mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1001 lines
32 KiB
1001 lines
32 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// Intel License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of Intel Corporation may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "test_precomp.hpp" |
|
|
|
#ifdef HAVE_CUDA |
|
|
|
namespace |
|
{ |
|
bool keyPointsEquals(const cv::KeyPoint& p1, const cv::KeyPoint& p2) |
|
{ |
|
const double maxPtDif = 1.0; |
|
const double maxSizeDif = 1.0; |
|
const double maxAngleDif = 2.0; |
|
const double maxResponseDif = 0.1; |
|
|
|
double dist = cv::norm(p1.pt - p2.pt); |
|
|
|
if (dist < maxPtDif && |
|
fabs(p1.size - p2.size) < maxSizeDif && |
|
abs(p1.angle - p2.angle) < maxAngleDif && |
|
abs(p1.response - p2.response) < maxResponseDif && |
|
p1.octave == p2.octave && |
|
p1.class_id == p2.class_id) |
|
{ |
|
return true; |
|
} |
|
|
|
return false; |
|
} |
|
|
|
struct KeyPointLess : std::binary_function<cv::KeyPoint, cv::KeyPoint, bool> |
|
{ |
|
bool operator()(const cv::KeyPoint& kp1, const cv::KeyPoint& kp2) const |
|
{ |
|
return kp1.pt.y < kp2.pt.y || (kp1.pt.y == kp2.pt.y && kp1.pt.x < kp2.pt.x); |
|
} |
|
}; |
|
|
|
testing::AssertionResult assertKeyPointsEquals(const char* gold_expr, const char* actual_expr, std::vector<cv::KeyPoint>& gold, std::vector<cv::KeyPoint>& actual) |
|
{ |
|
if (gold.size() != actual.size()) |
|
{ |
|
return testing::AssertionFailure() << "KeyPoints size mistmach\n" |
|
<< "\"" << gold_expr << "\" : " << gold.size() << "\n" |
|
<< "\"" << actual_expr << "\" : " << actual.size(); |
|
} |
|
|
|
std::sort(actual.begin(), actual.end(), KeyPointLess()); |
|
std::sort(gold.begin(), gold.end(), KeyPointLess()); |
|
|
|
for (size_t i = 0; i < gold.size(); ++i) |
|
{ |
|
const cv::KeyPoint& p1 = gold[i]; |
|
const cv::KeyPoint& p2 = actual[i]; |
|
|
|
if (!keyPointsEquals(p1, p2)) |
|
{ |
|
return testing::AssertionFailure() << "KeyPoints differ at " << i << "\n" |
|
<< "\"" << gold_expr << "\" vs \"" << actual_expr << "\" : \n" |
|
<< "pt : " << testing::PrintToString(p1.pt) << " vs " << testing::PrintToString(p2.pt) << "\n" |
|
<< "size : " << p1.size << " vs " << p2.size << "\n" |
|
<< "angle : " << p1.angle << " vs " << p2.angle << "\n" |
|
<< "response : " << p1.response << " vs " << p2.response << "\n" |
|
<< "octave : " << p1.octave << " vs " << p2.octave << "\n" |
|
<< "class_id : " << p1.class_id << " vs " << p2.class_id; |
|
} |
|
} |
|
|
|
return ::testing::AssertionSuccess(); |
|
} |
|
|
|
#define ASSERT_KEYPOINTS_EQ(gold, actual) EXPECT_PRED_FORMAT2(assertKeyPointsEquals, gold, actual); |
|
|
|
int getMatchedPointsCount(std::vector<cv::KeyPoint>& gold, std::vector<cv::KeyPoint>& actual) |
|
{ |
|
std::sort(actual.begin(), actual.end(), KeyPointLess()); |
|
std::sort(gold.begin(), gold.end(), KeyPointLess()); |
|
|
|
int validCount = 0; |
|
|
|
for (size_t i = 0; i < gold.size(); ++i) |
|
{ |
|
const cv::KeyPoint& p1 = gold[i]; |
|
const cv::KeyPoint& p2 = actual[i]; |
|
|
|
if (keyPointsEquals(p1, p2)) |
|
++validCount; |
|
} |
|
|
|
return validCount; |
|
} |
|
|
|
int getMatchedPointsCount(const std::vector<cv::KeyPoint>& keypoints1, const std::vector<cv::KeyPoint>& keypoints2, const std::vector<cv::DMatch>& matches) |
|
{ |
|
int validCount = 0; |
|
|
|
for (size_t i = 0; i < matches.size(); ++i) |
|
{ |
|
const cv::DMatch& m = matches[i]; |
|
|
|
const cv::KeyPoint& p1 = keypoints1[m.queryIdx]; |
|
const cv::KeyPoint& p2 = keypoints2[m.trainIdx]; |
|
|
|
if (keyPointsEquals(p1, p2)) |
|
++validCount; |
|
} |
|
|
|
return validCount; |
|
} |
|
} |
|
|
|
///////////////////////////////////////////////////////////////////////////////////////////////// |
|
// SURF |
|
|
|
namespace |
|
{ |
|
IMPLEMENT_PARAM_CLASS(SURF_HessianThreshold, double) |
|
IMPLEMENT_PARAM_CLASS(SURF_Octaves, int) |
|
IMPLEMENT_PARAM_CLASS(SURF_OctaveLayers, int) |
|
IMPLEMENT_PARAM_CLASS(SURF_Extended, bool) |
|
IMPLEMENT_PARAM_CLASS(SURF_Upright, bool) |
|
} |
|
|
|
PARAM_TEST_CASE(SURF, cv::gpu::DeviceInfo, SURF_HessianThreshold, SURF_Octaves, SURF_OctaveLayers, SURF_Extended, SURF_Upright) |
|
{ |
|
cv::gpu::DeviceInfo devInfo; |
|
double hessianThreshold; |
|
int nOctaves; |
|
int nOctaveLayers; |
|
bool extended; |
|
bool upright; |
|
|
|
virtual void SetUp() |
|
{ |
|
devInfo = GET_PARAM(0); |
|
hessianThreshold = GET_PARAM(1); |
|
nOctaves = GET_PARAM(2); |
|
nOctaveLayers = GET_PARAM(3); |
|
extended = GET_PARAM(4); |
|
upright = GET_PARAM(5); |
|
|
|
cv::gpu::setDevice(devInfo.deviceID()); |
|
} |
|
}; |
|
|
|
GPU_TEST_P(SURF, Detector) |
|
{ |
|
cv::Mat image = readImage("features2d/aloe.png", cv::IMREAD_GRAYSCALE); |
|
ASSERT_FALSE(image.empty()); |
|
|
|
cv::gpu::SURF_GPU surf; |
|
surf.hessianThreshold = hessianThreshold; |
|
surf.nOctaves = nOctaves; |
|
surf.nOctaveLayers = nOctaveLayers; |
|
surf.extended = extended; |
|
surf.upright = upright; |
|
surf.keypointsRatio = 0.05f; |
|
|
|
if (!supportFeature(devInfo, cv::gpu::GLOBAL_ATOMICS)) |
|
{ |
|
try |
|
{ |
|
std::vector<cv::KeyPoint> keypoints; |
|
surf(loadMat(image), cv::gpu::GpuMat(), keypoints); |
|
} |
|
catch (const cv::Exception& e) |
|
{ |
|
ASSERT_EQ(CV_StsNotImplemented, e.code); |
|
} |
|
} |
|
else |
|
{ |
|
std::vector<cv::KeyPoint> keypoints; |
|
surf(loadMat(image), cv::gpu::GpuMat(), keypoints); |
|
|
|
cv::SURF surf_gold; |
|
surf_gold.hessianThreshold = hessianThreshold; |
|
surf_gold.nOctaves = nOctaves; |
|
surf_gold.nOctaveLayers = nOctaveLayers; |
|
surf_gold.extended = extended; |
|
surf_gold.upright = upright; |
|
|
|
std::vector<cv::KeyPoint> keypoints_gold; |
|
surf_gold(image, cv::noArray(), keypoints_gold); |
|
|
|
ASSERT_EQ(keypoints_gold.size(), keypoints.size()); |
|
int matchedCount = getMatchedPointsCount(keypoints_gold, keypoints); |
|
double matchedRatio = static_cast<double>(matchedCount) / keypoints_gold.size(); |
|
|
|
EXPECT_GT(matchedRatio, 0.95); |
|
} |
|
} |
|
|
|
GPU_TEST_P(SURF, Detector_Masked) |
|
{ |
|
cv::Mat image = readImage("features2d/aloe.png", cv::IMREAD_GRAYSCALE); |
|
ASSERT_FALSE(image.empty()); |
|
|
|
cv::Mat mask(image.size(), CV_8UC1, cv::Scalar::all(1)); |
|
mask(cv::Range(0, image.rows / 2), cv::Range(0, image.cols / 2)).setTo(cv::Scalar::all(0)); |
|
|
|
cv::gpu::SURF_GPU surf; |
|
surf.hessianThreshold = hessianThreshold; |
|
surf.nOctaves = nOctaves; |
|
surf.nOctaveLayers = nOctaveLayers; |
|
surf.extended = extended; |
|
surf.upright = upright; |
|
surf.keypointsRatio = 0.05f; |
|
|
|
if (!supportFeature(devInfo, cv::gpu::GLOBAL_ATOMICS)) |
|
{ |
|
try |
|
{ |
|
std::vector<cv::KeyPoint> keypoints; |
|
surf(loadMat(image), loadMat(mask), keypoints); |
|
} |
|
catch (const cv::Exception& e) |
|
{ |
|
ASSERT_EQ(CV_StsNotImplemented, e.code); |
|
} |
|
} |
|
else |
|
{ |
|
std::vector<cv::KeyPoint> keypoints; |
|
surf(loadMat(image), loadMat(mask), keypoints); |
|
|
|
cv::SURF surf_gold; |
|
surf_gold.hessianThreshold = hessianThreshold; |
|
surf_gold.nOctaves = nOctaves; |
|
surf_gold.nOctaveLayers = nOctaveLayers; |
|
surf_gold.extended = extended; |
|
surf_gold.upright = upright; |
|
|
|
std::vector<cv::KeyPoint> keypoints_gold; |
|
surf_gold(image, mask, keypoints_gold); |
|
|
|
ASSERT_EQ(keypoints_gold.size(), keypoints.size()); |
|
int matchedCount = getMatchedPointsCount(keypoints_gold, keypoints); |
|
double matchedRatio = static_cast<double>(matchedCount) / keypoints_gold.size(); |
|
|
|
EXPECT_GT(matchedRatio, 0.95); |
|
} |
|
} |
|
|
|
GPU_TEST_P(SURF, Descriptor) |
|
{ |
|
cv::Mat image = readImage("features2d/aloe.png", cv::IMREAD_GRAYSCALE); |
|
ASSERT_FALSE(image.empty()); |
|
|
|
cv::gpu::SURF_GPU surf; |
|
surf.hessianThreshold = hessianThreshold; |
|
surf.nOctaves = nOctaves; |
|
surf.nOctaveLayers = nOctaveLayers; |
|
surf.extended = extended; |
|
surf.upright = upright; |
|
surf.keypointsRatio = 0.05f; |
|
|
|
cv::SURF surf_gold; |
|
surf_gold.hessianThreshold = hessianThreshold; |
|
surf_gold.nOctaves = nOctaves; |
|
surf_gold.nOctaveLayers = nOctaveLayers; |
|
surf_gold.extended = extended; |
|
surf_gold.upright = upright; |
|
|
|
if (!supportFeature(devInfo, cv::gpu::GLOBAL_ATOMICS)) |
|
{ |
|
try |
|
{ |
|
std::vector<cv::KeyPoint> keypoints; |
|
cv::gpu::GpuMat descriptors; |
|
surf(loadMat(image), cv::gpu::GpuMat(), keypoints, descriptors); |
|
} |
|
catch (const cv::Exception& e) |
|
{ |
|
ASSERT_EQ(CV_StsNotImplemented, e.code); |
|
} |
|
} |
|
else |
|
{ |
|
std::vector<cv::KeyPoint> keypoints; |
|
surf_gold(image, cv::noArray(), keypoints); |
|
|
|
cv::gpu::GpuMat descriptors; |
|
surf(loadMat(image), cv::gpu::GpuMat(), keypoints, descriptors, true); |
|
|
|
cv::Mat descriptors_gold; |
|
surf_gold(image, cv::noArray(), keypoints, descriptors_gold, true); |
|
|
|
cv::BFMatcher matcher(cv::NORM_L2); |
|
std::vector<cv::DMatch> matches; |
|
matcher.match(descriptors_gold, cv::Mat(descriptors), matches); |
|
|
|
int matchedCount = getMatchedPointsCount(keypoints, keypoints, matches); |
|
double matchedRatio = static_cast<double>(matchedCount) / keypoints.size(); |
|
|
|
EXPECT_GT(matchedRatio, 0.6); |
|
} |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(GPU_Features2D, SURF, testing::Combine( |
|
ALL_DEVICES, |
|
testing::Values(SURF_HessianThreshold(100.0), SURF_HessianThreshold(500.0), SURF_HessianThreshold(1000.0)), |
|
testing::Values(SURF_Octaves(3), SURF_Octaves(4)), |
|
testing::Values(SURF_OctaveLayers(2), SURF_OctaveLayers(3)), |
|
testing::Values(SURF_Extended(false), SURF_Extended(true)), |
|
testing::Values(SURF_Upright(false), SURF_Upright(true)))); |
|
|
|
///////////////////////////////////////////////////////////////////////////////////////////////// |
|
// FAST |
|
|
|
namespace |
|
{ |
|
IMPLEMENT_PARAM_CLASS(FAST_Threshold, int) |
|
IMPLEMENT_PARAM_CLASS(FAST_NonmaxSupression, bool) |
|
} |
|
|
|
PARAM_TEST_CASE(FAST, cv::gpu::DeviceInfo, FAST_Threshold, FAST_NonmaxSupression) |
|
{ |
|
cv::gpu::DeviceInfo devInfo; |
|
int threshold; |
|
bool nonmaxSupression; |
|
|
|
virtual void SetUp() |
|
{ |
|
devInfo = GET_PARAM(0); |
|
threshold = GET_PARAM(1); |
|
nonmaxSupression = GET_PARAM(2); |
|
|
|
cv::gpu::setDevice(devInfo.deviceID()); |
|
} |
|
}; |
|
|
|
GPU_TEST_P(FAST, Accuracy) |
|
{ |
|
cv::Mat image = readImage("features2d/aloe.png", cv::IMREAD_GRAYSCALE); |
|
ASSERT_FALSE(image.empty()); |
|
|
|
cv::gpu::FAST_GPU fast(threshold); |
|
fast.nonmaxSupression = nonmaxSupression; |
|
|
|
if (!supportFeature(devInfo, cv::gpu::GLOBAL_ATOMICS)) |
|
{ |
|
try |
|
{ |
|
std::vector<cv::KeyPoint> keypoints; |
|
fast(loadMat(image), cv::gpu::GpuMat(), keypoints); |
|
} |
|
catch (const cv::Exception& e) |
|
{ |
|
ASSERT_EQ(CV_StsNotImplemented, e.code); |
|
} |
|
} |
|
else |
|
{ |
|
std::vector<cv::KeyPoint> keypoints; |
|
fast(loadMat(image), cv::gpu::GpuMat(), keypoints); |
|
|
|
std::vector<cv::KeyPoint> keypoints_gold; |
|
cv::FAST(image, keypoints_gold, threshold, nonmaxSupression); |
|
|
|
ASSERT_KEYPOINTS_EQ(keypoints_gold, keypoints); |
|
} |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(GPU_Features2D, FAST, testing::Combine( |
|
ALL_DEVICES, |
|
testing::Values(FAST_Threshold(25), FAST_Threshold(50)), |
|
testing::Values(FAST_NonmaxSupression(false), FAST_NonmaxSupression(true)))); |
|
|
|
///////////////////////////////////////////////////////////////////////////////////////////////// |
|
// ORB |
|
|
|
namespace |
|
{ |
|
IMPLEMENT_PARAM_CLASS(ORB_FeaturesCount, int) |
|
IMPLEMENT_PARAM_CLASS(ORB_ScaleFactor, float) |
|
IMPLEMENT_PARAM_CLASS(ORB_LevelsCount, int) |
|
IMPLEMENT_PARAM_CLASS(ORB_EdgeThreshold, int) |
|
IMPLEMENT_PARAM_CLASS(ORB_firstLevel, int) |
|
IMPLEMENT_PARAM_CLASS(ORB_WTA_K, int) |
|
IMPLEMENT_PARAM_CLASS(ORB_PatchSize, int) |
|
IMPLEMENT_PARAM_CLASS(ORB_BlurForDescriptor, bool) |
|
} |
|
|
|
CV_ENUM(ORB_ScoreType, cv::ORB::HARRIS_SCORE, cv::ORB::FAST_SCORE) |
|
|
|
PARAM_TEST_CASE(ORB, cv::gpu::DeviceInfo, ORB_FeaturesCount, ORB_ScaleFactor, ORB_LevelsCount, ORB_EdgeThreshold, ORB_firstLevel, ORB_WTA_K, ORB_ScoreType, ORB_PatchSize, ORB_BlurForDescriptor) |
|
{ |
|
cv::gpu::DeviceInfo devInfo; |
|
int nFeatures; |
|
float scaleFactor; |
|
int nLevels; |
|
int edgeThreshold; |
|
int firstLevel; |
|
int WTA_K; |
|
int scoreType; |
|
int patchSize; |
|
bool blurForDescriptor; |
|
|
|
virtual void SetUp() |
|
{ |
|
devInfo = GET_PARAM(0); |
|
nFeatures = GET_PARAM(1); |
|
scaleFactor = GET_PARAM(2); |
|
nLevels = GET_PARAM(3); |
|
edgeThreshold = GET_PARAM(4); |
|
firstLevel = GET_PARAM(5); |
|
WTA_K = GET_PARAM(6); |
|
scoreType = GET_PARAM(7); |
|
patchSize = GET_PARAM(8); |
|
blurForDescriptor = GET_PARAM(9); |
|
|
|
cv::gpu::setDevice(devInfo.deviceID()); |
|
} |
|
}; |
|
|
|
GPU_TEST_P(ORB, Accuracy) |
|
{ |
|
cv::Mat image = readImage("features2d/aloe.png", cv::IMREAD_GRAYSCALE); |
|
ASSERT_FALSE(image.empty()); |
|
|
|
cv::Mat mask(image.size(), CV_8UC1, cv::Scalar::all(1)); |
|
mask(cv::Range(0, image.rows / 2), cv::Range(0, image.cols / 2)).setTo(cv::Scalar::all(0)); |
|
|
|
cv::gpu::ORB_GPU orb(nFeatures, scaleFactor, nLevels, edgeThreshold, firstLevel, WTA_K, scoreType, patchSize); |
|
orb.blurForDescriptor = blurForDescriptor; |
|
|
|
if (!supportFeature(devInfo, cv::gpu::GLOBAL_ATOMICS)) |
|
{ |
|
try |
|
{ |
|
std::vector<cv::KeyPoint> keypoints; |
|
cv::gpu::GpuMat descriptors; |
|
orb(loadMat(image), loadMat(mask), keypoints, descriptors); |
|
} |
|
catch (const cv::Exception& e) |
|
{ |
|
ASSERT_EQ(CV_StsNotImplemented, e.code); |
|
} |
|
} |
|
else |
|
{ |
|
std::vector<cv::KeyPoint> keypoints; |
|
cv::gpu::GpuMat descriptors; |
|
orb(loadMat(image), loadMat(mask), keypoints, descriptors); |
|
|
|
cv::ORB orb_gold(nFeatures, scaleFactor, nLevels, edgeThreshold, firstLevel, WTA_K, scoreType, patchSize); |
|
|
|
std::vector<cv::KeyPoint> keypoints_gold; |
|
cv::Mat descriptors_gold; |
|
orb_gold(image, mask, keypoints_gold, descriptors_gold); |
|
|
|
cv::BFMatcher matcher(cv::NORM_HAMMING); |
|
std::vector<cv::DMatch> matches; |
|
matcher.match(descriptors_gold, cv::Mat(descriptors), matches); |
|
|
|
int matchedCount = getMatchedPointsCount(keypoints_gold, keypoints, matches); |
|
double matchedRatio = static_cast<double>(matchedCount) / keypoints.size(); |
|
|
|
EXPECT_GT(matchedRatio, 0.35); |
|
} |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(GPU_Features2D, ORB, testing::Combine( |
|
ALL_DEVICES, |
|
testing::Values(ORB_FeaturesCount(1000)), |
|
testing::Values(ORB_ScaleFactor(1.2f)), |
|
testing::Values(ORB_LevelsCount(4), ORB_LevelsCount(8)), |
|
testing::Values(ORB_EdgeThreshold(31)), |
|
testing::Values(ORB_firstLevel(0), ORB_firstLevel(2)), |
|
testing::Values(ORB_WTA_K(2), ORB_WTA_K(3), ORB_WTA_K(4)), |
|
testing::Values(ORB_ScoreType(cv::ORB::HARRIS_SCORE)), |
|
testing::Values(ORB_PatchSize(31), ORB_PatchSize(29)), |
|
testing::Values(ORB_BlurForDescriptor(false), ORB_BlurForDescriptor(true)))); |
|
|
|
///////////////////////////////////////////////////////////////////////////////////////////////// |
|
// BruteForceMatcher |
|
|
|
namespace |
|
{ |
|
IMPLEMENT_PARAM_CLASS(DescriptorSize, int) |
|
IMPLEMENT_PARAM_CLASS(UseMask, bool) |
|
} |
|
|
|
PARAM_TEST_CASE(BruteForceMatcher, cv::gpu::DeviceInfo, NormCode, DescriptorSize, UseMask) |
|
{ |
|
cv::gpu::DeviceInfo devInfo; |
|
int normCode; |
|
int dim; |
|
bool useMask; |
|
|
|
int queryDescCount; |
|
int countFactor; |
|
|
|
cv::Mat query, train; |
|
|
|
virtual void SetUp() |
|
{ |
|
devInfo = GET_PARAM(0); |
|
normCode = GET_PARAM(1); |
|
dim = GET_PARAM(2); |
|
useMask = GET_PARAM(3); |
|
|
|
cv::gpu::setDevice(devInfo.deviceID()); |
|
|
|
queryDescCount = 300; // must be even number because we split train data in some cases in two |
|
countFactor = 4; // do not change it |
|
|
|
cv::RNG& rng = cvtest::TS::ptr()->get_rng(); |
|
|
|
cv::Mat queryBuf, trainBuf; |
|
|
|
// Generate query descriptors randomly. |
|
// Descriptor vector elements are integer values. |
|
queryBuf.create(queryDescCount, dim, CV_32SC1); |
|
rng.fill(queryBuf, cv::RNG::UNIFORM, cv::Scalar::all(0), cv::Scalar::all(3)); |
|
queryBuf.convertTo(queryBuf, CV_32FC1); |
|
|
|
// Generate train decriptors as follows: |
|
// copy each query descriptor to train set countFactor times |
|
// and perturb some one element of the copied descriptors in |
|
// in ascending order. General boundaries of the perturbation |
|
// are (0.f, 1.f). |
|
trainBuf.create(queryDescCount * countFactor, dim, CV_32FC1); |
|
float step = 1.f / countFactor; |
|
for (int qIdx = 0; qIdx < queryDescCount; qIdx++) |
|
{ |
|
cv::Mat queryDescriptor = queryBuf.row(qIdx); |
|
for (int c = 0; c < countFactor; c++) |
|
{ |
|
int tIdx = qIdx * countFactor + c; |
|
cv::Mat trainDescriptor = trainBuf.row(tIdx); |
|
queryDescriptor.copyTo(trainDescriptor); |
|
int elem = rng(dim); |
|
float diff = rng.uniform(step * c, step * (c + 1)); |
|
trainDescriptor.at<float>(0, elem) += diff; |
|
} |
|
} |
|
|
|
queryBuf.convertTo(query, CV_32F); |
|
trainBuf.convertTo(train, CV_32F); |
|
} |
|
}; |
|
|
|
GPU_TEST_P(BruteForceMatcher, Match_Single) |
|
{ |
|
cv::gpu::BFMatcher_GPU matcher(normCode); |
|
|
|
cv::gpu::GpuMat mask; |
|
if (useMask) |
|
{ |
|
mask.create(query.rows, train.rows, CV_8UC1); |
|
mask.setTo(cv::Scalar::all(1)); |
|
} |
|
|
|
std::vector<cv::DMatch> matches; |
|
matcher.match(loadMat(query), loadMat(train), matches, mask); |
|
|
|
ASSERT_EQ(static_cast<size_t>(queryDescCount), matches.size()); |
|
|
|
int badCount = 0; |
|
for (size_t i = 0; i < matches.size(); i++) |
|
{ |
|
cv::DMatch match = matches[i]; |
|
if ((match.queryIdx != (int)i) || (match.trainIdx != (int)i * countFactor) || (match.imgIdx != 0)) |
|
badCount++; |
|
} |
|
|
|
ASSERT_EQ(0, badCount); |
|
} |
|
|
|
GPU_TEST_P(BruteForceMatcher, Match_Collection) |
|
{ |
|
cv::gpu::BFMatcher_GPU matcher(normCode); |
|
|
|
cv::gpu::GpuMat d_train(train); |
|
|
|
// make add() twice to test such case |
|
matcher.add(std::vector<cv::gpu::GpuMat>(1, d_train.rowRange(0, train.rows / 2))); |
|
matcher.add(std::vector<cv::gpu::GpuMat>(1, d_train.rowRange(train.rows / 2, train.rows))); |
|
|
|
// prepare masks (make first nearest match illegal) |
|
std::vector<cv::gpu::GpuMat> masks(2); |
|
for (int mi = 0; mi < 2; mi++) |
|
{ |
|
masks[mi] = cv::gpu::GpuMat(query.rows, train.rows/2, CV_8UC1, cv::Scalar::all(1)); |
|
for (int di = 0; di < queryDescCount/2; di++) |
|
masks[mi].col(di * countFactor).setTo(cv::Scalar::all(0)); |
|
} |
|
|
|
std::vector<cv::DMatch> matches; |
|
if (useMask) |
|
matcher.match(cv::gpu::GpuMat(query), matches, masks); |
|
else |
|
matcher.match(cv::gpu::GpuMat(query), matches); |
|
|
|
ASSERT_EQ(static_cast<size_t>(queryDescCount), matches.size()); |
|
|
|
int badCount = 0; |
|
int shift = useMask ? 1 : 0; |
|
for (size_t i = 0; i < matches.size(); i++) |
|
{ |
|
cv::DMatch match = matches[i]; |
|
|
|
if ((int)i < queryDescCount / 2) |
|
{ |
|
bool validQueryIdx = (match.queryIdx == (int)i); |
|
bool validTrainIdx = (match.trainIdx == (int)i * countFactor + shift); |
|
bool validImgIdx = (match.imgIdx == 0); |
|
if (!validQueryIdx || !validTrainIdx || !validImgIdx) |
|
badCount++; |
|
} |
|
else |
|
{ |
|
bool validQueryIdx = (match.queryIdx == (int)i); |
|
bool validTrainIdx = (match.trainIdx == ((int)i - queryDescCount / 2) * countFactor + shift); |
|
bool validImgIdx = (match.imgIdx == 1); |
|
if (!validQueryIdx || !validTrainIdx || !validImgIdx) |
|
badCount++; |
|
} |
|
} |
|
|
|
ASSERT_EQ(0, badCount); |
|
} |
|
|
|
GPU_TEST_P(BruteForceMatcher, KnnMatch_2_Single) |
|
{ |
|
cv::gpu::BFMatcher_GPU matcher(normCode); |
|
|
|
const int knn = 2; |
|
|
|
cv::gpu::GpuMat mask; |
|
if (useMask) |
|
{ |
|
mask.create(query.rows, train.rows, CV_8UC1); |
|
mask.setTo(cv::Scalar::all(1)); |
|
} |
|
|
|
std::vector< std::vector<cv::DMatch> > matches; |
|
matcher.knnMatch(loadMat(query), loadMat(train), matches, knn, mask); |
|
|
|
ASSERT_EQ(static_cast<size_t>(queryDescCount), matches.size()); |
|
|
|
int badCount = 0; |
|
for (size_t i = 0; i < matches.size(); i++) |
|
{ |
|
if ((int)matches[i].size() != knn) |
|
badCount++; |
|
else |
|
{ |
|
int localBadCount = 0; |
|
for (int k = 0; k < knn; k++) |
|
{ |
|
cv::DMatch match = matches[i][k]; |
|
if ((match.queryIdx != (int)i) || (match.trainIdx != (int)i * countFactor + k) || (match.imgIdx != 0)) |
|
localBadCount++; |
|
} |
|
badCount += localBadCount > 0 ? 1 : 0; |
|
} |
|
} |
|
|
|
ASSERT_EQ(0, badCount); |
|
} |
|
|
|
GPU_TEST_P(BruteForceMatcher, KnnMatch_3_Single) |
|
{ |
|
cv::gpu::BFMatcher_GPU matcher(normCode); |
|
|
|
const int knn = 3; |
|
|
|
cv::gpu::GpuMat mask; |
|
if (useMask) |
|
{ |
|
mask.create(query.rows, train.rows, CV_8UC1); |
|
mask.setTo(cv::Scalar::all(1)); |
|
} |
|
|
|
std::vector< std::vector<cv::DMatch> > matches; |
|
matcher.knnMatch(loadMat(query), loadMat(train), matches, knn, mask); |
|
|
|
ASSERT_EQ(static_cast<size_t>(queryDescCount), matches.size()); |
|
|
|
int badCount = 0; |
|
for (size_t i = 0; i < matches.size(); i++) |
|
{ |
|
if ((int)matches[i].size() != knn) |
|
badCount++; |
|
else |
|
{ |
|
int localBadCount = 0; |
|
for (int k = 0; k < knn; k++) |
|
{ |
|
cv::DMatch match = matches[i][k]; |
|
if ((match.queryIdx != (int)i) || (match.trainIdx != (int)i * countFactor + k) || (match.imgIdx != 0)) |
|
localBadCount++; |
|
} |
|
badCount += localBadCount > 0 ? 1 : 0; |
|
} |
|
} |
|
|
|
ASSERT_EQ(0, badCount); |
|
} |
|
|
|
GPU_TEST_P(BruteForceMatcher, KnnMatch_2_Collection) |
|
{ |
|
cv::gpu::BFMatcher_GPU matcher(normCode); |
|
|
|
const int knn = 2; |
|
|
|
cv::gpu::GpuMat d_train(train); |
|
|
|
// make add() twice to test such case |
|
matcher.add(std::vector<cv::gpu::GpuMat>(1, d_train.rowRange(0, train.rows / 2))); |
|
matcher.add(std::vector<cv::gpu::GpuMat>(1, d_train.rowRange(train.rows / 2, train.rows))); |
|
|
|
// prepare masks (make first nearest match illegal) |
|
std::vector<cv::gpu::GpuMat> masks(2); |
|
for (int mi = 0; mi < 2; mi++ ) |
|
{ |
|
masks[mi] = cv::gpu::GpuMat(query.rows, train.rows / 2, CV_8UC1, cv::Scalar::all(1)); |
|
for (int di = 0; di < queryDescCount / 2; di++) |
|
masks[mi].col(di * countFactor).setTo(cv::Scalar::all(0)); |
|
} |
|
|
|
std::vector< std::vector<cv::DMatch> > matches; |
|
|
|
if (useMask) |
|
matcher.knnMatch(cv::gpu::GpuMat(query), matches, knn, masks); |
|
else |
|
matcher.knnMatch(cv::gpu::GpuMat(query), matches, knn); |
|
|
|
ASSERT_EQ(static_cast<size_t>(queryDescCount), matches.size()); |
|
|
|
int badCount = 0; |
|
int shift = useMask ? 1 : 0; |
|
for (size_t i = 0; i < matches.size(); i++) |
|
{ |
|
if ((int)matches[i].size() != knn) |
|
badCount++; |
|
else |
|
{ |
|
int localBadCount = 0; |
|
for (int k = 0; k < knn; k++) |
|
{ |
|
cv::DMatch match = matches[i][k]; |
|
{ |
|
if ((int)i < queryDescCount / 2) |
|
{ |
|
if ((match.queryIdx != (int)i) || (match.trainIdx != (int)i * countFactor + k + shift) || (match.imgIdx != 0) ) |
|
localBadCount++; |
|
} |
|
else |
|
{ |
|
if ((match.queryIdx != (int)i) || (match.trainIdx != ((int)i - queryDescCount / 2) * countFactor + k + shift) || (match.imgIdx != 1) ) |
|
localBadCount++; |
|
} |
|
} |
|
} |
|
badCount += localBadCount > 0 ? 1 : 0; |
|
} |
|
} |
|
|
|
ASSERT_EQ(0, badCount); |
|
} |
|
|
|
GPU_TEST_P(BruteForceMatcher, KnnMatch_3_Collection) |
|
{ |
|
cv::gpu::BFMatcher_GPU matcher(normCode); |
|
|
|
const int knn = 3; |
|
|
|
cv::gpu::GpuMat d_train(train); |
|
|
|
// make add() twice to test such case |
|
matcher.add(std::vector<cv::gpu::GpuMat>(1, d_train.rowRange(0, train.rows / 2))); |
|
matcher.add(std::vector<cv::gpu::GpuMat>(1, d_train.rowRange(train.rows / 2, train.rows))); |
|
|
|
// prepare masks (make first nearest match illegal) |
|
std::vector<cv::gpu::GpuMat> masks(2); |
|
for (int mi = 0; mi < 2; mi++ ) |
|
{ |
|
masks[mi] = cv::gpu::GpuMat(query.rows, train.rows / 2, CV_8UC1, cv::Scalar::all(1)); |
|
for (int di = 0; di < queryDescCount / 2; di++) |
|
masks[mi].col(di * countFactor).setTo(cv::Scalar::all(0)); |
|
} |
|
|
|
std::vector< std::vector<cv::DMatch> > matches; |
|
|
|
if (useMask) |
|
matcher.knnMatch(cv::gpu::GpuMat(query), matches, knn, masks); |
|
else |
|
matcher.knnMatch(cv::gpu::GpuMat(query), matches, knn); |
|
|
|
ASSERT_EQ(static_cast<size_t>(queryDescCount), matches.size()); |
|
|
|
int badCount = 0; |
|
int shift = useMask ? 1 : 0; |
|
for (size_t i = 0; i < matches.size(); i++) |
|
{ |
|
if ((int)matches[i].size() != knn) |
|
badCount++; |
|
else |
|
{ |
|
int localBadCount = 0; |
|
for (int k = 0; k < knn; k++) |
|
{ |
|
cv::DMatch match = matches[i][k]; |
|
{ |
|
if ((int)i < queryDescCount / 2) |
|
{ |
|
if ((match.queryIdx != (int)i) || (match.trainIdx != (int)i * countFactor + k + shift) || (match.imgIdx != 0) ) |
|
localBadCount++; |
|
} |
|
else |
|
{ |
|
if ((match.queryIdx != (int)i) || (match.trainIdx != ((int)i - queryDescCount / 2) * countFactor + k + shift) || (match.imgIdx != 1) ) |
|
localBadCount++; |
|
} |
|
} |
|
} |
|
badCount += localBadCount > 0 ? 1 : 0; |
|
} |
|
} |
|
|
|
ASSERT_EQ(0, badCount); |
|
} |
|
|
|
GPU_TEST_P(BruteForceMatcher, RadiusMatch_Single) |
|
{ |
|
cv::gpu::BFMatcher_GPU matcher(normCode); |
|
|
|
const float radius = 1.f / countFactor; |
|
|
|
if (!supportFeature(devInfo, cv::gpu::GLOBAL_ATOMICS)) |
|
{ |
|
try |
|
{ |
|
std::vector< std::vector<cv::DMatch> > matches; |
|
matcher.radiusMatch(loadMat(query), loadMat(train), matches, radius); |
|
} |
|
catch (const cv::Exception& e) |
|
{ |
|
ASSERT_EQ(CV_StsNotImplemented, e.code); |
|
} |
|
} |
|
else |
|
{ |
|
cv::gpu::GpuMat mask; |
|
if (useMask) |
|
{ |
|
mask.create(query.rows, train.rows, CV_8UC1); |
|
mask.setTo(cv::Scalar::all(1)); |
|
} |
|
|
|
std::vector< std::vector<cv::DMatch> > matches; |
|
matcher.radiusMatch(loadMat(query), loadMat(train), matches, radius, mask); |
|
|
|
ASSERT_EQ(static_cast<size_t>(queryDescCount), matches.size()); |
|
|
|
int badCount = 0; |
|
for (size_t i = 0; i < matches.size(); i++) |
|
{ |
|
if ((int)matches[i].size() != 1) |
|
badCount++; |
|
else |
|
{ |
|
cv::DMatch match = matches[i][0]; |
|
if ((match.queryIdx != (int)i) || (match.trainIdx != (int)i*countFactor) || (match.imgIdx != 0)) |
|
badCount++; |
|
} |
|
} |
|
|
|
ASSERT_EQ(0, badCount); |
|
} |
|
} |
|
|
|
GPU_TEST_P(BruteForceMatcher, RadiusMatch_Collection) |
|
{ |
|
cv::gpu::BFMatcher_GPU matcher(normCode); |
|
|
|
const int n = 3; |
|
const float radius = 1.f / countFactor * n; |
|
|
|
cv::gpu::GpuMat d_train(train); |
|
|
|
// make add() twice to test such case |
|
matcher.add(std::vector<cv::gpu::GpuMat>(1, d_train.rowRange(0, train.rows / 2))); |
|
matcher.add(std::vector<cv::gpu::GpuMat>(1, d_train.rowRange(train.rows / 2, train.rows))); |
|
|
|
// prepare masks (make first nearest match illegal) |
|
std::vector<cv::gpu::GpuMat> masks(2); |
|
for (int mi = 0; mi < 2; mi++) |
|
{ |
|
masks[mi] = cv::gpu::GpuMat(query.rows, train.rows / 2, CV_8UC1, cv::Scalar::all(1)); |
|
for (int di = 0; di < queryDescCount / 2; di++) |
|
masks[mi].col(di * countFactor).setTo(cv::Scalar::all(0)); |
|
} |
|
|
|
if (!supportFeature(devInfo, cv::gpu::GLOBAL_ATOMICS)) |
|
{ |
|
try |
|
{ |
|
std::vector< std::vector<cv::DMatch> > matches; |
|
matcher.radiusMatch(cv::gpu::GpuMat(query), matches, radius, masks); |
|
} |
|
catch (const cv::Exception& e) |
|
{ |
|
ASSERT_EQ(CV_StsNotImplemented, e.code); |
|
} |
|
} |
|
else |
|
{ |
|
std::vector< std::vector<cv::DMatch> > matches; |
|
|
|
if (useMask) |
|
matcher.radiusMatch(cv::gpu::GpuMat(query), matches, radius, masks); |
|
else |
|
matcher.radiusMatch(cv::gpu::GpuMat(query), matches, radius); |
|
|
|
ASSERT_EQ(static_cast<size_t>(queryDescCount), matches.size()); |
|
|
|
int badCount = 0; |
|
int shift = useMask ? 1 : 0; |
|
int needMatchCount = useMask ? n-1 : n; |
|
for (size_t i = 0; i < matches.size(); i++) |
|
{ |
|
if ((int)matches[i].size() != needMatchCount) |
|
badCount++; |
|
else |
|
{ |
|
int localBadCount = 0; |
|
for (int k = 0; k < needMatchCount; k++) |
|
{ |
|
cv::DMatch match = matches[i][k]; |
|
{ |
|
if ((int)i < queryDescCount / 2) |
|
{ |
|
if ((match.queryIdx != (int)i) || (match.trainIdx != (int)i * countFactor + k + shift) || (match.imgIdx != 0) ) |
|
localBadCount++; |
|
} |
|
else |
|
{ |
|
if ((match.queryIdx != (int)i) || (match.trainIdx != ((int)i - queryDescCount / 2) * countFactor + k + shift) || (match.imgIdx != 1) ) |
|
localBadCount++; |
|
} |
|
} |
|
} |
|
badCount += localBadCount > 0 ? 1 : 0; |
|
} |
|
} |
|
|
|
ASSERT_EQ(0, badCount); |
|
} |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(GPU_Features2D, BruteForceMatcher, testing::Combine( |
|
ALL_DEVICES, |
|
testing::Values(NormCode(cv::NORM_L1), NormCode(cv::NORM_L2)), |
|
testing::Values(DescriptorSize(57), DescriptorSize(64), DescriptorSize(83), DescriptorSize(128), DescriptorSize(179), DescriptorSize(256), DescriptorSize(304)), |
|
testing::Values(UseMask(false), UseMask(true)))); |
|
|
|
#endif // HAVE_CUDA
|
|
|