mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
299 lines
8.4 KiB
299 lines
8.4 KiB
/* sorgbr.f -- translated by f2c (version 20061008). |
|
You must link the resulting object file with libf2c: |
|
on Microsoft Windows system, link with libf2c.lib; |
|
on Linux or Unix systems, link with .../path/to/libf2c.a -lm |
|
or, if you install libf2c.a in a standard place, with -lf2c -lm |
|
-- in that order, at the end of the command line, as in |
|
cc *.o -lf2c -lm |
|
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., |
|
|
|
http://www.netlib.org/f2c/libf2c.zip |
|
*/ |
|
|
|
#include "clapack.h" |
|
|
|
|
|
/* Table of constant values */ |
|
|
|
static integer c__1 = 1; |
|
static integer c_n1 = -1; |
|
|
|
/* Subroutine */ int sorgbr_(char *vect, integer *m, integer *n, integer *k, |
|
real *a, integer *lda, real *tau, real *work, integer *lwork, integer |
|
*info) |
|
{ |
|
/* System generated locals */ |
|
integer a_dim1, a_offset, i__1, i__2, i__3; |
|
|
|
/* Local variables */ |
|
integer i__, j, nb, mn; |
|
extern logical lsame_(char *, char *); |
|
integer iinfo; |
|
logical wantq; |
|
extern /* Subroutine */ int xerbla_(char *, integer *); |
|
extern integer ilaenv_(integer *, char *, char *, integer *, integer *, |
|
integer *, integer *); |
|
extern /* Subroutine */ int sorglq_(integer *, integer *, integer *, real |
|
*, integer *, real *, real *, integer *, integer *), sorgqr_( |
|
integer *, integer *, integer *, real *, integer *, real *, real * |
|
, integer *, integer *); |
|
integer lwkopt; |
|
logical lquery; |
|
|
|
|
|
/* -- LAPACK routine (version 3.2) -- */ |
|
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ |
|
/* November 2006 */ |
|
|
|
/* .. Scalar Arguments .. */ |
|
/* .. */ |
|
/* .. Array Arguments .. */ |
|
/* .. */ |
|
|
|
/* Purpose */ |
|
/* ======= */ |
|
|
|
/* SORGBR generates one of the real orthogonal matrices Q or P**T */ |
|
/* determined by SGEBRD when reducing a real matrix A to bidiagonal */ |
|
/* form: A = Q * B * P**T. Q and P**T are defined as products of */ |
|
/* elementary reflectors H(i) or G(i) respectively. */ |
|
|
|
/* If VECT = 'Q', A is assumed to have been an M-by-K matrix, and Q */ |
|
/* is of order M: */ |
|
/* if m >= k, Q = H(1) H(2) . . . H(k) and SORGBR returns the first n */ |
|
/* columns of Q, where m >= n >= k; */ |
|
/* if m < k, Q = H(1) H(2) . . . H(m-1) and SORGBR returns Q as an */ |
|
/* M-by-M matrix. */ |
|
|
|
/* If VECT = 'P', A is assumed to have been a K-by-N matrix, and P**T */ |
|
/* is of order N: */ |
|
/* if k < n, P**T = G(k) . . . G(2) G(1) and SORGBR returns the first m */ |
|
/* rows of P**T, where n >= m >= k; */ |
|
/* if k >= n, P**T = G(n-1) . . . G(2) G(1) and SORGBR returns P**T as */ |
|
/* an N-by-N matrix. */ |
|
|
|
/* Arguments */ |
|
/* ========= */ |
|
|
|
/* VECT (input) CHARACTER*1 */ |
|
/* Specifies whether the matrix Q or the matrix P**T is */ |
|
/* required, as defined in the transformation applied by SGEBRD: */ |
|
/* = 'Q': generate Q; */ |
|
/* = 'P': generate P**T. */ |
|
|
|
/* M (input) INTEGER */ |
|
/* The number of rows of the matrix Q or P**T to be returned. */ |
|
/* M >= 0. */ |
|
|
|
/* N (input) INTEGER */ |
|
/* The number of columns of the matrix Q or P**T to be returned. */ |
|
/* N >= 0. */ |
|
/* If VECT = 'Q', M >= N >= min(M,K); */ |
|
/* if VECT = 'P', N >= M >= min(N,K). */ |
|
|
|
/* K (input) INTEGER */ |
|
/* If VECT = 'Q', the number of columns in the original M-by-K */ |
|
/* matrix reduced by SGEBRD. */ |
|
/* If VECT = 'P', the number of rows in the original K-by-N */ |
|
/* matrix reduced by SGEBRD. */ |
|
/* K >= 0. */ |
|
|
|
/* A (input/output) REAL array, dimension (LDA,N) */ |
|
/* On entry, the vectors which define the elementary reflectors, */ |
|
/* as returned by SGEBRD. */ |
|
/* On exit, the M-by-N matrix Q or P**T. */ |
|
|
|
/* LDA (input) INTEGER */ |
|
/* The leading dimension of the array A. LDA >= max(1,M). */ |
|
|
|
/* TAU (input) REAL array, dimension */ |
|
/* (min(M,K)) if VECT = 'Q' */ |
|
/* (min(N,K)) if VECT = 'P' */ |
|
/* TAU(i) must contain the scalar factor of the elementary */ |
|
/* reflector H(i) or G(i), which determines Q or P**T, as */ |
|
/* returned by SGEBRD in its array argument TAUQ or TAUP. */ |
|
|
|
/* WORK (workspace/output) REAL array, dimension (MAX(1,LWORK)) */ |
|
/* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ |
|
|
|
/* LWORK (input) INTEGER */ |
|
/* The dimension of the array WORK. LWORK >= max(1,min(M,N)). */ |
|
/* For optimum performance LWORK >= min(M,N)*NB, where NB */ |
|
/* is the optimal blocksize. */ |
|
|
|
/* If LWORK = -1, then a workspace query is assumed; the routine */ |
|
/* only calculates the optimal size of the WORK array, returns */ |
|
/* this value as the first entry of the WORK array, and no error */ |
|
/* message related to LWORK is issued by XERBLA. */ |
|
|
|
/* INFO (output) INTEGER */ |
|
/* = 0: successful exit */ |
|
/* < 0: if INFO = -i, the i-th argument had an illegal value */ |
|
|
|
/* ===================================================================== */ |
|
|
|
/* .. Parameters .. */ |
|
/* .. */ |
|
/* .. Local Scalars .. */ |
|
/* .. */ |
|
/* .. External Functions .. */ |
|
/* .. */ |
|
/* .. External Subroutines .. */ |
|
/* .. */ |
|
/* .. Intrinsic Functions .. */ |
|
/* .. */ |
|
/* .. Executable Statements .. */ |
|
|
|
/* Test the input arguments */ |
|
|
|
/* Parameter adjustments */ |
|
a_dim1 = *lda; |
|
a_offset = 1 + a_dim1; |
|
a -= a_offset; |
|
--tau; |
|
--work; |
|
|
|
/* Function Body */ |
|
*info = 0; |
|
wantq = lsame_(vect, "Q"); |
|
mn = min(*m,*n); |
|
lquery = *lwork == -1; |
|
if (! wantq && ! lsame_(vect, "P")) { |
|
*info = -1; |
|
} else if (*m < 0) { |
|
*info = -2; |
|
} else if (*n < 0 || wantq && (*n > *m || *n < min(*m,*k)) || ! wantq && ( |
|
*m > *n || *m < min(*n,*k))) { |
|
*info = -3; |
|
} else if (*k < 0) { |
|
*info = -4; |
|
} else if (*lda < max(1,*m)) { |
|
*info = -6; |
|
} else if (*lwork < max(1,mn) && ! lquery) { |
|
*info = -9; |
|
} |
|
|
|
if (*info == 0) { |
|
if (wantq) { |
|
nb = ilaenv_(&c__1, "SORGQR", " ", m, n, k, &c_n1); |
|
} else { |
|
nb = ilaenv_(&c__1, "SORGLQ", " ", m, n, k, &c_n1); |
|
} |
|
lwkopt = max(1,mn) * nb; |
|
work[1] = (real) lwkopt; |
|
} |
|
|
|
if (*info != 0) { |
|
i__1 = -(*info); |
|
xerbla_("SORGBR", &i__1); |
|
return 0; |
|
} else if (lquery) { |
|
return 0; |
|
} |
|
|
|
/* Quick return if possible */ |
|
|
|
if (*m == 0 || *n == 0) { |
|
work[1] = 1.f; |
|
return 0; |
|
} |
|
|
|
if (wantq) { |
|
|
|
/* Form Q, determined by a call to SGEBRD to reduce an m-by-k */ |
|
/* matrix */ |
|
|
|
if (*m >= *k) { |
|
|
|
/* If m >= k, assume m >= n >= k */ |
|
|
|
sorgqr_(m, n, k, &a[a_offset], lda, &tau[1], &work[1], lwork, & |
|
iinfo); |
|
|
|
} else { |
|
|
|
/* If m < k, assume m = n */ |
|
|
|
/* Shift the vectors which define the elementary reflectors one */ |
|
/* column to the right, and set the first row and column of Q */ |
|
/* to those of the unit matrix */ |
|
|
|
for (j = *m; j >= 2; --j) { |
|
a[j * a_dim1 + 1] = 0.f; |
|
i__1 = *m; |
|
for (i__ = j + 1; i__ <= i__1; ++i__) { |
|
a[i__ + j * a_dim1] = a[i__ + (j - 1) * a_dim1]; |
|
/* L10: */ |
|
} |
|
/* L20: */ |
|
} |
|
a[a_dim1 + 1] = 1.f; |
|
i__1 = *m; |
|
for (i__ = 2; i__ <= i__1; ++i__) { |
|
a[i__ + a_dim1] = 0.f; |
|
/* L30: */ |
|
} |
|
if (*m > 1) { |
|
|
|
/* Form Q(2:m,2:m) */ |
|
|
|
i__1 = *m - 1; |
|
i__2 = *m - 1; |
|
i__3 = *m - 1; |
|
sorgqr_(&i__1, &i__2, &i__3, &a[(a_dim1 << 1) + 2], lda, &tau[ |
|
1], &work[1], lwork, &iinfo); |
|
} |
|
} |
|
} else { |
|
|
|
/* Form P', determined by a call to SGEBRD to reduce a k-by-n */ |
|
/* matrix */ |
|
|
|
if (*k < *n) { |
|
|
|
/* If k < n, assume k <= m <= n */ |
|
|
|
sorglq_(m, n, k, &a[a_offset], lda, &tau[1], &work[1], lwork, & |
|
iinfo); |
|
|
|
} else { |
|
|
|
/* If k >= n, assume m = n */ |
|
|
|
/* Shift the vectors which define the elementary reflectors one */ |
|
/* row downward, and set the first row and column of P' to */ |
|
/* those of the unit matrix */ |
|
|
|
a[a_dim1 + 1] = 1.f; |
|
i__1 = *n; |
|
for (i__ = 2; i__ <= i__1; ++i__) { |
|
a[i__ + a_dim1] = 0.f; |
|
/* L40: */ |
|
} |
|
i__1 = *n; |
|
for (j = 2; j <= i__1; ++j) { |
|
for (i__ = j - 1; i__ >= 2; --i__) { |
|
a[i__ + j * a_dim1] = a[i__ - 1 + j * a_dim1]; |
|
/* L50: */ |
|
} |
|
a[j * a_dim1 + 1] = 0.f; |
|
/* L60: */ |
|
} |
|
if (*n > 1) { |
|
|
|
/* Form P'(2:n,2:n) */ |
|
|
|
i__1 = *n - 1; |
|
i__2 = *n - 1; |
|
i__3 = *n - 1; |
|
sorglq_(&i__1, &i__2, &i__3, &a[(a_dim1 << 1) + 2], lda, &tau[ |
|
1], &work[1], lwork, &iinfo); |
|
} |
|
} |
|
} |
|
work[1] = (real) lwkopt; |
|
return 0; |
|
|
|
/* End of SORGBR */ |
|
|
|
} /* sorgbr_ */
|
|
|