mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
752 lines
28 KiB
752 lines
28 KiB
\section{Utility and System Functions and Macros} |
|
|
|
\ifCPy |
|
\subsection{Error Handling}\label{Error handling} |
|
|
|
\ifPy |
|
Errors in argument type cause a \texttt{TypeError} exception. |
|
OpenCV errors cause an \texttt{cv.error} exception. |
|
|
|
For example a function argument that is the wrong type produces a \texttt{TypeError}: |
|
|
|
\begin{lstlisting} |
|
>>> import cv |
|
>>> cv.LoadImage(4) |
|
Traceback (most recent call last): |
|
File "<stdin>", line 1, in <module> |
|
TypeError: argument 1 must be string, not int |
|
\end{lstlisting} |
|
|
|
A function with the |
|
|
|
\begin{lstlisting} |
|
>>> cv.CreateMat(-1, -1, cv.CV_8UC1) |
|
Traceback (most recent call last): |
|
File "<stdin>", line 1, in <module> |
|
error: Non-positive width or height |
|
\end{lstlisting} |
|
|
|
\fi |
|
|
|
\ifC % { |
|
Error handling in OpenCV is similar to IPL (Image Processing |
|
Library). In the case of an error, functions do not return the error |
|
code. Instead, they raise an error using \texttt{CV\_ERROR} |
|
macro that calls \cvCPyCross{Error} that, in its turn, sets the error |
|
status with \cvCPyCross{SetErrStatus} and calls a standard or user-defined |
|
error handler (that can display a message box, write to log, etc., see |
|
\cvCPyCross{RedirectError}). There is a global variable, one per each program |
|
thread, that contains current error status (an integer value). The status |
|
can be retrieved with the \cvCPyCross{GetErrStatus} function. |
|
|
|
There are three modes of error handling (see \cvCPyCross{SetErrMode} and |
|
\cvCPyCross{GetErrMode}): |
|
|
|
\begin{itemize} |
|
\item \textbf{Leaf}. The program is terminated after the error handler is |
|
called. This is the default value. It is useful for debugging, as the |
|
error is signalled immediately after it occurs. However, for production |
|
systems, other two methods may be preferable as they provide more |
|
control. |
|
\item \textbf{Parent}. The program is not terminated, but the error handler |
|
is called. The stack is unwound (it is done w/o using a C++ exception |
|
mechanism). The user may check error code after calling the \texttt{CxCore} function with |
|
\cvCPyCross{GetErrStatus} and react. |
|
\item \textbf{Silent}. Similar to \texttt{Parent} mode, but no error handler |
|
is called. |
|
\end{itemize} |
|
|
|
Actually, the semantics of the \texttt{Leaf} and \texttt{Parent} modes are implemented by error handlers and the above description is true for them. \cvCPyCross{GuiBoxReport} behaves slightly differently, and some custom error handlers may implement quite different semantics. |
|
|
|
Macros for raising an error, checking for errors, etc. |
|
\begin{lstlisting} |
|
|
|
/* special macros for enclosing processing statements within a function and separating |
|
them from prologue (resource initialization) and epilogue (guaranteed resource release) */ |
|
#define __BEGIN__ { |
|
#define __END__ goto exit; exit: ; } |
|
/* proceeds to "resource release" stage */ |
|
#define EXIT goto exit |
|
|
|
/* Declares locally the function name for CV_ERROR() use */ |
|
#define CV_FUNCNAME( Name ) \ |
|
static char cvFuncName[] = Name |
|
|
|
/* Raises an error within the current context */ |
|
#define CV_ERROR( Code, Msg ) \ |
|
{ \ |
|
cvError( (Code), cvFuncName, Msg, __FILE__, __LINE__ ); \ |
|
EXIT; \ |
|
} |
|
|
|
/* Checks status after calling CXCORE function */ |
|
#define CV_CHECK() \ |
|
{ \ |
|
if( cvGetErrStatus() < 0 ) \ |
|
CV_ERROR( CV_StsBackTrace, "Inner function failed." ); \ |
|
} |
|
|
|
/* Provies shorthand for CXCORE function call and CV_CHECK() */ |
|
#define CV_CALL( Statement ) \ |
|
{ \ |
|
Statement; \ |
|
CV_CHECK(); \ |
|
} |
|
|
|
/* Checks some condition in both debug and release configurations */ |
|
#define CV_ASSERT( Condition ) \ |
|
{ \ |
|
if( !(Condition) ) \ |
|
CV_ERROR( CV_StsInternal, "Assertion: " #Condition " failed" ); \ |
|
} |
|
|
|
/* these macros are similar to their CV_... counterparts, but they |
|
do not need exit label nor cvFuncName to be defined */ |
|
#define OPENCV_ERROR(status,func_name,err_msg) ... |
|
#define OPENCV_ERRCHK(func_name,err_msg) ... |
|
#define OPENCV_ASSERT(condition,func_name,err_msg) ... |
|
#define OPENCV_CALL(statement) ... |
|
|
|
\end{lstlisting} |
|
|
|
Instead of a discussion, below is a documented example of a typical CXCORE function and an example of the function use. |
|
|
|
\subsection{Example: Use of Error Handling Macros} |
|
\begin{lstlisting} |
|
|
|
#include "cxcore.h" |
|
#include <stdio.h> |
|
|
|
void cvResizeDCT( CvMat* input_array, CvMat* output_array ) |
|
{ |
|
CvMat* temp_array = 0; // declare pointer that should be released anyway. |
|
|
|
CV_FUNCNAME( "cvResizeDCT" ); // declare cvFuncName |
|
|
|
__BEGIN__; // start processing. There may be some declarations just after |
|
// this macro, but they could not be accessed from the epilogue. |
|
|
|
if( !CV_IS_MAT(input_array) || !CV_IS_MAT(output_array) ) |
|
// use CV_ERROR() to raise an error |
|
CV_ERROR( CV_StsBadArg, |
|
"input_array or output_array are not valid matrices" ); |
|
|
|
// some restrictions that are going to be removed later, may be checked |
|
// with CV_ASSERT() |
|
CV_ASSERT( input_array->rows == 1 && output_array->rows == 1 ); |
|
|
|
// use CV_CALL for safe function call |
|
CV_CALL( temp_array = cvCreateMat( input_array->rows, |
|
MAX(input_array->cols, |
|
output_array->cols), |
|
input_array->type )); |
|
|
|
if( output_array->cols > input_array->cols ) |
|
CV_CALL( cvZero( temp_array )); |
|
|
|
temp_array->cols = input_array->cols; |
|
CV_CALL( cvDCT( input_array, temp_array, CV_DXT_FORWARD )); |
|
temp_array->cols = output_array->cols; |
|
CV_CALL( cvDCT( temp_array, output_array, CV_DXT_INVERSE )); |
|
CV_CALL( cvScale( output_array, |
|
output_array, |
|
1./sqrt((double)input_array->cols*output_array->cols), 0 )); |
|
|
|
__END__; // finish processing. Epilogue follows after the macro. |
|
|
|
// release temp_array. If temp_array has not been allocated |
|
// before an error occured, cvReleaseMat |
|
// takes care of it and does nothing in this case. |
|
cvReleaseMat( &temp_array ); |
|
} |
|
|
|
int main( int argc, char** argv ) |
|
{ |
|
CvMat* src = cvCreateMat( 1, 512, CV_32F ); |
|
#if 1 /* no errors */ |
|
CvMat* dst = cvCreateMat( 1, 256, CV_32F ); |
|
#else |
|
CvMat* dst = 0; /* test error processing mechanism */ |
|
#endif |
|
cvSet( src, cvRealScalar(1.), 0 ); |
|
#if 0 /* change 0 to 1 to suppress error handler invocation */ |
|
cvSetErrMode( CV_ErrModeSilent ); |
|
#endif |
|
cvResizeDCT( src, dst ); // if some error occurs, the message |
|
// box will popup, or a message will be |
|
// written to log, or some user-defined |
|
// processing will be done |
|
if( cvGetErrStatus() < 0 ) |
|
printf("Some error occured" ); |
|
else |
|
printf("Everything is OK" ); |
|
return 0; |
|
} |
|
\end{lstlisting} |
|
|
|
\cvCPyFunc{GetErrStatus} |
|
Returns the current error status. |
|
|
|
\cvdefC{int cvGetErrStatus( void );} |
|
|
|
The function returns the current error status - |
|
the value set with the last \cvCPyCross{SetErrStatus} call. Note that in |
|
\texttt{Leaf} mode, the program terminates immediately after an |
|
error occurs, so to always gain control after the function call, |
|
one should call \cvCPyCross{SetErrMode} and set the \texttt{Parent} |
|
or \texttt{Silent} error mode. |
|
|
|
\cvCPyFunc{SetErrStatus} |
|
Sets the error status. |
|
|
|
\cvdefC{void cvSetErrStatus( int status );} |
|
|
|
\begin{description} |
|
\cvarg{status}{The error status} |
|
\end{description} |
|
|
|
The function sets the error status to the specified value. Mostly, the function is used to reset the error status (set to it \texttt{CV\_StsOk}) to recover after an error. In other cases it is more natural to call \cvCPyCross{Error} or \texttt{CV\_ERROR}. |
|
|
|
\cvCPyFunc{GetErrMode} |
|
Returns the current error mode. |
|
|
|
\cvdefC{int cvGetErrMode(void);} |
|
|
|
The function returns the current error mode - the value set with the last \cvCPyCross{SetErrMode} call. |
|
|
|
\cvCPyFunc{SetErrMode} |
|
Sets the error mode. |
|
|
|
\begin{lstlisting} |
|
#define CV_ErrModeLeaf 0 |
|
#define CV_ErrModeParent 1 |
|
#define CV_ErrModeSilent 2 |
|
\end{lstlisting} |
|
|
|
\cvdefC{int cvSetErrMode( int mode );} |
|
|
|
\begin{description} |
|
\cvarg{mode}{The error mode} |
|
\end{description} |
|
|
|
The function sets the specified error mode. For descriptions of different error modes, see the beginning of the error section. |
|
|
|
\cvCPyFunc{Error} |
|
Raises an error. |
|
|
|
\cvdefC{int cvError( \par int status,\par const char* func\_name,\par const char* err\_msg,\par const char* filename,\par int line );} |
|
|
|
\begin{description} |
|
\cvarg{status}{The error status} |
|
\cvarg{func\_name}{Name of the function where the error occured} |
|
\cvarg{err\_msg}{Additional information/diagnostics about the error} |
|
\cvarg{filename}{Name of the file where the error occured} |
|
\cvarg{line}{Line number, where the error occured} |
|
\end{description} |
|
|
|
The function sets the error status to the specified value (via \cvCPyCross{SetErrStatus}) and, if the error mode is not \texttt{Silent}, calls the error handler. |
|
|
|
\cvCPyFunc{ErrorStr} |
|
Returns textual description of an error status code. |
|
|
|
\cvdefC{const char* cvErrorStr( int status );} |
|
|
|
\begin{description} |
|
\cvarg{status}{The error status} |
|
\end{description} |
|
|
|
The function returns the textual description for |
|
the specified error status code. In the case of unknown status, the function |
|
returns a NULL pointer. |
|
|
|
\cvCPyFunc{RedirectError} |
|
Sets a new error handler. |
|
|
|
|
|
\cvdefC{CvErrorCallback cvRedirectError( \par CvErrorCallback error\_handler,\par void* userdata=NULL,\par void** prevUserdata=NULL );} |
|
|
|
\begin{description} |
|
\cvarg{error\_handler}{The new error\_handler} |
|
\cvarg{userdata}{Arbitrary pointer that is transparently passed to the error handler} |
|
\cvarg{prevUserdata}{Pointer to the previously assigned user data pointer} |
|
\end{description} |
|
|
|
\begin{lstlisting} |
|
typedef int (CV_CDECL *CvErrorCallback)( int status, const char* func_name, |
|
const char* err_msg, const char* file_name, int line ); |
|
\end{lstlisting} |
|
|
|
The function sets a new error handler that |
|
can be one of the standard handlers or a custom handler |
|
that has a specific interface. The handler takes the same parameters |
|
as the \cvCPyCross{Error} function. If the handler returns a non-zero value, the |
|
program is terminated; otherwise, it continues. The error handler may |
|
check the current error mode with \cvCPyCross{GetErrMode} to make a decision. |
|
|
|
|
|
\cvfunc{cvNulDevReport cvStdErrReport cvGuiBoxReport} |
|
\label{cvNulDevReport} |
|
\label{cvStdErrReport} |
|
\label{cvGuiBoxReport} |
|
|
|
Provide standard error handling. |
|
|
|
\cvdefC{ |
|
int cvNulDevReport( int status, const char* func\_name, |
|
const char* err\_msg, const char* file\_name, |
|
int line, void* userdata ); \newline |
|
|
|
int cvStdErrReport( int status, const char* func\_name, |
|
const char* err\_msg, const char* file\_name, |
|
int line, void* userdata ); \newline |
|
|
|
int cvGuiBoxReport( int status, const char* func\_name, |
|
const char* err\_msg, const char* file\_name, |
|
int line, void* userdata ); |
|
} |
|
|
|
\begin{description} |
|
\cvarg{status}{The error status} |
|
\cvarg{func\_name}{Name of the function where the error occured} |
|
\cvarg{err\_msg}{Additional information/diagnostics about the error} |
|
\cvarg{filename}{Name of the file where the error occured} |
|
\cvarg{line}{Line number, where the error occured} |
|
\cvarg{userdata}{Pointer to the user data. Ignored by the standard handlers} |
|
\end{description} |
|
|
|
The functions \texttt{cvNullDevReport}, \texttt{cvStdErrReport}, |
|
and \texttt{cvGuiBoxReport} provide standard error |
|
handling. \texttt{cvGuiBoxReport} is the default error |
|
handler on Win32 systems, \texttt{cvStdErrReport} is the default on other |
|
systems. \texttt{cvGuiBoxReport} pops up a message box with the error |
|
description and suggest a few options. Below is an example message box |
|
that may be recieved with the sample code above, if one introduces an |
|
error as described in the sample. |
|
|
|
\textbf{Error Message Box} |
|
\includegraphics[width=0.5\textwidth]{pics/errmsg.png} |
|
|
|
If the error handler is set to \texttt{cvStdErrReport}, the above message will be printed to standard error output and the program will be terminated or continued, depending on the current error mode. |
|
|
|
\textbf{Error Message printed to Standard Error Output (in \texttt{Leaf} mode)} |
|
|
|
\begin{lstlisting} |
|
OpenCV ERROR: Bad argument (input_array or output_array are not valid matrices) |
|
in function cvResizeDCT, D:\User\VP\Projects\avl\_proba\a.cpp(75) |
|
Terminating the application... |
|
\end{lstlisting} |
|
|
|
\cvCPyFunc{Alloc} |
|
Allocates a memory buffer. |
|
|
|
\cvdefC{void* cvAlloc( size\_t size );} |
|
|
|
\begin{description} |
|
\cvarg{size}{Buffer size in bytes} |
|
\end{description} |
|
|
|
The function allocates \texttt{size} bytes and returns |
|
a pointer to the allocated buffer. In the case of an error the function reports an |
|
error and returns a NULL pointer. By default, \texttt{cvAlloc} calls |
|
\texttt{icvAlloc} which |
|
itself calls \texttt{malloc}. However it is possible to assign user-defined memory |
|
allocation/deallocation functions using the \cvCPyCross{SetMemoryManager} function. |
|
|
|
\cvCPyFunc{Free} |
|
Deallocates a memory buffer. |
|
|
|
\cvdefC{void cvFree( void** ptr );} |
|
|
|
\begin{description} |
|
\cvarg{ptr}{Double pointer to released buffer} |
|
\end{description} |
|
|
|
The function deallocates a memory buffer allocated by |
|
\cvCPyCross{Alloc}. It clears the pointer to buffer upon exit, which is why |
|
the double pointer is used. If the \texttt{*buffer} is already NULL, the function |
|
does nothing. |
|
|
|
\fi % } |
|
|
|
\cvCPyFunc{GetTickCount} |
|
Returns the number of ticks. |
|
|
|
\cvdefC{int64 cvGetTickCount( void );} |
|
\cvdefPy{GetTickCount() -> long} |
|
|
|
The function returns number of the ticks starting from some platform-dependent event (number of CPU ticks from the startup, number of milliseconds from 1970th year, etc.). The function is useful for accurate measurement of a function/user-code execution time. To convert the number of ticks to time units, use \cvCPyCross{GetTickFrequency}. |
|
|
|
\cvCPyFunc{GetTickFrequency} |
|
Returns the number of ticks per microsecond. |
|
|
|
\cvdefC{double cvGetTickFrequency( void );} |
|
\cvdefPy{GetTickFrequency() -> long} |
|
|
|
The function returns the number of ticks per microsecond. Thus, the quotient of \cvCPyCross{GetTickCount} and \cvCPyCross{GetTickFrequency} will give the number of microseconds starting from the platform-dependent event. |
|
|
|
\ifC % { |
|
|
|
\cvCPyFunc{RegisterModule} |
|
Registers another module. |
|
|
|
\begin{lstlisting} |
|
typedef struct CvPluginFuncInfo |
|
{ |
|
void** func_addr; |
|
void* default_func_addr; |
|
const char* func_names; |
|
int search_modules; |
|
int loaded_from; |
|
} |
|
CvPluginFuncInfo; |
|
|
|
typedef struct CvModuleInfo |
|
{ |
|
struct CvModuleInfo* next; |
|
const char* name; |
|
const char* version; |
|
CvPluginFuncInfo* func_tab; |
|
} |
|
CvModuleInfo; |
|
\end{lstlisting} |
|
|
|
\cvdefC{int cvRegisterModule( const CvModuleInfo* moduleInfo );} |
|
|
|
\begin{description} |
|
\cvarg{moduleInfo}{Information about the module} |
|
\end{description} |
|
|
|
The function adds a module to the list of |
|
registered modules. After the module is registered, information about |
|
it can be retrieved using the \cvCPyCross{GetModuleInfo} function. Also, the |
|
registered module makes full use of optimized plugins (IPP, MKL, ...), |
|
supported by CXCORE. CXCORE itself, CV (computer vision), CVAUX (auxilary |
|
computer vision), and HIGHGUI (visualization and image/video acquisition) are |
|
examples of modules. Registration is usually done when the shared library |
|
is loaded. See \texttt{cxcore/src/cxswitcher.cpp} and |
|
\texttt{cv/src/cvswitcher.cpp} for details about how registration is done |
|
and look at \texttt{cxcore/src/cxswitcher.cpp}, \texttt{cxcore/src/\_cxipp.h} |
|
on how IPP and MKL are connected to the modules. |
|
|
|
\cvCPyFunc{GetModuleInfo} |
|
Retrieves information about registered module(s) and plugins. |
|
|
|
\cvdefC{ |
|
void cvGetModuleInfo( \par const char* moduleName,\par const char** version,\par const char** loadedAddonPlugins); |
|
} |
|
|
|
\begin{description} |
|
\cvarg{moduleName}{Name of the module of interest, or NULL, which means all the modules} |
|
\cvarg{version}{The output parameter. Information about the module(s), including version} |
|
\cvarg{loadedAddonPlugins}{The list of names and versions of the optimized plugins that CXCORE was able to find and load} |
|
\end{description} |
|
|
|
The function returns information about one or |
|
all of the registered modules. The returned information is stored inside |
|
the libraries, so the user should not deallocate or modify the returned |
|
text strings. |
|
|
|
\cvCPyFunc{UseOptimized} |
|
Switches between optimized/non-optimized modes. |
|
|
|
\cvdefC{int cvUseOptimized( int onoff );} |
|
|
|
\begin{description} |
|
\cvarg{onoff}{Use optimized ($\ne 0$) or not ($=0$)} |
|
\end{description} |
|
|
|
The function switches between the mode, where |
|
only pure C implementations from cxcore, OpenCV, etc. are used, and |
|
the mode, where IPP and MKL functions are used if available. When |
|
\texttt{cvUseOptimized(0)} is called, all the optimized libraries are |
|
unloaded. The function may be useful for debugging, IPP and MKL upgrading on |
|
the fly, online speed comparisons, etc. It returns the number of optimized |
|
functions loaded. Note that by default, the optimized plugins are loaded, |
|
so it is not necessary to call \texttt{cvUseOptimized(1)} in the beginning of |
|
the program (actually, it will only increase the startup time). |
|
|
|
\cvCPyFunc{SetMemoryManager} |
|
Accesses custom/default memory managing functions. |
|
|
|
\begin{lstlisting} |
|
typedef void* (CV_CDECL *CvAllocFunc)(size_t size, void* userdata); |
|
typedef int (CV_CDECL *CvFreeFunc)(void* pptr, void* userdata); |
|
\end{lstlisting} |
|
|
|
\cvdefC{ |
|
void cvSetMemoryManager( \par CvAllocFunc allocFunc=NULL,\par CvFreeFunc freeFunc=NULL,\par void* userdata=NULL ); |
|
} |
|
|
|
\begin{description} |
|
\cvarg{allocFunc}{Allocation function; the interface is similar to \texttt{malloc}, except that \texttt{userdata} may be used to determine the context} |
|
\cvarg{freeFunc}{Deallocation function; the interface is similar to \texttt{free}} |
|
\cvarg{userdata}{User data that is transparently passed to the custom functions} |
|
\end{description} |
|
|
|
The function sets user-defined memory |
|
managment functions (substitutes for \texttt{malloc} and \texttt{free}) that will be called |
|
by \texttt{cvAlloc, cvFree} and higher-level functions (e.g., \texttt{cvCreateImage}). Note |
|
that the function should be called when there is data allocated using |
|
\texttt{cvAlloc}. Also, to avoid infinite recursive calls, it is not |
|
allowed to call \texttt{cvAlloc} and \cvCPyCross{Free} from the custom |
|
allocation/deallocation functions. |
|
|
|
If the \texttt{alloc\_func} and \texttt{free\_func} pointers are |
|
\texttt{NULL}, the default memory managing functions are restored. |
|
|
|
\cvCPyFunc{SetIPLAllocators} |
|
Switches to IPL functions for image allocation/deallocation. |
|
|
|
\begin{lstlisting} |
|
typedef IplImage* (CV_STDCALL* Cv_iplCreateImageHeader) |
|
(int,int,int,char*,char*,int,int,int,int,int, |
|
IplROI*,IplImage*,void*,IplTileInfo*); |
|
typedef void (CV_STDCALL* Cv_iplAllocateImageData)(IplImage*,int,int); |
|
typedef void (CV_STDCALL* Cv_iplDeallocate)(IplImage*,int); |
|
typedef IplROI* (CV_STDCALL* Cv_iplCreateROI)(int,int,int,int,int); |
|
typedef IplImage* (CV_STDCALL* Cv_iplCloneImage)(const IplImage*); |
|
|
|
#define CV_TURN_ON_IPL_COMPATIBILITY() \ |
|
cvSetIPLAllocators( iplCreateImageHeader, iplAllocateImage, \ |
|
iplDeallocate, iplCreateROI, iplCloneImage ) |
|
\end{lstlisting} |
|
|
|
\cvdefC{ |
|
void cvSetIPLAllocators( \par |
|
Cv\_iplCreateImageHeader create\_header, \par |
|
Cv\_iplAllocateImageData allocate\_data, \par |
|
Cv\_iplDeallocate deallocate, \par |
|
Cv\_iplCreateROI create\_roi, \par |
|
Cv\_iplCloneImage clone\_image ); |
|
} |
|
|
|
\begin{description} |
|
\cvarg{create\_header}{Pointer to iplCreateImageHeader} |
|
\cvarg{allocate\_data}{Pointer to iplAllocateImage} |
|
\cvarg{deallocate}{Pointer to iplDeallocate} |
|
\cvarg{create\_roi}{Pointer to iplCreateROI} |
|
\cvarg{clone\_image}{Pointer to iplCloneImage} |
|
\end{description} |
|
|
|
|
|
The function causes CXCORE to use IPL functions |
|
for image allocation/deallocation operations. For convenience, there |
|
is the wrapping macro \texttt{CV\_TURN\_ON\_IPL\_COMPATIBILITY}. The |
|
function is useful for applications where IPL and CXCORE/OpenCV are used |
|
together and still there are calls to \texttt{iplCreateImageHeader}, |
|
etc. The function is not necessary if IPL is called only for data |
|
processing and all the allocation/deallocation is done by CXCORE, or |
|
if all the allocation/deallocation is done by IPL and some of OpenCV |
|
functions are used to process the data. |
|
|
|
\fi |
|
|
|
\fi |
|
|
|
\ifCpp |
|
|
|
\cvCppFunc{alignPtr} |
|
Aligns pointer to the specified number of bytes |
|
|
|
\cvdefCpp{template<typename \_Tp> \_Tp* alignPtr(\_Tp* ptr, int n=sizeof(\_Tp));} |
|
\begin{description} |
|
\cvarg{ptr}{The aligned pointer} |
|
\cvarg{n}{The alignment size; must be a power of two} |
|
\end{description} |
|
|
|
The function returns the aligned pointer of the same type as the input pointer: |
|
\[\texttt{(\_Tp*)(((size\_t)ptr + n-1) \& -n)}\] |
|
|
|
|
|
\cvCppFunc{alignSize} |
|
Aligns a buffer size to the specified number of bytes |
|
|
|
\cvdefCpp{size\_t alignSize(size\_t sz, int n);} |
|
\begin{description} |
|
\cvarg{sz}{The buffer size to align} |
|
\cvarg{n}{The alignment size; must be a power of two} |
|
\end{description} |
|
|
|
The function returns the minimum number that is greater or equal to \texttt{sz} and is divisble by \texttt{n}: |
|
\[\texttt{(sz + n-1) \& -n}\] |
|
|
|
|
|
\cvCppFunc{allocate} |
|
Allocates an array of elements |
|
|
|
\cvdefCpp{template<typename \_Tp> \_Tp* allocate(size\_t n);} |
|
\begin{description} |
|
\cvarg{n}{The number of elements to allocate} |
|
\end{description} |
|
|
|
The generic function \texttt{allocate} allocates buffer for the specified number of elements. For each element the default constructor is called. |
|
|
|
|
|
\cvCppFunc{deallocate} |
|
Allocates an array of elements |
|
|
|
\cvdefCpp{template<typename \_Tp> void deallocate(\_Tp* ptr, size\_t n);} |
|
\begin{description} |
|
\cvarg{ptr}{Pointer to the deallocated buffer} |
|
\cvarg{n}{The number of elements in the buffer} |
|
\end{description} |
|
|
|
The generic function \texttt{deallocate} deallocates the buffer allocated with \cvCppCross{allocate}. The number of elements must match the number passed to \cvCppCross{allocate}. |
|
|
|
\cvfunc{CV\_Assert}\label{CV Assert} |
|
Checks a condition at runtime. |
|
|
|
\cvdefC{CV\_Assert(expr)} |
|
\cvdefCpp{CV\_Assert(expr)} |
|
\cvdefPy{CV\_Assert(expr)} |
|
|
|
\begin{lstlisting} |
|
#define CV_Assert( expr ) ... |
|
#define CV_DbgAssert(expr) ... |
|
\end{lstlisting} |
|
|
|
\begin{description} |
|
\cvarg{expr}{The checked expression} |
|
\end{description} |
|
|
|
The macros \texttt{CV\_Assert} and \texttt{CV\_DbgAssert} evaluate the specified expression and if it is 0, the macros raise an error (see \cvCppCross{error}). The macro \texttt{CV\_Assert} checks the condition in both Debug and Release configurations, while \texttt{CV\_DbgAssert} is only retained in the Debug configuration. |
|
|
|
\cvCppFunc{error} |
|
Signals an error and raises the exception |
|
|
|
\cvdefCpp{void error( const Exception\& exc );\newline |
|
\#define CV\_Error( code, msg ) <...>\newline |
|
\#define CV\_Error\_( code, args ) <...>} |
|
\begin{description} |
|
\cvarg{exc}{The exception to throw} |
|
\cvarg{code}{The error code, normally, a negative value. The list of pre-defined error codes can be found in \texttt{cxerror.h}} |
|
\cvarg{msg}{Text of the error message} |
|
\cvarg{args}{printf-like formatted error message in parantheses} |
|
\end{description} |
|
|
|
The function and the helper macros \texttt{CV\_Error} and \texttt{CV\_Error\_} call the error handler. Currently, the error handler prints the error code (\texttt{exc.code}), the context (\texttt{exc.file}, \texttt{exc.line} and the error message \texttt{exc.err} to the standard error stream \texttt{stderr}. In Debug configuration it then provokes memory access violation, so that the execution stack and all the parameters can be analyzed in debugger. In Release configuration the exception \texttt{exc} is thrown. |
|
|
|
The macro \texttt{CV\_Error\_} can be used to construct the error message on-fly to include some dynamic information, for example: |
|
|
|
\begin{lstlisting} |
|
// note the extra parentheses around the formatted text message |
|
CV_Error_(CV_StsOutOfRange, |
|
("the matrix element (%d,%d)=%g is out of range", |
|
i, j, mtx.at<float>(i,j))) |
|
\end{lstlisting} |
|
|
|
|
|
\cvclass{Exception}\label{Exception} |
|
The exception class passed to error |
|
|
|
\begin{lstlisting} |
|
class Exception |
|
{ |
|
public: |
|
// various constructors and the copy operation |
|
Exception() { code = 0; line = 0; } |
|
Exception(int _code, const string& _err, |
|
const string& _func, const string& _file, int _line); |
|
Exception(const Exception& exc); |
|
Exception& operator = (const Exception& exc); |
|
|
|
// the error code |
|
int code; |
|
// the error text message |
|
string err; |
|
// function name where the error happened |
|
string func; |
|
// the source file name where the error happened |
|
string file; |
|
// the source file line where the error happened |
|
int line; |
|
}; |
|
\end{lstlisting} |
|
|
|
The class \texttt{Exception} encapsulates all or almost all the necessary information about the error happened in the program. The exception is usually constructed and thrown implicitly, via \texttt{CV\_Error} and \texttt{CV\_Error\_} macros, see \cvCppCross{error}. |
|
|
|
|
|
\cvCppFunc{fastMalloc} |
|
Allocates aligned memory buffer |
|
|
|
\cvdefCpp{void* fastMalloc(size\_t size);} |
|
\begin{description} |
|
\cvarg{size}{The allocated buffer size} |
|
\end{description} |
|
|
|
The function allocates buffer of the specified size and returns it. When the buffer size is 16 bytes or more, the returned buffer is aligned on 16 bytes. |
|
|
|
\cvCppFunc{fastFree} |
|
Deallocates memory buffer |
|
|
|
\cvdefCpp{void fastFree(void* ptr);} |
|
\begin{description} |
|
\cvarg{ptr}{Pointer to the allocated buffer} |
|
\end{description} |
|
|
|
The function deallocates the buffer, allocated with \cvCppCross{fastMalloc}. |
|
If NULL pointer is passed, the function does nothing. |
|
|
|
\cvCppFunc{format} |
|
Returns a text string formatted using printf-like expression |
|
|
|
\cvdefCpp{string format( const char* fmt, ... );} |
|
\begin{description} |
|
\cvarg{fmt}{The printf-compatible formatting specifiers} |
|
\end{description} |
|
|
|
The function acts like \texttt{sprintf}, but forms and returns STL string. It can be used for form the error message in \cvCppCross{Exception} constructor. |
|
|
|
\cvCppFunc{getNumThreads} |
|
Returns the number of threads used by OpenCV |
|
|
|
\cvdefCpp{int getNumThreads();} |
|
|
|
The function returns the number of threads that is used by OpenCV. |
|
|
|
See also: \cvCppCross{setNumThreads}, \cvCppCross{getThreadNum}. |
|
|
|
|
|
\cvCppFunc{getThreadNum} |
|
Returns index of the currently executed thread |
|
|
|
\cvdefCpp{int getThreadNum();} |
|
|
|
The function returns 0-based index of the currently executed thread. The function is only valid inside a parallel OpenMP region. When OpenCV is built without OpenMP support, the function always returns 0. |
|
|
|
See also: \cvCppCross{setNumThreads}, \cvCppCross{getNumThreads}. |
|
|
|
\cvCppFunc{getTickCount} |
|
Returns the number of ticks |
|
|
|
\cvdefCpp{int64 getTickCount();} |
|
|
|
The function returns the number of ticks since the certain event (e.g. when the machine was turned on). |
|
It can be used to initialize \cvCppCross{RNG} or to measure a function execution time by reading the tick count before and after the function call. See also the tick frequency. |
|
|
|
\cvCppFunc{getTickFrequency} |
|
Returns the number of ticks per second |
|
|
|
\cvdefCpp{double getTickFrequency();} |
|
|
|
The function returns the number of ticks per second. |
|
That is, the following code computes the execution time in seconds. |
|
\begin{lstlisting} |
|
double t = (double)getTickCount(); |
|
// do something ... |
|
t = ((double)getTickCount() - t)/getTickFrequency(); |
|
\end{lstlisting} |
|
|
|
\cvCppFunc{setNumThreads} |
|
Sets the number of threads used by OpenCV |
|
|
|
\cvdefCpp{void setNumThreads(int nthreads);} |
|
\begin{description} |
|
\cvarg{nthreads}{The number of threads used by OpenCV} |
|
\end{description} |
|
|
|
The function sets the number of threads used by OpenCV in parallel OpenMP regions. If \texttt{nthreads=0}, the function will use the default number of threads, which is usually equal to the number of the processing cores. |
|
|
|
See also: \cvCppCross{getNumThreads}, \cvCppCross{getThreadNum} |
|
|
|
\fi
|
|
|