mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
354 lines
8.5 KiB
354 lines
8.5 KiB
/* dlascl.f -- translated by f2c (version 20061008). |
|
You must link the resulting object file with libf2c: |
|
on Microsoft Windows system, link with libf2c.lib; |
|
on Linux or Unix systems, link with .../path/to/libf2c.a -lm |
|
or, if you install libf2c.a in a standard place, with -lf2c -lm |
|
-- in that order, at the end of the command line, as in |
|
cc *.o -lf2c -lm |
|
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., |
|
|
|
http://www.netlib.org/f2c/libf2c.zip |
|
*/ |
|
|
|
#include "clapack.h" |
|
|
|
|
|
/* Subroutine */ int dlascl_(char *type__, integer *kl, integer *ku, |
|
doublereal *cfrom, doublereal *cto, integer *m, integer *n, |
|
doublereal *a, integer *lda, integer *info) |
|
{ |
|
/* System generated locals */ |
|
integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5; |
|
|
|
/* Local variables */ |
|
integer i__, j, k1, k2, k3, k4; |
|
doublereal mul, cto1; |
|
logical done; |
|
doublereal ctoc; |
|
extern logical lsame_(char *, char *); |
|
integer itype; |
|
doublereal cfrom1; |
|
extern doublereal dlamch_(char *); |
|
doublereal cfromc; |
|
extern logical disnan_(doublereal *); |
|
extern /* Subroutine */ int xerbla_(char *, integer *); |
|
doublereal bignum, smlnum; |
|
|
|
|
|
/* -- LAPACK auxiliary routine (version 3.2) -- */ |
|
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ |
|
/* November 2006 */ |
|
|
|
/* .. Scalar Arguments .. */ |
|
/* .. */ |
|
/* .. Array Arguments .. */ |
|
/* .. */ |
|
|
|
/* Purpose */ |
|
/* ======= */ |
|
|
|
/* DLASCL multiplies the M by N real matrix A by the real scalar */ |
|
/* CTO/CFROM. This is done without over/underflow as long as the final */ |
|
/* result CTO*A(I,J)/CFROM does not over/underflow. TYPE specifies that */ |
|
/* A may be full, upper triangular, lower triangular, upper Hessenberg, */ |
|
/* or banded. */ |
|
|
|
/* Arguments */ |
|
/* ========= */ |
|
|
|
/* TYPE (input) CHARACTER*1 */ |
|
/* TYPE indices the storage type of the input matrix. */ |
|
/* = 'G': A is a full matrix. */ |
|
/* = 'L': A is a lower triangular matrix. */ |
|
/* = 'U': A is an upper triangular matrix. */ |
|
/* = 'H': A is an upper Hessenberg matrix. */ |
|
/* = 'B': A is a symmetric band matrix with lower bandwidth KL */ |
|
/* and upper bandwidth KU and with the only the lower */ |
|
/* half stored. */ |
|
/* = 'Q': A is a symmetric band matrix with lower bandwidth KL */ |
|
/* and upper bandwidth KU and with the only the upper */ |
|
/* half stored. */ |
|
/* = 'Z': A is a band matrix with lower bandwidth KL and upper */ |
|
/* bandwidth KU. */ |
|
|
|
/* KL (input) INTEGER */ |
|
/* The lower bandwidth of A. Referenced only if TYPE = 'B', */ |
|
/* 'Q' or 'Z'. */ |
|
|
|
/* KU (input) INTEGER */ |
|
/* The upper bandwidth of A. Referenced only if TYPE = 'B', */ |
|
/* 'Q' or 'Z'. */ |
|
|
|
/* CFROM (input) DOUBLE PRECISION */ |
|
/* CTO (input) DOUBLE PRECISION */ |
|
/* The matrix A is multiplied by CTO/CFROM. A(I,J) is computed */ |
|
/* without over/underflow if the final result CTO*A(I,J)/CFROM */ |
|
/* can be represented without over/underflow. CFROM must be */ |
|
/* nonzero. */ |
|
|
|
/* M (input) INTEGER */ |
|
/* The number of rows of the matrix A. M >= 0. */ |
|
|
|
/* N (input) INTEGER */ |
|
/* The number of columns of the matrix A. N >= 0. */ |
|
|
|
/* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) */ |
|
/* The matrix to be multiplied by CTO/CFROM. See TYPE for the */ |
|
/* storage type. */ |
|
|
|
/* LDA (input) INTEGER */ |
|
/* The leading dimension of the array A. LDA >= max(1,M). */ |
|
|
|
/* INFO (output) INTEGER */ |
|
/* 0 - successful exit */ |
|
/* <0 - if INFO = -i, the i-th argument had an illegal value. */ |
|
|
|
/* ===================================================================== */ |
|
|
|
/* .. Parameters .. */ |
|
/* .. */ |
|
/* .. Local Scalars .. */ |
|
/* .. */ |
|
/* .. External Functions .. */ |
|
/* .. */ |
|
/* .. Intrinsic Functions .. */ |
|
/* .. */ |
|
/* .. External Subroutines .. */ |
|
/* .. */ |
|
/* .. Executable Statements .. */ |
|
|
|
/* Test the input arguments */ |
|
|
|
/* Parameter adjustments */ |
|
a_dim1 = *lda; |
|
a_offset = 1 + a_dim1; |
|
a -= a_offset; |
|
|
|
/* Function Body */ |
|
*info = 0; |
|
|
|
if (lsame_(type__, "G")) { |
|
itype = 0; |
|
} else if (lsame_(type__, "L")) { |
|
itype = 1; |
|
} else if (lsame_(type__, "U")) { |
|
itype = 2; |
|
} else if (lsame_(type__, "H")) { |
|
itype = 3; |
|
} else if (lsame_(type__, "B")) { |
|
itype = 4; |
|
} else if (lsame_(type__, "Q")) { |
|
itype = 5; |
|
} else if (lsame_(type__, "Z")) { |
|
itype = 6; |
|
} else { |
|
itype = -1; |
|
} |
|
|
|
if (itype == -1) { |
|
*info = -1; |
|
} else if (*cfrom == 0. || disnan_(cfrom)) { |
|
*info = -4; |
|
} else if (disnan_(cto)) { |
|
*info = -5; |
|
} else if (*m < 0) { |
|
*info = -6; |
|
} else if (*n < 0 || itype == 4 && *n != *m || itype == 5 && *n != *m) { |
|
*info = -7; |
|
} else if (itype <= 3 && *lda < max(1,*m)) { |
|
*info = -9; |
|
} else if (itype >= 4) { |
|
/* Computing MAX */ |
|
i__1 = *m - 1; |
|
if (*kl < 0 || *kl > max(i__1,0)) { |
|
*info = -2; |
|
} else /* if(complicated condition) */ { |
|
/* Computing MAX */ |
|
i__1 = *n - 1; |
|
if (*ku < 0 || *ku > max(i__1,0) || (itype == 4 || itype == 5) && |
|
*kl != *ku) { |
|
*info = -3; |
|
} else if (itype == 4 && *lda < *kl + 1 || itype == 5 && *lda < * |
|
ku + 1 || itype == 6 && *lda < (*kl << 1) + *ku + 1) { |
|
*info = -9; |
|
} |
|
} |
|
} |
|
|
|
if (*info != 0) { |
|
i__1 = -(*info); |
|
xerbla_("DLASCL", &i__1); |
|
return 0; |
|
} |
|
|
|
/* Quick return if possible */ |
|
|
|
if (*n == 0 || *m == 0) { |
|
return 0; |
|
} |
|
|
|
/* Get machine parameters */ |
|
|
|
smlnum = dlamch_("S"); |
|
bignum = 1. / smlnum; |
|
|
|
cfromc = *cfrom; |
|
ctoc = *cto; |
|
|
|
L10: |
|
cfrom1 = cfromc * smlnum; |
|
if (cfrom1 == cfromc) { |
|
/* CFROMC is an inf. Multiply by a correctly signed zero for */ |
|
/* finite CTOC, or a NaN if CTOC is infinite. */ |
|
mul = ctoc / cfromc; |
|
done = TRUE_; |
|
cto1 = ctoc; |
|
} else { |
|
cto1 = ctoc / bignum; |
|
if (cto1 == ctoc) { |
|
/* CTOC is either 0 or an inf. In both cases, CTOC itself */ |
|
/* serves as the correct multiplication factor. */ |
|
mul = ctoc; |
|
done = TRUE_; |
|
cfromc = 1.; |
|
} else if (abs(cfrom1) > abs(ctoc) && ctoc != 0.) { |
|
mul = smlnum; |
|
done = FALSE_; |
|
cfromc = cfrom1; |
|
} else if (abs(cto1) > abs(cfromc)) { |
|
mul = bignum; |
|
done = FALSE_; |
|
ctoc = cto1; |
|
} else { |
|
mul = ctoc / cfromc; |
|
done = TRUE_; |
|
} |
|
} |
|
|
|
if (itype == 0) { |
|
|
|
/* Full matrix */ |
|
|
|
i__1 = *n; |
|
for (j = 1; j <= i__1; ++j) { |
|
i__2 = *m; |
|
for (i__ = 1; i__ <= i__2; ++i__) { |
|
a[i__ + j * a_dim1] *= mul; |
|
/* L20: */ |
|
} |
|
/* L30: */ |
|
} |
|
|
|
} else if (itype == 1) { |
|
|
|
/* Lower triangular matrix */ |
|
|
|
i__1 = *n; |
|
for (j = 1; j <= i__1; ++j) { |
|
i__2 = *m; |
|
for (i__ = j; i__ <= i__2; ++i__) { |
|
a[i__ + j * a_dim1] *= mul; |
|
/* L40: */ |
|
} |
|
/* L50: */ |
|
} |
|
|
|
} else if (itype == 2) { |
|
|
|
/* Upper triangular matrix */ |
|
|
|
i__1 = *n; |
|
for (j = 1; j <= i__1; ++j) { |
|
i__2 = min(j,*m); |
|
for (i__ = 1; i__ <= i__2; ++i__) { |
|
a[i__ + j * a_dim1] *= mul; |
|
/* L60: */ |
|
} |
|
/* L70: */ |
|
} |
|
|
|
} else if (itype == 3) { |
|
|
|
/* Upper Hessenberg matrix */ |
|
|
|
i__1 = *n; |
|
for (j = 1; j <= i__1; ++j) { |
|
/* Computing MIN */ |
|
i__3 = j + 1; |
|
i__2 = min(i__3,*m); |
|
for (i__ = 1; i__ <= i__2; ++i__) { |
|
a[i__ + j * a_dim1] *= mul; |
|
/* L80: */ |
|
} |
|
/* L90: */ |
|
} |
|
|
|
} else if (itype == 4) { |
|
|
|
/* Lower half of a symmetric band matrix */ |
|
|
|
k3 = *kl + 1; |
|
k4 = *n + 1; |
|
i__1 = *n; |
|
for (j = 1; j <= i__1; ++j) { |
|
/* Computing MIN */ |
|
i__3 = k3, i__4 = k4 - j; |
|
i__2 = min(i__3,i__4); |
|
for (i__ = 1; i__ <= i__2; ++i__) { |
|
a[i__ + j * a_dim1] *= mul; |
|
/* L100: */ |
|
} |
|
/* L110: */ |
|
} |
|
|
|
} else if (itype == 5) { |
|
|
|
/* Upper half of a symmetric band matrix */ |
|
|
|
k1 = *ku + 2; |
|
k3 = *ku + 1; |
|
i__1 = *n; |
|
for (j = 1; j <= i__1; ++j) { |
|
/* Computing MAX */ |
|
i__2 = k1 - j; |
|
i__3 = k3; |
|
for (i__ = max(i__2,1); i__ <= i__3; ++i__) { |
|
a[i__ + j * a_dim1] *= mul; |
|
/* L120: */ |
|
} |
|
/* L130: */ |
|
} |
|
|
|
} else if (itype == 6) { |
|
|
|
/* Band matrix */ |
|
|
|
k1 = *kl + *ku + 2; |
|
k2 = *kl + 1; |
|
k3 = (*kl << 1) + *ku + 1; |
|
k4 = *kl + *ku + 1 + *m; |
|
i__1 = *n; |
|
for (j = 1; j <= i__1; ++j) { |
|
/* Computing MAX */ |
|
i__3 = k1 - j; |
|
/* Computing MIN */ |
|
i__4 = k3, i__5 = k4 - j; |
|
i__2 = min(i__4,i__5); |
|
for (i__ = max(i__3,k2); i__ <= i__2; ++i__) { |
|
a[i__ + j * a_dim1] *= mul; |
|
/* L140: */ |
|
} |
|
/* L150: */ |
|
} |
|
|
|
} |
|
|
|
if (! done) { |
|
goto L10; |
|
} |
|
|
|
return 0; |
|
|
|
/* End of DLASCL */ |
|
|
|
} /* dlascl_ */
|
|
|