_dim1 = *ldb; |
|
b_offset = 1 + b_dim1; |
|
b -= b_offset; |
|
|
|
/* Function Body */ |
|
lside = lsame_(side, "L"); |
|
if (lside) { |
|
nrowa = *m; |
|
} else { |
|
nrowa = *n; |
|
} |
|
nounit = lsame_(diag, "N"); |
|
upper = lsame_(uplo, "U"); |
|
|
|
info = 0; |
|
if (! lside && ! lsame_(side, "R")) { |
|
info = 1; |
|
} else if (! upper && ! lsame_(uplo, "L")) { |
|
info = 2; |
|
} else if (! lsame_(transa, "N") && ! lsame_(transa, |
|
"T") && ! lsame_(transa, "C")) { |
|
info = 3; |
|
} else if (! lsame_(diag, "U") && ! lsame_(diag, |
|
"N")) { |
|
info = 4; |
|
} else if (*m < 0) { |
|
info = 5; |
|
} else if (*n < 0) { |
|
info = 6; |
|
} else if (*lda < max(1,nrowa)) { |
|
info = 9; |
|
} else if (*ldb < max(1,*m)) { |
|
info = 11; |
|
} |
|
if (info != 0) { |
|
xerbla_("DTRSM ", &info); |
|
return 0; |
|
} |
|
|
|
/* Quick return if possible. */ |
|
|
|
if (*m == 0 || *n == 0) { |
|
return 0; |
|
} |
|
|
|
/* And when alpha.eq.zero. */ |
|
|
|
if (*alpha == 0.) { |
|
i__1 = *n; |
|
for (j = 1; j <= i__1; ++j) { |
|
i__2 = *m; |
|
for (i__ = 1; i__ <= i__2; ++i__) { |
|
b[i__ + j * b_dim1] = 0.; |
|
/* L10: */ |
|
} |
|
/* L20: */ |
|
} |
|
return 0; |
|
} |
|
|
|
/* Start the operations. */ |
|
|
|
if (lside) { |
|
if (lsame_(transa, "N")) { |
|
|
|
/* Form B := alpha*inv( A )*B. */ |
|
|
|
if (upper) { |
|
i__1 = *n; |
|
for (j = 1; j <= i__1; ++j) { |
|
if (*alpha != 1.) { |
|
i__2 = *m; |
|
for (i__ = 1; i__ <= i__2; ++i__) { |
|
b[i__ + j * b_dim1] = *alpha * b[i__ + j * b_dim1] |
|
; |
|
/* L30: */ |
|
} |
|
} |
|
for (k = *m; k >= 1; --k) { |
|
if (b[k + j * b_dim1] != 0.) { |
|
if (nounit) { |
|
b[k + j * b_dim1] /= a[k + k * a_dim1]; |
|
} |
|
i__2 = k - 1; |
|
for (i__ = 1; i__ <= i__2; ++i__) { |
|
b[i__ + j * b_dim1] -= b[k + j * b_dim1] * a[ |
|
i__ + k * a_dim1]; |
|
/* L40: */ |
|
} |
|
} |
|
/* L50: */ |
|
} |
|
/* L60: */ |
|
} |
|
} else { |
|
i__1 = *n; |
|
for (j = 1; j <= i__1; ++j) { |
|
if (*alpha != 1.) { |
|
i__2 = *m; |
|
for (i__ = 1; i__ <= i__2; ++i__) { |
|
b[i__ + j * b_dim1] = *alpha * b[i__ + j * b_dim1] |
|
; |
|
/* L70: */ |
|
} |
|
} |
|
i__2 = *m; |
|
for (k = 1; k <= i__2; ++k) { |
|
if (b[k + j * b_dim1] != 0.) { |
|
if (nounit) { |
|
b[k + j * b_dim1] /= a[k + k * a_dim1]; |
|
} |
|
i__3 = *m; |
|
for (i__ = k + 1; i__ <= i__3; ++i__) { |
|
b[i__ + j * b_dim1] -= b[k + j * b_dim1] * a[ |
|
i__ + k * a_dim1]; |
|
/* L80: */ |
|
} |
|
} |
|
/* L90: */ |
|
} |
|
/* L100: */ |
|
} |
|
} |
|
} else { |
|
|
|
/* Form B := alpha*inv( A' )*B. */ |
|
|
|
if (upper) { |
|
i__1 = *n; |
|
for (j = 1; j <= i__1; ++j) { |
|
i__2 = *m; |
|
for (i__ = 1; i__ <= i__2; ++i__) { |
|
temp = *alpha * b[i__ + j * b_dim1]; |
|
i__3 = i__ - 1; |
|
for (k = 1; k <= i__3; ++k) { |
|
temp -= a[k + i__ * a_dim1] * b[k + j * b_dim1]; |
|
/* L110: */ |
|
} |
|
if (nounit) { |
|
temp /= a[i__ + i__ * a_dim1]; |
|
} |
|
b[i__ + j * b_dim1] = temp; |
|
/* L120: */ |
|
} |
|
/* L130: */ |
|
} |
|
} else { |
|
i__1 = *n; |
|
for (j = 1; j <= i__1; ++j) { |
|
for (i__ = *m; i__ >= 1; --i__) { |
|
temp = *alpha * b[i__ + j * b_dim1]; |
|
i__2 = *m; |
|
for (k = i__ + 1; k <= i__2; ++k) { |
|
temp -= a[k + i__ * a_dim1] * b[k + j * b_dim1]; |
|
/* L140: */ |
|
} |
|
if (nounit) { |
|
temp /= a[i__ + i__ * a_dim1]; |
|
} |
|
b[i__ + j * b_dim1] = temp; |
|
/* L150: */ |
|
} |
|
/* L160: */ |
|
} |
|
} |
|
} |
|
} else { |
|
if (lsame_(transa, "N")) { |
|
|
|
/* Form B := alpha*B*inv( A ). */ |
|
|
|
if (upper) { |
|
i__1 = *n; |
|
for (j = 1; j <= i__1; ++j) { |
|
if (*alpha != 1.) { |
|
i__2 = *m; |
|
for (i__ = 1; i__ <= i__2; ++i__) { |
|
b[i__ + j * b_dim1] = *alpha * b[i__ + j * b_dim1] |
|
; |
|
/* L170: */ |
|
} |
|
} |
|
i__2 = j - 1; |
|
for (k = 1; k <= i__2; ++k) { |
|
if (a[k + j * a_dim1] != 0.) { |
|
i__3 = *m; |
|
for (i__ = 1; i__ <= i__3; ++i__) { |
|
b[i__ + j * b_dim1] -= a[k + j * a_dim1] * b[ |
|
i__ + k * b_dim1]; |
|
/* L180: */ |
|
} |
|
} |
|
/* L190: */ |
|
} |
|
if (nounit) { |
|
temp = 1. / a[j + j * a_dim1]; |
|
i__2 = *m; |
|
for (i__ = 1; i__ <= i__2; ++i__) { |
|
b[i__ + j * b_dim1] = temp * b[i__ + j * b_dim1]; |
|
/* L200: */ |
|
} |
|
} |
|
/* L210: */ |
|
} |
|
} else { |
|
for (j = *n; j >= 1; --j) { |
|
if (*alpha != 1.) { |
|
i__1 = *m; |
|
for (i__ = 1; i__ <= i__1; ++i__) { |
|
b[i__ + j * b_dim1] = *alpha * b[i__ + j * b_dim1] |
|
; |
|
/* L220: */ |
|
} |
|
} |
|
i__1 = *n; |
|
for (k = j + 1; k <= i__1; ++k) { |
|
if (a[k + j * a_dim1] != 0.) { |
|
i__2 = *m; |
|
for (i__ = 1; i__ <= i__2; ++i__) { |
|
b[i__ + j * b_dim1] -= a[k + j * a_dim1] * b[ |
|
i__ + k * b_dim1]; |
|
/* L230: */ |
|
} |
|
} |
|
/* L240: */ |
|
} |
|
if (nounit) { |
|
temp = 1. / a[j + j * a_dim1]; |
|
i__1 = *m; |
|
for (i__ = 1; i__ <= i__1; ++i__) { |
|
b[i__ + j * b_dim1] = temp * b[i__ + j * b_dim1]; |
|
/* L250: */ |
|
} |
|
} |
|
/* L260: */ |
|
} |
|
} |
|
} else { |
|
|
|
/* Form B := alpha*B*inv( A' ). */ |
|
|
|
if (upper) { |
|
for (k = *n; k >= 1; --k) { |
|
if (nounit) { |
|
temp = 1. / a[k + k * a_dim1]; |
|
i__1 = *m; |
|
for (i__ = 1; i__ <= i__1; ++i__) { |
|
b[i__ + k * b_dim1] = temp * b[i__ + k * b_dim1]; |
|
/* L270: */ |
|
} |
|
} |
|
i__1 = k - 1; |
|
for (j = 1; j <= i__1; ++j) { |
|
if (a[j + k * a_dim1] != 0.) { |
|
temp = a[j + k * a_dim1]; |
|
i__2 = *m; |
|
for (i__ = 1; i__ <= i__2; ++i__) { |
|
b[i__ + j * b_dim1] -= temp * b[i__ + k * |
|
b_dim1]; |
|
/* L280: */ |
|
} |
|
} |
|
/* L290: */ |
|
} |
|
if (*alpha != 1.) { |
|
i__1 = *m; |
|
for (i__ = 1; i__ <= i__1; ++i__) { |
|
b[i__ + k * b_dim1] = *alpha * b[i__ + k * b_dim1] |
|
; |
|
/* L300: */ |
|
} |
|
} |
|
/* L310: */ |
|
} |
|
} else { |
|
i__1 = *n; |
|
for (k = 1; k <= i__1; ++k) { |
|
if (nounit) { |
|
temp = 1. / a[k + k * a_dim1]; |
|
i__2 = *m; |
|
for (i__ = 1; i__ <= i__2; ++i__) { |
|
b[i__ + k * b_dim1] = temp * b[i__ + k * b_dim1]; |
|
/* L320: */ |
|
} |
|
} |
|
i__2 = *n; |
|
for (j = k + 1; j <= i__2; ++j) { |
|
if (a[j + k * a_dim1] != 0.) { |
|
temp = a[j + k * a_dim1]; |
|
i__3 = *m; |
|
for (i__ = 1; i__ <= i__3; ++i__) { |
|
b[i__ + j * b_dim1] -= temp * b[i__ + k * |
|
b_dim1]; |
|
/* L330: */ |
|
} |
|
} |
|
/* L340: */ |
|
} |
|
if (*alpha != 1.) { |
|
i__2 = *m; |
|
for (i__ = 1; i__ <= i__2; ++i__) { |
|
b[i__ + k * b_dim1] = *alpha * b[i__ + k * b_dim1] |
|
; |
|
/* L350: */ |
|
} |
|
} |
|
/* L360: */ |
|
} |
|
} |
|
} |
|
} |
|
|
|
return 0; |
|
|
|
/* End of DTRSM . */ |
|
|
|
} /* dtrsm_ */
|
|
|