mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
463 lines
13 KiB
463 lines
13 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved. |
|
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved. |
|
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// @Authors |
|
// Jia Haipeng, jiahaipeng95@gmail.com |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other oclMaterials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "test_precomp.hpp" |
|
|
|
#ifdef HAVE_OPENCL |
|
|
|
using namespace cvtest; |
|
using namespace testing; |
|
using namespace std; |
|
|
|
////////////////////////////////converto///////////////////////////////////////////////// |
|
|
|
PARAM_TEST_CASE(ConvertToTestBase, MatType, MatType, int, bool) |
|
{ |
|
int src_depth, dst_depth; |
|
int cn, dst_type; |
|
bool use_roi; |
|
|
|
// src mat |
|
cv::Mat mat; |
|
cv::Mat dst; |
|
|
|
// set up roi |
|
int roicols, roirows; |
|
int srcx, srcy; |
|
int dstx, dsty; |
|
|
|
// src mat with roi |
|
cv::Mat mat_roi; |
|
cv::Mat dst_roi; |
|
|
|
// ocl dst mat for testing |
|
cv::ocl::oclMat gdst_whole; |
|
|
|
// ocl mat with roi |
|
cv::ocl::oclMat gsrc; |
|
cv::ocl::oclMat gdst; |
|
|
|
virtual void SetUp() |
|
{ |
|
src_depth = GET_PARAM(0); |
|
dst_depth = GET_PARAM(1); |
|
cn = GET_PARAM(2); |
|
int src_type = CV_MAKE_TYPE(src_depth, cn); |
|
dst_type = CV_MAKE_TYPE(dst_depth, cn); |
|
|
|
use_roi = GET_PARAM(3); |
|
|
|
cv::RNG &rng = TS::ptr()->get_rng(); |
|
|
|
mat = randomMat(rng, randomSize(MIN_VALUE, MAX_VALUE), src_type, 5, 136, false); |
|
dst = randomMat(rng, use_roi ? randomSize(MIN_VALUE, MAX_VALUE) : mat.size(), dst_type, 5, 136, false); |
|
} |
|
|
|
void random_roi() |
|
{ |
|
if (use_roi) |
|
{ |
|
// randomize ROI |
|
cv::RNG &rng = TS::ptr()->get_rng(); |
|
roicols = rng.uniform(1, MIN_VALUE); |
|
roirows = rng.uniform(1, MIN_VALUE); |
|
srcx = rng.uniform(0, mat.cols - roicols); |
|
srcy = rng.uniform(0, mat.rows - roirows); |
|
dstx = rng.uniform(0, dst.cols - roicols); |
|
dsty = rng.uniform(0, dst.rows - roirows); |
|
} |
|
else |
|
{ |
|
roicols = mat.cols; |
|
roirows = mat.rows; |
|
srcx = srcy = 0; |
|
dstx = dsty = 0; |
|
} |
|
|
|
mat_roi = mat(Rect(srcx, srcy, roicols, roirows)); |
|
dst_roi = dst(Rect(dstx, dsty, roicols, roirows)); |
|
|
|
gdst_whole = dst; |
|
gdst = gdst_whole(Rect(dstx, dsty, roicols, roirows)); |
|
|
|
gsrc = mat_roi; |
|
} |
|
}; |
|
|
|
typedef ConvertToTestBase ConvertTo; |
|
|
|
TEST_P(ConvertTo, Accuracy) |
|
{ |
|
if((src_depth == CV_64F || dst_depth == CV_64F) && |
|
!cv::ocl::Context::getContext()->supportsFeature(cv::ocl::FEATURE_CL_DOUBLE)) |
|
{ |
|
return; // returns silently |
|
} |
|
for (int j = 0; j < LOOP_TIMES; j++) |
|
{ |
|
random_roi(); |
|
|
|
mat_roi.convertTo(dst_roi, dst_type); |
|
gsrc.convertTo(gdst, dst_type); |
|
|
|
EXPECT_MAT_NEAR(dst, Mat(gdst_whole), src_depth == CV_64F ? 1.0 : 0.0); |
|
EXPECT_MAT_NEAR(dst_roi, Mat(gdst), src_depth == CV_64F ? 1.0 : 0.0); |
|
} |
|
} |
|
|
|
///////////////////////////////////////////copyto///////////////////////////////////////////////////////////// |
|
|
|
PARAM_TEST_CASE(CopyToTestBase, MatType, int, bool) |
|
{ |
|
bool use_roi; |
|
|
|
cv::Mat src, mask, dst; |
|
|
|
// set up roi |
|
int roicols,roirows; |
|
int srcx, srcy; |
|
int dstx, dsty; |
|
int maskx,masky; |
|
|
|
// src mat with roi |
|
cv::Mat src_roi; |
|
cv::Mat mask_roi; |
|
cv::Mat dst_roi; |
|
|
|
// ocl dst mat for testing |
|
cv::ocl::oclMat gdst_whole; |
|
|
|
// ocl mat with roi |
|
cv::ocl::oclMat gsrc, gdst, gmask; |
|
|
|
virtual void SetUp() |
|
{ |
|
int type = CV_MAKETYPE(GET_PARAM(0), GET_PARAM(1)); |
|
use_roi = GET_PARAM(2); |
|
|
|
cv::RNG &rng = TS::ptr()->get_rng(); |
|
|
|
src = randomMat(rng, randomSize(MIN_VALUE, MAX_VALUE), type, 5, 16, false); |
|
dst = randomMat(rng, use_roi ? randomSize(MIN_VALUE, MAX_VALUE) : src.size(), type, 5, 16, false); |
|
mask = randomMat(rng, use_roi ? randomSize(MIN_VALUE, MAX_VALUE) : src.size(), CV_8UC1, 0, 2, false); |
|
|
|
cv::threshold(mask, mask, 0.5, 255., CV_8UC1); |
|
} |
|
|
|
void random_roi() |
|
{ |
|
if (use_roi) |
|
{ |
|
// randomize ROI |
|
cv::RNG &rng = TS::ptr()->get_rng(); |
|
roicols = rng.uniform(1, MIN_VALUE); |
|
roirows = rng.uniform(1, MIN_VALUE); |
|
srcx = rng.uniform(0, src.cols - roicols); |
|
srcy = rng.uniform(0, src.rows - roirows); |
|
dstx = rng.uniform(0, dst.cols - roicols); |
|
dsty = rng.uniform(0, dst.rows - roirows); |
|
maskx = rng.uniform(0, mask.cols - roicols); |
|
masky = rng.uniform(0, mask.rows - roirows); |
|
} |
|
else |
|
{ |
|
roicols = src.cols; |
|
roirows = src.rows; |
|
srcx = srcy = 0; |
|
dstx = dsty = 0; |
|
maskx = masky = 0; |
|
} |
|
|
|
src_roi = src(Rect(srcx, srcy, roicols, roirows)); |
|
mask_roi = mask(Rect(maskx, masky, roicols, roirows)); |
|
dst_roi = dst(Rect(dstx, dsty, roicols, roirows)); |
|
|
|
gdst_whole = dst; |
|
gdst = gdst_whole(Rect(dstx, dsty, roicols, roirows)); |
|
|
|
gsrc = src_roi; |
|
gmask = mask_roi; |
|
} |
|
}; |
|
|
|
typedef CopyToTestBase CopyTo; |
|
|
|
TEST_P(CopyTo, Without_mask) |
|
{ |
|
if((src.depth() == CV_64F) && |
|
!cv::ocl::Context::getContext()->supportsFeature(cv::ocl::FEATURE_CL_DOUBLE)) |
|
{ |
|
return; // returns silently |
|
} |
|
for (int j = 0; j < LOOP_TIMES; j++) |
|
{ |
|
random_roi(); |
|
|
|
src_roi.copyTo(dst_roi); |
|
gsrc.copyTo(gdst); |
|
|
|
EXPECT_MAT_NEAR(dst, Mat(gdst_whole), 0.0); |
|
} |
|
} |
|
|
|
TEST_P(CopyTo, With_mask) |
|
{ |
|
if(src.depth() == CV_64F && |
|
!cv::ocl::Context::getContext()->supportsFeature(cv::ocl::FEATURE_CL_DOUBLE)) |
|
{ |
|
return; // returns silently |
|
} |
|
for (int j = 0; j < LOOP_TIMES; j++) |
|
{ |
|
random_roi(); |
|
|
|
src_roi.copyTo(dst_roi, mask_roi); |
|
gsrc.copyTo(gdst, gmask); |
|
|
|
EXPECT_MAT_NEAR(dst, Mat(gdst_whole), 0.0); |
|
} |
|
} |
|
|
|
/////////////////////////////////////////// setTo ///////////////////////////////////////////////////////////// |
|
|
|
PARAM_TEST_CASE(SetToTestBase, MatType, int, bool) |
|
{ |
|
int depth, channels; |
|
bool use_roi; |
|
|
|
cv::Scalar val; |
|
|
|
cv::Mat src; |
|
cv::Mat mask; |
|
|
|
// set up roi |
|
int roicols, roirows; |
|
int srcx, srcy; |
|
int maskx, masky; |
|
|
|
// src mat with roi |
|
cv::Mat src_roi; |
|
cv::Mat mask_roi; |
|
|
|
// ocl dst mat for testing |
|
cv::ocl::oclMat gsrc_whole; |
|
|
|
// ocl mat with roi |
|
cv::ocl::oclMat gsrc; |
|
cv::ocl::oclMat gmask; |
|
|
|
virtual void SetUp() |
|
{ |
|
depth = GET_PARAM(0); |
|
channels = GET_PARAM(1); |
|
use_roi = GET_PARAM(2); |
|
|
|
cv::RNG &rng = TS::ptr()->get_rng(); |
|
int type = CV_MAKE_TYPE(depth, channels); |
|
|
|
src = randomMat(rng, randomSize(MIN_VALUE, MAX_VALUE), type, 5, 16, false); |
|
mask = randomMat(rng, use_roi ? randomSize(MIN_VALUE, MAX_VALUE) : src.size(), CV_8UC1, 0, 2, false); |
|
|
|
cv::threshold(mask, mask, 0.5, 255., CV_8UC1); |
|
val = cv::Scalar(rng.uniform(-10.0, 10.0), rng.uniform(-10.0, 10.0), |
|
rng.uniform(-10.0, 10.0), rng.uniform(-10.0, 10.0)); |
|
} |
|
|
|
void random_roi() |
|
{ |
|
if (use_roi) |
|
{ |
|
// randomize ROI |
|
cv::RNG &rng = TS::ptr()->get_rng(); |
|
roicols = rng.uniform(1, MIN_VALUE); |
|
roirows = rng.uniform(1, MIN_VALUE); |
|
srcx = rng.uniform(0, src.cols - roicols); |
|
srcy = rng.uniform(0, src.rows - roirows); |
|
maskx = rng.uniform(0, mask.cols - roicols); |
|
masky = rng.uniform(0, mask.rows - roirows); |
|
} |
|
else |
|
{ |
|
roicols = src.cols; |
|
roirows = src.rows; |
|
srcx = srcy = 0; |
|
maskx = masky = 0; |
|
} |
|
|
|
src_roi = src(Rect(srcx, srcy, roicols, roirows)); |
|
mask_roi = mask(Rect(maskx, masky, roicols, roirows)); |
|
|
|
gsrc_whole = src; |
|
gsrc = gsrc_whole(Rect(srcx, srcy, roicols, roirows)); |
|
|
|
gmask = mask_roi; |
|
} |
|
}; |
|
|
|
typedef SetToTestBase SetTo; |
|
|
|
TEST_P(SetTo, Without_mask) |
|
{ |
|
if(depth == CV_64F && |
|
!cv::ocl::Context::getContext()->supportsFeature(cv::ocl::FEATURE_CL_DOUBLE)) |
|
{ |
|
return; // returns silently |
|
} |
|
for (int j = 0; j < LOOP_TIMES; j++) |
|
{ |
|
random_roi(); |
|
|
|
src_roi.setTo(val); |
|
gsrc.setTo(val); |
|
|
|
EXPECT_MAT_NEAR(src, Mat(gsrc_whole), 1.); |
|
} |
|
} |
|
|
|
TEST_P(SetTo, With_mask) |
|
{ |
|
if(depth == CV_64F && |
|
!cv::ocl::Context::getContext()->supportsFeature(cv::ocl::FEATURE_CL_DOUBLE)) |
|
{ |
|
return; // returns silently |
|
} |
|
for (int j = 0; j < LOOP_TIMES; j++) |
|
{ |
|
random_roi(); |
|
|
|
src_roi.setTo(val, mask_roi); |
|
gsrc.setTo(val, gmask); |
|
|
|
EXPECT_MAT_NEAR(src, Mat(gsrc_whole), 1.); |
|
} |
|
} |
|
|
|
// convertC3C4 |
|
|
|
PARAM_TEST_CASE(convertC3C4, MatType, bool) |
|
{ |
|
int depth; |
|
bool use_roi; |
|
|
|
//src mat |
|
cv::Mat src; |
|
|
|
// set up roi |
|
int roicols, roirows; |
|
int srcx, srcy; |
|
|
|
//src mat with roi |
|
cv::Mat src_roi; |
|
|
|
//ocl mat with roi |
|
cv::ocl::oclMat gsrc_roi; |
|
|
|
virtual void SetUp() |
|
{ |
|
depth = GET_PARAM(0); |
|
use_roi = GET_PARAM(1); |
|
int type = CV_MAKE_TYPE(depth, 3); |
|
|
|
cv::RNG &rng = TS::ptr()->get_rng(); |
|
src = randomMat(rng, randomSize(1, MAX_VALUE), type, 0, 40, false); |
|
} |
|
|
|
void random_roi() |
|
{ |
|
if (use_roi) |
|
{ |
|
//randomize ROI |
|
cv::RNG &rng = TS::ptr()->get_rng(); |
|
roicols = rng.uniform(1, src.cols); |
|
roirows = rng.uniform(1, src.rows); |
|
srcx = rng.uniform(0, src.cols - roicols); |
|
srcy = rng.uniform(0, src.rows - roirows); |
|
} |
|
else |
|
{ |
|
roicols = src.cols; |
|
roirows = src.rows; |
|
srcx = srcy = 0; |
|
} |
|
|
|
src_roi = src(Rect(srcx, srcy, roicols, roirows)); |
|
} |
|
}; |
|
|
|
TEST_P(convertC3C4, Accuracy) |
|
{ |
|
if(depth == CV_64F && |
|
!cv::ocl::Context::getContext()->supportsFeature(cv::ocl::FEATURE_CL_DOUBLE)) |
|
{ |
|
return; // returns silently |
|
} |
|
for (int j = 0; j < LOOP_TIMES; j++) |
|
{ |
|
random_roi(); |
|
|
|
gsrc_roi = src_roi; |
|
|
|
EXPECT_MAT_NEAR(src_roi, Mat(gsrc_roi), 0.0); |
|
} |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(MatrixOperation, ConvertTo, Combine( |
|
Values(CV_8U, CV_8S, CV_16U, CV_16S, CV_32S, CV_32F, CV_64F), |
|
Values(CV_8U, CV_8S, CV_16U, CV_16S, CV_32S, CV_32F, CV_64F), |
|
Range(1, 5), Bool())); |
|
|
|
INSTANTIATE_TEST_CASE_P(MatrixOperation, CopyTo, Combine( |
|
Values(CV_8U, CV_8S, CV_16U, CV_16S, CV_32S, CV_32F, CV_64F), |
|
testing::Range(1, 5), Bool())); |
|
|
|
INSTANTIATE_TEST_CASE_P(MatrixOperation, SetTo, Combine( |
|
Values(CV_8U, CV_8S, CV_16U, CV_16S, CV_32S, CV_32F, CV_64F), |
|
testing::Range(1, 5), Bool())); |
|
|
|
INSTANTIATE_TEST_CASE_P(MatrixOperation, convertC3C4, Combine( |
|
Values(CV_8U, CV_8S, CV_16U, CV_16S, CV_32S, CV_32F, CV_64F), |
|
Bool())); |
|
#endif
|
|
|