mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
200 lines
6.1 KiB
200 lines
6.1 KiB
\ifCpp |
|
\section{Object Categorization} |
|
Some approaches based on local 2D features and used to object categorization |
|
are described in this section. |
|
|
|
\cvclass{BOWTrainer} |
|
Abstract base class for training ''bag of visual words'' vocabulary from a set of descriptors. |
|
See e.g. ''Visual Categorization with Bags of Keypoints'' of Gabriella Csurka, Christopher R. Dance, |
|
Lixin Fan, Jutta Willamowski, Cedric Bray, 2004. |
|
|
|
\begin{lstlisting} |
|
class BOWTrainer |
|
{ |
|
public: |
|
BOWTrainer(){} |
|
virtual ~BOWTrainer(){} |
|
|
|
void add( const Mat& descriptors ); |
|
const vector<Mat>& getDescriptors() const; |
|
int descripotorsCount() const; |
|
|
|
virtual void clear(); |
|
|
|
virtual Mat cluster() const = 0; |
|
virtual Mat cluster( const Mat& descriptors ) const = 0; |
|
|
|
protected: |
|
... |
|
}; |
|
\end{lstlisting} |
|
|
|
\cvCppFunc{BOWTrainer::add} |
|
Add descriptors to training set. The training set will be clustered using \texttt{cluster} |
|
method to construct vocabulary. |
|
|
|
\cvdefCpp{ |
|
void BOWTrainer::add( const Mat\& descriptors ); |
|
} |
|
|
|
\begin{description} |
|
\cvarg{descriptors}{Descriptors to add to training set. Each row of \texttt{descriptors} |
|
matrix is a one descriptor.} |
|
\end{description} |
|
|
|
\cvCppFunc{BOWTrainer::getDescriptors} |
|
Returns training set of descriptors. |
|
|
|
\cvdefCpp{ |
|
const vector<Mat>\& BOWTrainer::getDescriptors() const; |
|
} |
|
|
|
\cvCppFunc{BOWTrainer::descripotorsCount} |
|
Returns count of all descriptors stored in the training set. |
|
|
|
\cvdefCpp{ |
|
const vector<Mat>\& BOWTrainer::descripotorsCount() const; |
|
} |
|
|
|
\cvCppFunc{BOWTrainer::cluster} |
|
Cluster train descriptors. Vocabulary consists from cluster centers. So this method |
|
returns vocabulary. In first method variant the stored in object train descriptors will be |
|
clustered, in second variant -- input descriptors will be clustered. |
|
|
|
\cvdefCpp{ |
|
Mat BOWTrainer::cluster() const; |
|
} |
|
|
|
\cvdefCpp{ |
|
Mat BOWTrainer::cluster( const Mat\& descriptors ) const; |
|
} |
|
|
|
\begin{description} |
|
\cvarg{descriptors}{Descriptors to cluster. Each row of \texttt{descriptors} |
|
matrix is a one descriptor. Descriptors will not be added |
|
to the inner train descriptor set.} |
|
\end{description} |
|
|
|
\cvclass{BOWKMeansTrainer} |
|
\cvCppCross{kmeans} based class to train visual vocabulary using the ''bag of visual words'' approach. |
|
|
|
\begin{lstlisting} |
|
class BOWKMeansTrainer : public BOWTrainer |
|
{ |
|
public: |
|
BOWKMeansTrainer( int clusterCount, const TermCriteria& termcrit=TermCriteria(), |
|
int attempts=3, int flags=KMEANS_PP_CENTERS ); |
|
virtual ~BOWKMeansTrainer(){} |
|
|
|
// Returns trained vocabulary (i.e. cluster centers). |
|
virtual Mat cluster() const; |
|
virtual Mat cluster( const Mat& descriptors ) const; |
|
|
|
protected: |
|
... |
|
}; |
|
\end{lstlisting} |
|
To gain an understanding of constructor parameters see \cvCppCross{kmeans} function |
|
arguments. |
|
|
|
|
|
\cvclass{BOWImgDescriptorExtractor} |
|
Class to compute image descriptor using ''bad of visual words''. In few, |
|
such computing consists from the following steps: |
|
1. Compute descriptors for given image and it's keypoints set, \\ |
|
2. Find nearest visual words from vocabulary for each keypoint descriptor, \\ |
|
3. Image descriptor is a normalized histogram of vocabulary words encountered in the image. I.e. |
|
\texttt{i}-bin of the histogram is a frequency of \texttt{i}-word of vocabulary in the given image. |
|
|
|
\begin{lstlisting} |
|
class BOWImgDescriptorExtractor |
|
{ |
|
public: |
|
BOWImgDescriptorExtractor( const Ptr<DescriptorExtractor>& dextractor, |
|
const Ptr<DescriptorMatcher>& dmatcher ); |
|
virtual ~BOWImgDescriptorExtractor(){} |
|
|
|
void setVocabulary( const Mat& vocabulary ); |
|
const Mat& getVocabulary() const; |
|
void compute( const Mat& image, vector<KeyPoint>& keypoints, |
|
Mat& imgDescriptor, |
|
vector<vector<int> >* pointIdxsOfClusters=0, |
|
Mat* descriptors=0 ); |
|
int descriptorSize() const; |
|
int descriptorType() const; |
|
|
|
protected: |
|
... |
|
}; |
|
\end{lstlisting} |
|
|
|
\cvCppFunc{BOWImgDescriptorExtractor::BOWImgDescriptorExtractor} |
|
Constructor. |
|
|
|
\cvdefCpp{ |
|
BOWImgDescriptorExtractor::BOWImgDescriptorExtractor( |
|
\par const Ptr<DescriptorExtractor>\& dextractor, |
|
\par const Ptr<DescriptorMatcher>\& dmatcher ); |
|
} |
|
|
|
\begin{description} |
|
\cvarg{dextractor}{Descriptor extractor that will be used to compute descriptors |
|
for input image and it's keypoints.} |
|
\cvarg{dmatcher}{Descriptor matcher that will be used to find nearest word of trained vocabulary to |
|
each keupoints descriptor of the image.} |
|
\end{description} |
|
|
|
\cvCppFunc{BOWImgDescriptorExtractor::setVocabulary} |
|
Method to set visual vocabulary. |
|
|
|
\cvdefCpp{ |
|
void BOWImgDescriptorExtractor::setVocabulary( const Mat\& vocabulary ); |
|
} |
|
|
|
\begin{description} |
|
\cvarg{vocabulary}{Vocabulary (can be trained using inheritor of \cvCppCross{BOWTrainer}). |
|
Each row of vocabulary is a one visual word (cluster center).} |
|
\end{description} |
|
|
|
\cvCppFunc{BOWImgDescriptorExtractor::getVocabulary} |
|
Returns set vocabulary. |
|
|
|
\cvdefCpp{ |
|
const Mat\& BOWImgDescriptorExtractor::getVocabulary() const; |
|
} |
|
|
|
\cvCppFunc{BOWImgDescriptorExtractor::compute} |
|
Compute image descriptor using set visual vocabulary. |
|
|
|
\cvdefCpp{ |
|
void BOWImgDescriptorExtractor::compute( const Mat\& image, |
|
\par vector<KeyPoint>\& keypoints, Mat\& imgDescriptor, |
|
\par vector<vector<int> >* pointIdxsOfClusters=0, |
|
\par Mat* descriptors=0 ); |
|
} |
|
|
|
\begin{description} |
|
\cvarg{image}{The image. Image descriptor will be computed for this.} |
|
\cvarg{keypoints}{Keypoints detected in the input image.} |
|
\cvarg{imgDescriptor}{This is output, i.e. computed image descriptor.} |
|
\cvarg{pointIdxsOfClusters}{Indices of keypoints which belong to the cluster, i.e. |
|
\texttt{pointIdxsOfClusters[i]} is keypoint indices which belong |
|
to the \texttt{i-}cluster (word of vocabulary) (returned if it is not 0.)} |
|
\cvarg{descriptors}{Descriptors of the image keypoints (returned if it is not 0.)} |
|
\end{description} |
|
|
|
\cvCppFunc{BOWImgDescriptorExtractor::descriptorSize} |
|
Returns image discriptor size, if vocabulary was set, and 0 otherwise. |
|
|
|
\cvdefCpp{ |
|
int BOWImgDescriptorExtractor::descriptorSize() const; |
|
} |
|
|
|
\cvCppFunc{BOWImgDescriptorExtractor::descriptorType} |
|
Returns image descriptor type. |
|
|
|
\cvdefCpp{ |
|
int BOWImgDescriptorExtractor::descriptorType() const; |
|
} |
|
|
|
\fi
|
|
|