mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
372 lines
10 KiB
372 lines
10 KiB
// This file is part of OpenCV project. |
|
// It is subject to the license terms in the LICENSE file found in the top-level directory |
|
// of this distribution and at http://opencv.org/license.html. |
|
|
|
// Copyright (C) 2018, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
|
|
|
|
#include "test_precomp.hpp" |
|
#include "npy_blob.hpp" |
|
#include <opencv2/dnn/shape_utils.hpp> |
|
|
|
namespace opencv_test { namespace { |
|
|
|
template<typename TString> |
|
static std::string _tf(TString filename) |
|
{ |
|
String rootFolder = "dnn/onnx/"; |
|
return findDataFile(rootFolder + filename, false); |
|
} |
|
|
|
class Test_ONNX_layers : public DNNTestLayer |
|
{ |
|
public: |
|
enum Extension |
|
{ |
|
npy, |
|
pb |
|
}; |
|
|
|
void testONNXModels(const String& basename, const Extension ext = npy, const double l1 = 0, const float lInf = 0) |
|
{ |
|
String onnxmodel = _tf("models/" + basename + ".onnx"); |
|
Mat inp, ref; |
|
if (ext == npy) { |
|
inp = blobFromNPY(_tf("data/input_" + basename + ".npy")); |
|
ref = blobFromNPY(_tf("data/output_" + basename + ".npy")); |
|
} |
|
else if (ext == pb) { |
|
inp = readTensorFromONNX(_tf("data/input_" + basename + ".pb")); |
|
ref = readTensorFromONNX(_tf("data/output_" + basename + ".pb")); |
|
} |
|
else |
|
CV_Error(Error::StsUnsupportedFormat, "Unsupported extension"); |
|
|
|
checkBackend(&inp, &ref); |
|
Net net = readNetFromONNX(onnxmodel); |
|
ASSERT_FALSE(net.empty()); |
|
|
|
net.setPreferableBackend(backend); |
|
net.setPreferableTarget(target); |
|
|
|
net.setInput(inp); |
|
Mat out = net.forward(); |
|
normAssert(ref, out, "", l1 ? l1 : default_l1, lInf ? lInf : default_lInf); |
|
} |
|
}; |
|
|
|
TEST_P(Test_ONNX_layers, MaxPooling) |
|
{ |
|
testONNXModels("maxpooling"); |
|
testONNXModels("two_maxpooling"); |
|
} |
|
|
|
TEST_P(Test_ONNX_layers, Convolution) |
|
{ |
|
testONNXModels("convolution"); |
|
testONNXModels("two_convolution"); |
|
} |
|
|
|
TEST_P(Test_ONNX_layers, Dropout) |
|
{ |
|
testONNXModels("dropout"); |
|
} |
|
|
|
TEST_P(Test_ONNX_layers, Linear) |
|
{ |
|
if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16) |
|
throw SkipTestException(""); |
|
testONNXModels("linear"); |
|
} |
|
|
|
TEST_P(Test_ONNX_layers, ReLU) |
|
{ |
|
testONNXModels("ReLU"); |
|
} |
|
|
|
TEST_P(Test_ONNX_layers, MaxPooling_Sigmoid) |
|
{ |
|
testONNXModels("maxpooling_sigmoid"); |
|
} |
|
|
|
TEST_P(Test_ONNX_layers, Concatenation) |
|
{ |
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE && |
|
(target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_OPENCL || target == DNN_TARGET_MYRIAD)) |
|
throw SkipTestException(""); |
|
testONNXModels("concatenation"); |
|
} |
|
|
|
TEST_P(Test_ONNX_layers, AveragePooling) |
|
{ |
|
testONNXModels("average_pooling"); |
|
} |
|
|
|
TEST_P(Test_ONNX_layers, BatchNormalization) |
|
{ |
|
testONNXModels("batch_norm"); |
|
} |
|
|
|
TEST_P(Test_ONNX_layers, Transpose) |
|
{ |
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE && |
|
(target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_OPENCL || target == DNN_TARGET_MYRIAD)) |
|
throw SkipTestException(""); |
|
testONNXModels("transpose"); |
|
} |
|
|
|
TEST_P(Test_ONNX_layers, Multiplication) |
|
{ |
|
if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16 || |
|
backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD) |
|
throw SkipTestException(""); |
|
testONNXModels("mul"); |
|
} |
|
|
|
TEST_P(Test_ONNX_layers, Constant) |
|
{ |
|
testONNXModels("constant"); |
|
} |
|
|
|
TEST_P(Test_ONNX_layers, MultyInputs) |
|
{ |
|
const String model = _tf("models/multy_inputs.onnx"); |
|
|
|
Net net = readNetFromONNX(model); |
|
ASSERT_FALSE(net.empty()); |
|
|
|
net.setPreferableBackend(backend); |
|
net.setPreferableTarget(target); |
|
|
|
Mat inp1 = blobFromNPY(_tf("data/input_multy_inputs_0.npy")); |
|
Mat inp2 = blobFromNPY(_tf("data/input_multy_inputs_1.npy")); |
|
Mat ref = blobFromNPY(_tf("data/output_multy_inputs.npy")); |
|
checkBackend(&inp1, &ref); |
|
|
|
net.setInput(inp1, "0"); |
|
net.setInput(inp2, "1"); |
|
Mat out = net.forward(); |
|
|
|
normAssert(ref, out, "", default_l1, default_lInf); |
|
} |
|
|
|
|
|
INSTANTIATE_TEST_CASE_P(/*nothing*/, Test_ONNX_layers, dnnBackendsAndTargets()); |
|
|
|
class Test_ONNX_nets : public Test_ONNX_layers {}; |
|
TEST_P(Test_ONNX_nets, Alexnet) |
|
{ |
|
const String model = _tf("models/alexnet.onnx"); |
|
|
|
Net net = readNetFromONNX(model); |
|
ASSERT_FALSE(net.empty()); |
|
|
|
net.setPreferableBackend(backend); |
|
net.setPreferableTarget(target); |
|
|
|
Mat inp = imread(_tf("../grace_hopper_227.png")); |
|
Mat ref = blobFromNPY(_tf("../caffe_alexnet_prob.npy")); |
|
checkBackend(&inp, &ref); |
|
|
|
net.setInput(blobFromImage(inp, 1.0f, Size(227, 227), Scalar(), false)); |
|
ASSERT_FALSE(net.empty()); |
|
Mat out = net.forward(); |
|
|
|
normAssert(out, ref, "", default_l1, default_lInf); |
|
} |
|
|
|
TEST_P(Test_ONNX_nets, Squeezenet) |
|
{ |
|
testONNXModels("squeezenet", pb); |
|
} |
|
|
|
TEST_P(Test_ONNX_nets, Googlenet) |
|
{ |
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE) |
|
throw SkipTestException(""); |
|
|
|
const String model = _tf("models/googlenet.onnx"); |
|
|
|
Net net = readNetFromONNX(model); |
|
ASSERT_FALSE(net.empty()); |
|
|
|
net.setPreferableBackend(backend); |
|
net.setPreferableTarget(target); |
|
|
|
std::vector<Mat> images; |
|
images.push_back( imread(_tf("../googlenet_0.png")) ); |
|
images.push_back( imread(_tf("../googlenet_1.png")) ); |
|
Mat inp = blobFromImages(images, 1.0f, Size(), Scalar(), false); |
|
Mat ref = blobFromNPY(_tf("../googlenet_prob.npy")); |
|
checkBackend(&inp, &ref); |
|
|
|
net.setInput(inp); |
|
ASSERT_FALSE(net.empty()); |
|
Mat out = net.forward(); |
|
|
|
normAssert(ref, out, "", default_l1, default_lInf); |
|
} |
|
|
|
TEST_P(Test_ONNX_nets, CaffeNet) |
|
{ |
|
testONNXModels("caffenet", pb); |
|
} |
|
|
|
TEST_P(Test_ONNX_nets, RCNN_ILSVRC13) |
|
{ |
|
testONNXModels("rcnn_ilsvrc13", pb); |
|
} |
|
|
|
#ifdef OPENCV_32BIT_CONFIGURATION |
|
TEST_P(Test_ONNX_nets, DISABLED_VGG16) // memory usage >2Gb |
|
#else |
|
TEST_P(Test_ONNX_nets, VGG16) |
|
#endif |
|
{ |
|
double l1 = default_l1; |
|
double lInf = default_lInf; |
|
// output range: [-69; 72] |
|
if (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) { |
|
l1 = 0.087; |
|
lInf = 0.585; |
|
} |
|
else if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_OPENCL) { |
|
lInf = 1.2e-4; |
|
} |
|
testONNXModels("vgg16", pb, l1, lInf); |
|
} |
|
|
|
#ifdef OPENCV_32BIT_CONFIGURATION |
|
TEST_P(Test_ONNX_nets, DISABLED_VGG16_bn) // memory usage >2Gb |
|
#else |
|
TEST_P(Test_ONNX_nets, VGG16_bn) |
|
#endif |
|
{ |
|
double l1 = default_l1; |
|
double lInf = default_lInf; |
|
// output range: [-16; 27] |
|
if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16) { |
|
l1 = 0.0086; |
|
lInf = 0.037; |
|
} |
|
else if (backend == DNN_BACKEND_INFERENCE_ENGINE && |
|
(target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD)) { |
|
l1 = 0.031; |
|
lInf = 0.2; |
|
} |
|
testONNXModels("vgg16-bn", pb, l1, lInf); |
|
} |
|
|
|
TEST_P(Test_ONNX_nets, ZFNet) |
|
{ |
|
testONNXModels("zfnet512", pb); |
|
} |
|
|
|
TEST_P(Test_ONNX_nets, ResNet18v1) |
|
{ |
|
// output range: [-16; 22] |
|
const double l1 = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.022 : default_l1; |
|
const double lInf = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.12 : default_lInf; |
|
testONNXModels("resnet18v1", pb, l1, lInf); |
|
} |
|
|
|
TEST_P(Test_ONNX_nets, ResNet50v1) |
|
{ |
|
// output range: [-67; 75] |
|
const double l1 = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.6 : 1.25e-5; |
|
const double lInf = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.51 : 1.2e-4; |
|
testONNXModels("resnet50v1", pb, l1, lInf); |
|
} |
|
|
|
TEST_P(Test_ONNX_nets, ResNet101_DUC_HDC) |
|
{ |
|
if (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_OPENCL |
|
|| target == DNN_TARGET_MYRIAD) { |
|
throw SkipTestException(""); |
|
} |
|
testONNXModels("resnet101_duc_hdc", pb); |
|
} |
|
|
|
TEST_P(Test_ONNX_nets, TinyYolov2) |
|
{ |
|
if (cvtest::skipUnstableTests || |
|
backend == DNN_BACKEND_INFERENCE_ENGINE && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16)) { |
|
throw SkipTestException(""); |
|
} |
|
// output range: [-11; 8] |
|
const double l1 = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.017 : default_l1; |
|
const double lInf = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.14 : default_lInf; |
|
testONNXModels("tiny_yolo2", pb, l1, lInf); |
|
} |
|
|
|
TEST_P(Test_ONNX_nets, CNN_MNIST) |
|
{ |
|
// output range: [-1952; 6574] |
|
const double l1 = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 3.82 : 4.4e-4; |
|
const double lInf = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 13.5 : 2e-3; |
|
|
|
testONNXModels("cnn_mnist", pb, l1, lInf); |
|
} |
|
|
|
TEST_P(Test_ONNX_nets, MobileNet_v2) |
|
{ |
|
// output range: [-166; 317] |
|
const double l1 = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.38 : 7e-5; |
|
const double lInf = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 2.87 : 5e-4; |
|
testONNXModels("mobilenetv2", pb, l1, lInf); |
|
} |
|
|
|
TEST_P(Test_ONNX_nets, LResNet100E_IR) |
|
{ |
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE && |
|
(target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_OPENCL || target == DNN_TARGET_MYRIAD)) |
|
throw SkipTestException(""); |
|
|
|
double l1 = default_l1; |
|
double lInf = default_lInf; |
|
// output range: [-3; 3] |
|
if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16) { |
|
l1 = 0.009; |
|
lInf = 0.035; |
|
} |
|
testONNXModels("LResNet100E_IR", pb, l1, lInf); |
|
} |
|
|
|
TEST_P(Test_ONNX_nets, Emotion_ferplus) |
|
{ |
|
testONNXModels("emotion_ferplus", pb); |
|
} |
|
|
|
TEST_P(Test_ONNX_nets, Inception_v2) |
|
{ |
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE) |
|
throw SkipTestException(""); |
|
|
|
testONNXModels("inception_v2", pb); |
|
} |
|
|
|
TEST_P(Test_ONNX_nets, DenseNet121) |
|
{ |
|
// output range: [-87; 138] |
|
const double l1 = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.12 : 2.2e-5; |
|
const double lInf = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.74 : 1.23e-4; |
|
testONNXModels("densenet121", pb, l1, lInf); |
|
} |
|
|
|
TEST_P(Test_ONNX_nets, Inception_v1) |
|
{ |
|
testONNXModels("inception_v1", pb); |
|
} |
|
|
|
TEST_P(Test_ONNX_nets, Shufflenet) |
|
{ |
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE && |
|
(target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_OPENCL || target == DNN_TARGET_MYRIAD)) |
|
throw SkipTestException(""); |
|
testONNXModels("shufflenet", pb); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(/**/, Test_ONNX_nets, dnnBackendsAndTargets()); |
|
|
|
}} // namespace
|
|
|