mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2159 lines
77 KiB
2159 lines
77 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// Intel License Agreement |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of Intel Corporation may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#ifndef __OPENCV_ML_HPP__ |
|
#define __OPENCV_ML_HPP__ |
|
|
|
#ifdef __cplusplus |
|
# include "opencv2/core.hpp" |
|
#endif |
|
|
|
#include "opencv2/core/core_c.h" |
|
#include <limits.h> |
|
|
|
#ifdef __cplusplus |
|
|
|
#include <map> |
|
#include <iostream> |
|
|
|
// Apple defines a check() macro somewhere in the debug headers |
|
// that interferes with a method definiton in this header |
|
#undef check |
|
|
|
/****************************************************************************************\ |
|
* Main struct definitions * |
|
\****************************************************************************************/ |
|
|
|
/* log(2*PI) */ |
|
#define CV_LOG2PI (1.8378770664093454835606594728112) |
|
|
|
/* columns of <trainData> matrix are training samples */ |
|
#define CV_COL_SAMPLE 0 |
|
|
|
/* rows of <trainData> matrix are training samples */ |
|
#define CV_ROW_SAMPLE 1 |
|
|
|
#define CV_IS_ROW_SAMPLE(flags) ((flags) & CV_ROW_SAMPLE) |
|
|
|
struct CvVectors |
|
{ |
|
int type; |
|
int dims, count; |
|
CvVectors* next; |
|
union |
|
{ |
|
uchar** ptr; |
|
float** fl; |
|
double** db; |
|
} data; |
|
}; |
|
|
|
#if 0 |
|
/* A structure, representing the lattice range of statmodel parameters. |
|
It is used for optimizing statmodel parameters by cross-validation method. |
|
The lattice is logarithmic, so <step> must be greater then 1. */ |
|
typedef struct CvParamLattice |
|
{ |
|
double min_val; |
|
double max_val; |
|
double step; |
|
} |
|
CvParamLattice; |
|
|
|
CV_INLINE CvParamLattice cvParamLattice( double min_val, double max_val, |
|
double log_step ) |
|
{ |
|
CvParamLattice pl; |
|
pl.min_val = MIN( min_val, max_val ); |
|
pl.max_val = MAX( min_val, max_val ); |
|
pl.step = MAX( log_step, 1. ); |
|
return pl; |
|
} |
|
|
|
CV_INLINE CvParamLattice cvDefaultParamLattice( void ) |
|
{ |
|
CvParamLattice pl = {0,0,0}; |
|
return pl; |
|
} |
|
#endif |
|
|
|
/* Variable type */ |
|
#define CV_VAR_NUMERICAL 0 |
|
#define CV_VAR_ORDERED 0 |
|
#define CV_VAR_CATEGORICAL 1 |
|
|
|
#define CV_TYPE_NAME_ML_SVM "opencv-ml-svm" |
|
#define CV_TYPE_NAME_ML_KNN "opencv-ml-knn" |
|
#define CV_TYPE_NAME_ML_NBAYES "opencv-ml-bayesian" |
|
#define CV_TYPE_NAME_ML_EM "opencv-ml-em" |
|
#define CV_TYPE_NAME_ML_BOOSTING "opencv-ml-boost-tree" |
|
#define CV_TYPE_NAME_ML_TREE "opencv-ml-tree" |
|
#define CV_TYPE_NAME_ML_ANN_MLP "opencv-ml-ann-mlp" |
|
#define CV_TYPE_NAME_ML_CNN "opencv-ml-cnn" |
|
#define CV_TYPE_NAME_ML_RTREES "opencv-ml-random-trees" |
|
#define CV_TYPE_NAME_ML_ERTREES "opencv-ml-extremely-randomized-trees" |
|
#define CV_TYPE_NAME_ML_GBT "opencv-ml-gradient-boosting-trees" |
|
|
|
#define CV_TRAIN_ERROR 0 |
|
#define CV_TEST_ERROR 1 |
|
|
|
class CV_EXPORTS_W CvStatModel |
|
{ |
|
public: |
|
CvStatModel(); |
|
virtual ~CvStatModel(); |
|
|
|
virtual void clear(); |
|
|
|
CV_WRAP virtual void save( const char* filename, const char* name=0 ) const; |
|
CV_WRAP virtual void load( const char* filename, const char* name=0 ); |
|
|
|
virtual void write( CvFileStorage* storage, const char* name ) const; |
|
virtual void read( CvFileStorage* storage, CvFileNode* node ); |
|
|
|
protected: |
|
const char* default_model_name; |
|
}; |
|
|
|
/****************************************************************************************\ |
|
* Normal Bayes Classifier * |
|
\****************************************************************************************/ |
|
|
|
/* The structure, representing the grid range of statmodel parameters. |
|
It is used for optimizing statmodel accuracy by varying model parameters, |
|
the accuracy estimate being computed by cross-validation. |
|
The grid is logarithmic, so <step> must be greater then 1. */ |
|
|
|
class CvMLData; |
|
|
|
struct CV_EXPORTS_W_MAP CvParamGrid |
|
{ |
|
// SVM params type |
|
enum { SVM_C=0, SVM_GAMMA=1, SVM_P=2, SVM_NU=3, SVM_COEF=4, SVM_DEGREE=5 }; |
|
|
|
CvParamGrid() |
|
{ |
|
min_val = max_val = step = 0; |
|
} |
|
|
|
CvParamGrid( double min_val, double max_val, double log_step ); |
|
//CvParamGrid( int param_id ); |
|
bool check() const; |
|
|
|
CV_PROP_RW double min_val; |
|
CV_PROP_RW double max_val; |
|
CV_PROP_RW double step; |
|
}; |
|
|
|
inline CvParamGrid::CvParamGrid( double _min_val, double _max_val, double _log_step ) |
|
{ |
|
min_val = _min_val; |
|
max_val = _max_val; |
|
step = _log_step; |
|
} |
|
|
|
class CV_EXPORTS_W CvNormalBayesClassifier : public CvStatModel |
|
{ |
|
public: |
|
CV_WRAP CvNormalBayesClassifier(); |
|
virtual ~CvNormalBayesClassifier(); |
|
|
|
CvNormalBayesClassifier( const CvMat* trainData, const CvMat* responses, |
|
const CvMat* varIdx=0, const CvMat* sampleIdx=0 ); |
|
|
|
virtual bool train( const CvMat* trainData, const CvMat* responses, |
|
const CvMat* varIdx = 0, const CvMat* sampleIdx=0, bool update=false ); |
|
|
|
virtual float predict( const CvMat* samples, CV_OUT CvMat* results=0 ) const; |
|
CV_WRAP virtual void clear(); |
|
|
|
CV_WRAP CvNormalBayesClassifier( const cv::Mat& trainData, const cv::Mat& responses, |
|
const cv::Mat& varIdx=cv::Mat(), const cv::Mat& sampleIdx=cv::Mat() ); |
|
CV_WRAP virtual bool train( const cv::Mat& trainData, const cv::Mat& responses, |
|
const cv::Mat& varIdx = cv::Mat(), const cv::Mat& sampleIdx=cv::Mat(), |
|
bool update=false ); |
|
CV_WRAP virtual float predict( const cv::Mat& samples, CV_OUT cv::Mat* results=0 ) const; |
|
|
|
virtual void write( CvFileStorage* storage, const char* name ) const; |
|
virtual void read( CvFileStorage* storage, CvFileNode* node ); |
|
|
|
protected: |
|
int var_count, var_all; |
|
CvMat* var_idx; |
|
CvMat* cls_labels; |
|
CvMat** count; |
|
CvMat** sum; |
|
CvMat** productsum; |
|
CvMat** avg; |
|
CvMat** inv_eigen_values; |
|
CvMat** cov_rotate_mats; |
|
CvMat* c; |
|
}; |
|
|
|
|
|
/****************************************************************************************\ |
|
* K-Nearest Neighbour Classifier * |
|
\****************************************************************************************/ |
|
|
|
// k Nearest Neighbors |
|
class CV_EXPORTS_W CvKNearest : public CvStatModel |
|
{ |
|
public: |
|
|
|
CV_WRAP CvKNearest(); |
|
virtual ~CvKNearest(); |
|
|
|
CvKNearest( const CvMat* trainData, const CvMat* responses, |
|
const CvMat* sampleIdx=0, bool isRegression=false, int max_k=32 ); |
|
|
|
virtual bool train( const CvMat* trainData, const CvMat* responses, |
|
const CvMat* sampleIdx=0, bool is_regression=false, |
|
int maxK=32, bool updateBase=false ); |
|
|
|
virtual float find_nearest( const CvMat* samples, int k, CV_OUT CvMat* results=0, |
|
const float** neighbors=0, CV_OUT CvMat* neighborResponses=0, CV_OUT CvMat* dist=0 ) const; |
|
|
|
CV_WRAP CvKNearest( const cv::Mat& trainData, const cv::Mat& responses, |
|
const cv::Mat& sampleIdx=cv::Mat(), bool isRegression=false, int max_k=32 ); |
|
|
|
CV_WRAP virtual bool train( const cv::Mat& trainData, const cv::Mat& responses, |
|
const cv::Mat& sampleIdx=cv::Mat(), bool isRegression=false, |
|
int maxK=32, bool updateBase=false ); |
|
|
|
virtual float find_nearest( const cv::Mat& samples, int k, cv::Mat* results=0, |
|
const float** neighbors=0, cv::Mat* neighborResponses=0, |
|
cv::Mat* dist=0 ) const; |
|
CV_WRAP virtual float find_nearest( const cv::Mat& samples, int k, CV_OUT cv::Mat& results, |
|
CV_OUT cv::Mat& neighborResponses, CV_OUT cv::Mat& dists) const; |
|
|
|
virtual void clear(); |
|
int get_max_k() const; |
|
int get_var_count() const; |
|
int get_sample_count() const; |
|
bool is_regression() const; |
|
|
|
virtual float write_results( int k, int k1, int start, int end, |
|
const float* neighbor_responses, const float* dist, CvMat* _results, |
|
CvMat* _neighbor_responses, CvMat* _dist, Cv32suf* sort_buf ) const; |
|
|
|
virtual void find_neighbors_direct( const CvMat* _samples, int k, int start, int end, |
|
float* neighbor_responses, const float** neighbors, float* dist ) const; |
|
|
|
protected: |
|
|
|
int max_k, var_count; |
|
int total; |
|
bool regression; |
|
CvVectors* samples; |
|
}; |
|
|
|
/****************************************************************************************\ |
|
* Support Vector Machines * |
|
\****************************************************************************************/ |
|
|
|
// SVM training parameters |
|
struct CV_EXPORTS_W_MAP CvSVMParams |
|
{ |
|
CvSVMParams(); |
|
CvSVMParams( int svm_type, int kernel_type, |
|
double degree, double gamma, double coef0, |
|
double Cvalue, double nu, double p, |
|
CvMat* class_weights, CvTermCriteria term_crit ); |
|
|
|
CV_PROP_RW int svm_type; |
|
CV_PROP_RW int kernel_type; |
|
CV_PROP_RW double degree; // for poly |
|
CV_PROP_RW double gamma; // for poly/rbf/sigmoid/chi2 |
|
CV_PROP_RW double coef0; // for poly/sigmoid |
|
|
|
CV_PROP_RW double C; // for CV_SVM_C_SVC, CV_SVM_EPS_SVR and CV_SVM_NU_SVR |
|
CV_PROP_RW double nu; // for CV_SVM_NU_SVC, CV_SVM_ONE_CLASS, and CV_SVM_NU_SVR |
|
CV_PROP_RW double p; // for CV_SVM_EPS_SVR |
|
CvMat* class_weights; // for CV_SVM_C_SVC |
|
CV_PROP_RW CvTermCriteria term_crit; // termination criteria |
|
}; |
|
|
|
|
|
struct CV_EXPORTS CvSVMKernel |
|
{ |
|
typedef void (CvSVMKernel::*Calc)( int vec_count, int vec_size, const float** vecs, |
|
const float* another, float* results ); |
|
CvSVMKernel(); |
|
CvSVMKernel( const CvSVMParams* params, Calc _calc_func ); |
|
virtual bool create( const CvSVMParams* params, Calc _calc_func ); |
|
virtual ~CvSVMKernel(); |
|
|
|
virtual void clear(); |
|
virtual void calc( int vcount, int n, const float** vecs, const float* another, float* results ); |
|
|
|
const CvSVMParams* params; |
|
Calc calc_func; |
|
|
|
virtual void calc_non_rbf_base( int vec_count, int vec_size, const float** vecs, |
|
const float* another, float* results, |
|
double alpha, double beta ); |
|
virtual void calc_intersec( int vcount, int var_count, const float** vecs, |
|
const float* another, float* results ); |
|
virtual void calc_chi2( int vec_count, int vec_size, const float** vecs, |
|
const float* another, float* results ); |
|
virtual void calc_linear( int vec_count, int vec_size, const float** vecs, |
|
const float* another, float* results ); |
|
virtual void calc_rbf( int vec_count, int vec_size, const float** vecs, |
|
const float* another, float* results ); |
|
virtual void calc_poly( int vec_count, int vec_size, const float** vecs, |
|
const float* another, float* results ); |
|
virtual void calc_sigmoid( int vec_count, int vec_size, const float** vecs, |
|
const float* another, float* results ); |
|
}; |
|
|
|
|
|
struct CvSVMKernelRow |
|
{ |
|
CvSVMKernelRow* prev; |
|
CvSVMKernelRow* next; |
|
float* data; |
|
}; |
|
|
|
|
|
struct CvSVMSolutionInfo |
|
{ |
|
double obj; |
|
double rho; |
|
double upper_bound_p; |
|
double upper_bound_n; |
|
double r; // for Solver_NU |
|
}; |
|
|
|
class CV_EXPORTS CvSVMSolver |
|
{ |
|
public: |
|
typedef bool (CvSVMSolver::*SelectWorkingSet)( int& i, int& j ); |
|
typedef float* (CvSVMSolver::*GetRow)( int i, float* row, float* dst, bool existed ); |
|
typedef void (CvSVMSolver::*CalcRho)( double& rho, double& r ); |
|
|
|
CvSVMSolver(); |
|
|
|
CvSVMSolver( int count, int var_count, const float** samples, schar* y, |
|
int alpha_count, double* alpha, double Cp, double Cn, |
|
CvMemStorage* storage, CvSVMKernel* kernel, GetRow get_row, |
|
SelectWorkingSet select_working_set, CalcRho calc_rho ); |
|
virtual bool create( int count, int var_count, const float** samples, schar* y, |
|
int alpha_count, double* alpha, double Cp, double Cn, |
|
CvMemStorage* storage, CvSVMKernel* kernel, GetRow get_row, |
|
SelectWorkingSet select_working_set, CalcRho calc_rho ); |
|
virtual ~CvSVMSolver(); |
|
|
|
virtual void clear(); |
|
virtual bool solve_generic( CvSVMSolutionInfo& si ); |
|
|
|
virtual bool solve_c_svc( int count, int var_count, const float** samples, schar* y, |
|
double Cp, double Cn, CvMemStorage* storage, |
|
CvSVMKernel* kernel, double* alpha, CvSVMSolutionInfo& si ); |
|
virtual bool solve_nu_svc( int count, int var_count, const float** samples, schar* y, |
|
CvMemStorage* storage, CvSVMKernel* kernel, |
|
double* alpha, CvSVMSolutionInfo& si ); |
|
virtual bool solve_one_class( int count, int var_count, const float** samples, |
|
CvMemStorage* storage, CvSVMKernel* kernel, |
|
double* alpha, CvSVMSolutionInfo& si ); |
|
|
|
virtual bool solve_eps_svr( int count, int var_count, const float** samples, const float* y, |
|
CvMemStorage* storage, CvSVMKernel* kernel, |
|
double* alpha, CvSVMSolutionInfo& si ); |
|
|
|
virtual bool solve_nu_svr( int count, int var_count, const float** samples, const float* y, |
|
CvMemStorage* storage, CvSVMKernel* kernel, |
|
double* alpha, CvSVMSolutionInfo& si ); |
|
|
|
virtual float* get_row_base( int i, bool* _existed ); |
|
virtual float* get_row( int i, float* dst ); |
|
|
|
int sample_count; |
|
int var_count; |
|
int cache_size; |
|
int cache_line_size; |
|
const float** samples; |
|
const CvSVMParams* params; |
|
CvMemStorage* storage; |
|
CvSVMKernelRow lru_list; |
|
CvSVMKernelRow* rows; |
|
|
|
int alpha_count; |
|
|
|
double* G; |
|
double* alpha; |
|
|
|
// -1 - lower bound, 0 - free, 1 - upper bound |
|
schar* alpha_status; |
|
|
|
schar* y; |
|
double* b; |
|
float* buf[2]; |
|
double eps; |
|
int max_iter; |
|
double C[2]; // C[0] == Cn, C[1] == Cp |
|
CvSVMKernel* kernel; |
|
|
|
SelectWorkingSet select_working_set_func; |
|
CalcRho calc_rho_func; |
|
GetRow get_row_func; |
|
|
|
virtual bool select_working_set( int& i, int& j ); |
|
virtual bool select_working_set_nu_svm( int& i, int& j ); |
|
virtual void calc_rho( double& rho, double& r ); |
|
virtual void calc_rho_nu_svm( double& rho, double& r ); |
|
|
|
virtual float* get_row_svc( int i, float* row, float* dst, bool existed ); |
|
virtual float* get_row_one_class( int i, float* row, float* dst, bool existed ); |
|
virtual float* get_row_svr( int i, float* row, float* dst, bool existed ); |
|
}; |
|
|
|
|
|
struct CvSVMDecisionFunc |
|
{ |
|
double rho; |
|
int sv_count; |
|
double* alpha; |
|
int* sv_index; |
|
}; |
|
|
|
|
|
// SVM model |
|
class CV_EXPORTS_W CvSVM : public CvStatModel |
|
{ |
|
public: |
|
// SVM type |
|
enum { C_SVC=100, NU_SVC=101, ONE_CLASS=102, EPS_SVR=103, NU_SVR=104 }; |
|
|
|
// SVM kernel type |
|
enum { LINEAR=0, POLY=1, RBF=2, SIGMOID=3, CHI2=4, INTER=5 }; |
|
|
|
// SVM params type |
|
enum { C=0, GAMMA=1, P=2, NU=3, COEF=4, DEGREE=5 }; |
|
|
|
CV_WRAP CvSVM(); |
|
virtual ~CvSVM(); |
|
|
|
CvSVM( const CvMat* trainData, const CvMat* responses, |
|
const CvMat* varIdx=0, const CvMat* sampleIdx=0, |
|
CvSVMParams params=CvSVMParams() ); |
|
|
|
virtual bool train( const CvMat* trainData, const CvMat* responses, |
|
const CvMat* varIdx=0, const CvMat* sampleIdx=0, |
|
CvSVMParams params=CvSVMParams() ); |
|
|
|
virtual bool train_auto( const CvMat* trainData, const CvMat* responses, |
|
const CvMat* varIdx, const CvMat* sampleIdx, CvSVMParams params, |
|
int kfold = 10, |
|
CvParamGrid Cgrid = get_default_grid(CvSVM::C), |
|
CvParamGrid gammaGrid = get_default_grid(CvSVM::GAMMA), |
|
CvParamGrid pGrid = get_default_grid(CvSVM::P), |
|
CvParamGrid nuGrid = get_default_grid(CvSVM::NU), |
|
CvParamGrid coeffGrid = get_default_grid(CvSVM::COEF), |
|
CvParamGrid degreeGrid = get_default_grid(CvSVM::DEGREE), |
|
bool balanced=false ); |
|
|
|
virtual float predict( const CvMat* sample, bool returnDFVal=false ) const; |
|
virtual float predict( const CvMat* samples, CV_OUT CvMat* results ) const; |
|
|
|
CV_WRAP CvSVM( const cv::Mat& trainData, const cv::Mat& responses, |
|
const cv::Mat& varIdx=cv::Mat(), const cv::Mat& sampleIdx=cv::Mat(), |
|
CvSVMParams params=CvSVMParams() ); |
|
|
|
CV_WRAP virtual bool train( const cv::Mat& trainData, const cv::Mat& responses, |
|
const cv::Mat& varIdx=cv::Mat(), const cv::Mat& sampleIdx=cv::Mat(), |
|
CvSVMParams params=CvSVMParams() ); |
|
|
|
CV_WRAP virtual bool train_auto( const cv::Mat& trainData, const cv::Mat& responses, |
|
const cv::Mat& varIdx, const cv::Mat& sampleIdx, CvSVMParams params, |
|
int k_fold = 10, |
|
CvParamGrid Cgrid = CvSVM::get_default_grid(CvSVM::C), |
|
CvParamGrid gammaGrid = CvSVM::get_default_grid(CvSVM::GAMMA), |
|
CvParamGrid pGrid = CvSVM::get_default_grid(CvSVM::P), |
|
CvParamGrid nuGrid = CvSVM::get_default_grid(CvSVM::NU), |
|
CvParamGrid coeffGrid = CvSVM::get_default_grid(CvSVM::COEF), |
|
CvParamGrid degreeGrid = CvSVM::get_default_grid(CvSVM::DEGREE), |
|
bool balanced=false); |
|
CV_WRAP virtual float predict( const cv::Mat& sample, bool returnDFVal=false ) const; |
|
CV_WRAP_AS(predict_all) virtual void predict( cv::InputArray samples, cv::OutputArray results ) const; |
|
|
|
CV_WRAP virtual int get_support_vector_count() const; |
|
virtual const float* get_support_vector(int i) const; |
|
virtual CvSVMParams get_params() const { return params; }; |
|
CV_WRAP virtual void clear(); |
|
|
|
static CvParamGrid get_default_grid( int param_id ); |
|
|
|
virtual void write( CvFileStorage* storage, const char* name ) const; |
|
virtual void read( CvFileStorage* storage, CvFileNode* node ); |
|
CV_WRAP int get_var_count() const { return var_idx ? var_idx->cols : var_all; } |
|
|
|
protected: |
|
|
|
virtual bool set_params( const CvSVMParams& params ); |
|
virtual bool train1( int sample_count, int var_count, const float** samples, |
|
const void* responses, double Cp, double Cn, |
|
CvMemStorage* _storage, double* alpha, double& rho ); |
|
virtual bool do_train( int svm_type, int sample_count, int var_count, const float** samples, |
|
const CvMat* responses, CvMemStorage* _storage, double* alpha ); |
|
virtual void create_kernel(); |
|
virtual void create_solver(); |
|
|
|
virtual float predict( const float* row_sample, int row_len, bool returnDFVal=false ) const; |
|
|
|
virtual void write_params( CvFileStorage* fs ) const; |
|
virtual void read_params( CvFileStorage* fs, CvFileNode* node ); |
|
|
|
void optimize_linear_svm(); |
|
|
|
CvSVMParams params; |
|
CvMat* class_labels; |
|
int var_all; |
|
float** sv; |
|
int sv_total; |
|
CvMat* var_idx; |
|
CvMat* class_weights; |
|
CvSVMDecisionFunc* decision_func; |
|
CvMemStorage* storage; |
|
|
|
CvSVMSolver* solver; |
|
CvSVMKernel* kernel; |
|
}; |
|
|
|
/****************************************************************************************\ |
|
* Expectation - Maximization * |
|
\****************************************************************************************/ |
|
namespace cv |
|
{ |
|
class CV_EXPORTS_W EM : public Algorithm |
|
{ |
|
public: |
|
// Type of covariation matrices |
|
enum {COV_MAT_SPHERICAL=0, COV_MAT_DIAGONAL=1, COV_MAT_GENERIC=2, COV_MAT_DEFAULT=COV_MAT_DIAGONAL}; |
|
|
|
// Default parameters |
|
enum {DEFAULT_NCLUSTERS=5, DEFAULT_MAX_ITERS=100}; |
|
|
|
// The initial step |
|
enum {START_E_STEP=1, START_M_STEP=2, START_AUTO_STEP=0}; |
|
|
|
CV_WRAP EM(int nclusters=EM::DEFAULT_NCLUSTERS, int covMatType=EM::COV_MAT_DIAGONAL, |
|
const TermCriteria& termCrit=TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, |
|
EM::DEFAULT_MAX_ITERS, FLT_EPSILON)); |
|
|
|
virtual ~EM(); |
|
CV_WRAP virtual void clear(); |
|
|
|
CV_WRAP virtual bool train(InputArray samples, |
|
OutputArray logLikelihoods=noArray(), |
|
OutputArray labels=noArray(), |
|
OutputArray probs=noArray()); |
|
|
|
CV_WRAP virtual bool trainE(InputArray samples, |
|
InputArray means0, |
|
InputArray covs0=noArray(), |
|
InputArray weights0=noArray(), |
|
OutputArray logLikelihoods=noArray(), |
|
OutputArray labels=noArray(), |
|
OutputArray probs=noArray()); |
|
|
|
CV_WRAP virtual bool trainM(InputArray samples, |
|
InputArray probs0, |
|
OutputArray logLikelihoods=noArray(), |
|
OutputArray labels=noArray(), |
|
OutputArray probs=noArray()); |
|
|
|
CV_WRAP Vec2d predict(InputArray sample, |
|
OutputArray probs=noArray()) const; |
|
|
|
CV_WRAP bool isTrained() const; |
|
|
|
AlgorithmInfo* info() const; |
|
virtual void read(const FileNode& fn); |
|
|
|
protected: |
|
|
|
virtual void setTrainData(int startStep, const Mat& samples, |
|
const Mat* probs0, |
|
const Mat* means0, |
|
const std::vector<Mat>* covs0, |
|
const Mat* weights0); |
|
|
|
bool doTrain(int startStep, |
|
OutputArray logLikelihoods, |
|
OutputArray labels, |
|
OutputArray probs); |
|
virtual void eStep(); |
|
virtual void mStep(); |
|
|
|
void clusterTrainSamples(); |
|
void decomposeCovs(); |
|
void computeLogWeightDivDet(); |
|
|
|
Vec2d computeProbabilities(const Mat& sample, Mat* probs) const; |
|
|
|
// all inner matrices have type CV_64FC1 |
|
CV_PROP_RW int nclusters; |
|
CV_PROP_RW int covMatType; |
|
CV_PROP_RW int maxIters; |
|
CV_PROP_RW double epsilon; |
|
|
|
Mat trainSamples; |
|
Mat trainProbs; |
|
Mat trainLogLikelihoods; |
|
Mat trainLabels; |
|
|
|
CV_PROP Mat weights; |
|
CV_PROP Mat means; |
|
CV_PROP std::vector<Mat> covs; |
|
|
|
std::vector<Mat> covsEigenValues; |
|
std::vector<Mat> covsRotateMats; |
|
std::vector<Mat> invCovsEigenValues; |
|
Mat logWeightDivDet; |
|
}; |
|
} // namespace cv |
|
|
|
/****************************************************************************************\ |
|
* Decision Tree * |
|
\****************************************************************************************/\ |
|
struct CvPair16u32s |
|
{ |
|
unsigned short* u; |
|
int* i; |
|
}; |
|
|
|
|
|
#define CV_DTREE_CAT_DIR(idx,subset) \ |
|
(2*((subset[(idx)>>5]&(1 << ((idx) & 31)))==0)-1) |
|
|
|
struct CvDTreeSplit |
|
{ |
|
int var_idx; |
|
int condensed_idx; |
|
int inversed; |
|
float quality; |
|
CvDTreeSplit* next; |
|
union |
|
{ |
|
int subset[2]; |
|
struct |
|
{ |
|
float c; |
|
int split_point; |
|
} |
|
ord; |
|
}; |
|
}; |
|
|
|
struct CvDTreeNode |
|
{ |
|
int class_idx; |
|
int Tn; |
|
double value; |
|
|
|
CvDTreeNode* parent; |
|
CvDTreeNode* left; |
|
CvDTreeNode* right; |
|
|
|
CvDTreeSplit* split; |
|
|
|
int sample_count; |
|
int depth; |
|
int* num_valid; |
|
int offset; |
|
int buf_idx; |
|
double maxlr; |
|
|
|
// global pruning data |
|
int complexity; |
|
double alpha; |
|
double node_risk, tree_risk, tree_error; |
|
|
|
// cross-validation pruning data |
|
int* cv_Tn; |
|
double* cv_node_risk; |
|
double* cv_node_error; |
|
|
|
int get_num_valid(int vi) { return num_valid ? num_valid[vi] : sample_count; } |
|
void set_num_valid(int vi, int n) { if( num_valid ) num_valid[vi] = n; } |
|
}; |
|
|
|
|
|
struct CV_EXPORTS_W_MAP CvDTreeParams |
|
{ |
|
CV_PROP_RW int max_categories; |
|
CV_PROP_RW int max_depth; |
|
CV_PROP_RW int min_sample_count; |
|
CV_PROP_RW int cv_folds; |
|
CV_PROP_RW bool use_surrogates; |
|
CV_PROP_RW bool use_1se_rule; |
|
CV_PROP_RW bool truncate_pruned_tree; |
|
CV_PROP_RW float regression_accuracy; |
|
const float* priors; |
|
|
|
CvDTreeParams(); |
|
CvDTreeParams( int max_depth, int min_sample_count, |
|
float regression_accuracy, bool use_surrogates, |
|
int max_categories, int cv_folds, |
|
bool use_1se_rule, bool truncate_pruned_tree, |
|
const float* priors ); |
|
}; |
|
|
|
|
|
struct CV_EXPORTS CvDTreeTrainData |
|
{ |
|
CvDTreeTrainData(); |
|
CvDTreeTrainData( const CvMat* trainData, int tflag, |
|
const CvMat* responses, const CvMat* varIdx=0, |
|
const CvMat* sampleIdx=0, const CvMat* varType=0, |
|
const CvMat* missingDataMask=0, |
|
const CvDTreeParams& params=CvDTreeParams(), |
|
bool _shared=false, bool _add_labels=false ); |
|
virtual ~CvDTreeTrainData(); |
|
|
|
virtual void set_data( const CvMat* trainData, int tflag, |
|
const CvMat* responses, const CvMat* varIdx=0, |
|
const CvMat* sampleIdx=0, const CvMat* varType=0, |
|
const CvMat* missingDataMask=0, |
|
const CvDTreeParams& params=CvDTreeParams(), |
|
bool _shared=false, bool _add_labels=false, |
|
bool _update_data=false ); |
|
virtual void do_responses_copy(); |
|
|
|
virtual void get_vectors( const CvMat* _subsample_idx, |
|
float* values, uchar* missing, float* responses, bool get_class_idx=false ); |
|
|
|
virtual CvDTreeNode* subsample_data( const CvMat* _subsample_idx ); |
|
|
|
virtual void write_params( CvFileStorage* fs ) const; |
|
virtual void read_params( CvFileStorage* fs, CvFileNode* node ); |
|
|
|
// release all the data |
|
virtual void clear(); |
|
|
|
int get_num_classes() const; |
|
int get_var_type(int vi) const; |
|
int get_work_var_count() const {return work_var_count;} |
|
|
|
virtual const float* get_ord_responses( CvDTreeNode* n, float* values_buf, int* sample_indices_buf ); |
|
virtual const int* get_class_labels( CvDTreeNode* n, int* labels_buf ); |
|
virtual const int* get_cv_labels( CvDTreeNode* n, int* labels_buf ); |
|
virtual const int* get_sample_indices( CvDTreeNode* n, int* indices_buf ); |
|
virtual const int* get_cat_var_data( CvDTreeNode* n, int vi, int* cat_values_buf ); |
|
virtual void get_ord_var_data( CvDTreeNode* n, int vi, float* ord_values_buf, int* sorted_indices_buf, |
|
const float** ord_values, const int** sorted_indices, int* sample_indices_buf ); |
|
virtual int get_child_buf_idx( CvDTreeNode* n ); |
|
|
|
//////////////////////////////////// |
|
|
|
virtual bool set_params( const CvDTreeParams& params ); |
|
virtual CvDTreeNode* new_node( CvDTreeNode* parent, int count, |
|
int storage_idx, int offset ); |
|
|
|
virtual CvDTreeSplit* new_split_ord( int vi, float cmp_val, |
|
int split_point, int inversed, float quality ); |
|
virtual CvDTreeSplit* new_split_cat( int vi, float quality ); |
|
virtual void free_node_data( CvDTreeNode* node ); |
|
virtual void free_train_data(); |
|
virtual void free_node( CvDTreeNode* node ); |
|
|
|
int sample_count, var_all, var_count, max_c_count; |
|
int ord_var_count, cat_var_count, work_var_count; |
|
bool have_labels, have_priors; |
|
bool is_classifier; |
|
int tflag; |
|
|
|
const CvMat* train_data; |
|
const CvMat* responses; |
|
CvMat* responses_copy; // used in Boosting |
|
|
|
int buf_count, buf_size; // buf_size is obsolete, please do not use it, use expression ((int64)buf->rows * (int64)buf->cols / buf_count) instead |
|
bool shared; |
|
int is_buf_16u; |
|
|
|
CvMat* cat_count; |
|
CvMat* cat_ofs; |
|
CvMat* cat_map; |
|
|
|
CvMat* counts; |
|
CvMat* buf; |
|
inline size_t get_length_subbuf() const |
|
{ |
|
size_t res = (size_t)(work_var_count + 1) * (size_t)sample_count; |
|
return res; |
|
} |
|
|
|
CvMat* direction; |
|
CvMat* split_buf; |
|
|
|
CvMat* var_idx; |
|
CvMat* var_type; // i-th element = |
|
// k<0 - ordered |
|
// k>=0 - categorical, see k-th element of cat_* arrays |
|
CvMat* priors; |
|
CvMat* priors_mult; |
|
|
|
CvDTreeParams params; |
|
|
|
CvMemStorage* tree_storage; |
|
CvMemStorage* temp_storage; |
|
|
|
CvDTreeNode* data_root; |
|
|
|
CvSet* node_heap; |
|
CvSet* split_heap; |
|
CvSet* cv_heap; |
|
CvSet* nv_heap; |
|
|
|
cv::RNG* rng; |
|
}; |
|
|
|
class CvDTree; |
|
class CvForestTree; |
|
|
|
namespace cv |
|
{ |
|
struct DTreeBestSplitFinder; |
|
struct ForestTreeBestSplitFinder; |
|
} |
|
|
|
class CV_EXPORTS_W CvDTree : public CvStatModel |
|
{ |
|
public: |
|
CV_WRAP CvDTree(); |
|
virtual ~CvDTree(); |
|
|
|
virtual bool train( const CvMat* trainData, int tflag, |
|
const CvMat* responses, const CvMat* varIdx=0, |
|
const CvMat* sampleIdx=0, const CvMat* varType=0, |
|
const CvMat* missingDataMask=0, |
|
CvDTreeParams params=CvDTreeParams() ); |
|
|
|
virtual bool train( CvMLData* trainData, CvDTreeParams params=CvDTreeParams() ); |
|
|
|
// type in {CV_TRAIN_ERROR, CV_TEST_ERROR} |
|
virtual float calc_error( CvMLData* trainData, int type, std::vector<float> *resp = 0 ); |
|
|
|
virtual bool train( CvDTreeTrainData* trainData, const CvMat* subsampleIdx ); |
|
|
|
virtual CvDTreeNode* predict( const CvMat* sample, const CvMat* missingDataMask=0, |
|
bool preprocessedInput=false ) const; |
|
|
|
CV_WRAP virtual bool train( const cv::Mat& trainData, int tflag, |
|
const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(), |
|
const cv::Mat& sampleIdx=cv::Mat(), const cv::Mat& varType=cv::Mat(), |
|
const cv::Mat& missingDataMask=cv::Mat(), |
|
CvDTreeParams params=CvDTreeParams() ); |
|
|
|
CV_WRAP virtual CvDTreeNode* predict( const cv::Mat& sample, const cv::Mat& missingDataMask=cv::Mat(), |
|
bool preprocessedInput=false ) const; |
|
CV_WRAP virtual cv::Mat getVarImportance(); |
|
|
|
virtual const CvMat* get_var_importance(); |
|
CV_WRAP virtual void clear(); |
|
|
|
virtual void read( CvFileStorage* fs, CvFileNode* node ); |
|
virtual void write( CvFileStorage* fs, const char* name ) const; |
|
|
|
// special read & write methods for trees in the tree ensembles |
|
virtual void read( CvFileStorage* fs, CvFileNode* node, |
|
CvDTreeTrainData* data ); |
|
virtual void write( CvFileStorage* fs ) const; |
|
|
|
const CvDTreeNode* get_root() const; |
|
int get_pruned_tree_idx() const; |
|
CvDTreeTrainData* get_data(); |
|
|
|
protected: |
|
friend struct cv::DTreeBestSplitFinder; |
|
|
|
virtual bool do_train( const CvMat* _subsample_idx ); |
|
|
|
virtual void try_split_node( CvDTreeNode* n ); |
|
virtual void split_node_data( CvDTreeNode* n ); |
|
virtual CvDTreeSplit* find_best_split( CvDTreeNode* n ); |
|
virtual CvDTreeSplit* find_split_ord_class( CvDTreeNode* n, int vi, |
|
float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 ); |
|
virtual CvDTreeSplit* find_split_cat_class( CvDTreeNode* n, int vi, |
|
float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 ); |
|
virtual CvDTreeSplit* find_split_ord_reg( CvDTreeNode* n, int vi, |
|
float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 ); |
|
virtual CvDTreeSplit* find_split_cat_reg( CvDTreeNode* n, int vi, |
|
float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 ); |
|
virtual CvDTreeSplit* find_surrogate_split_ord( CvDTreeNode* n, int vi, uchar* ext_buf = 0 ); |
|
virtual CvDTreeSplit* find_surrogate_split_cat( CvDTreeNode* n, int vi, uchar* ext_buf = 0 ); |
|
virtual double calc_node_dir( CvDTreeNode* node ); |
|
virtual void complete_node_dir( CvDTreeNode* node ); |
|
virtual void cluster_categories( const int* vectors, int vector_count, |
|
int var_count, int* sums, int k, int* cluster_labels ); |
|
|
|
virtual void calc_node_value( CvDTreeNode* node ); |
|
|
|
virtual void prune_cv(); |
|
virtual double update_tree_rnc( int T, int fold ); |
|
virtual int cut_tree( int T, int fold, double min_alpha ); |
|
virtual void free_prune_data(bool cut_tree); |
|
virtual void free_tree(); |
|
|
|
virtual void write_node( CvFileStorage* fs, CvDTreeNode* node ) const; |
|
virtual void write_split( CvFileStorage* fs, CvDTreeSplit* split ) const; |
|
virtual CvDTreeNode* read_node( CvFileStorage* fs, CvFileNode* node, CvDTreeNode* parent ); |
|
virtual CvDTreeSplit* read_split( CvFileStorage* fs, CvFileNode* node ); |
|
virtual void write_tree_nodes( CvFileStorage* fs ) const; |
|
virtual void read_tree_nodes( CvFileStorage* fs, CvFileNode* node ); |
|
|
|
CvDTreeNode* root; |
|
CvMat* var_importance; |
|
CvDTreeTrainData* data; |
|
CvMat train_data_hdr, responses_hdr; |
|
cv::Mat train_data_mat, responses_mat; |
|
|
|
public: |
|
int pruned_tree_idx; |
|
}; |
|
|
|
|
|
/****************************************************************************************\ |
|
* Random Trees Classifier * |
|
\****************************************************************************************/ |
|
|
|
class CvRTrees; |
|
|
|
class CV_EXPORTS CvForestTree: public CvDTree |
|
{ |
|
public: |
|
CvForestTree(); |
|
virtual ~CvForestTree(); |
|
|
|
virtual bool train( CvDTreeTrainData* trainData, const CvMat* _subsample_idx, CvRTrees* forest ); |
|
|
|
virtual int get_var_count() const {return data ? data->var_count : 0;} |
|
virtual void read( CvFileStorage* fs, CvFileNode* node, CvRTrees* forest, CvDTreeTrainData* _data ); |
|
|
|
/* dummy methods to avoid warnings: BEGIN */ |
|
virtual bool train( const CvMat* trainData, int tflag, |
|
const CvMat* responses, const CvMat* varIdx=0, |
|
const CvMat* sampleIdx=0, const CvMat* varType=0, |
|
const CvMat* missingDataMask=0, |
|
CvDTreeParams params=CvDTreeParams() ); |
|
|
|
virtual bool train( CvDTreeTrainData* trainData, const CvMat* _subsample_idx ); |
|
virtual void read( CvFileStorage* fs, CvFileNode* node ); |
|
virtual void read( CvFileStorage* fs, CvFileNode* node, |
|
CvDTreeTrainData* data ); |
|
/* dummy methods to avoid warnings: END */ |
|
|
|
protected: |
|
friend struct cv::ForestTreeBestSplitFinder; |
|
|
|
virtual CvDTreeSplit* find_best_split( CvDTreeNode* n ); |
|
CvRTrees* forest; |
|
}; |
|
|
|
|
|
struct CV_EXPORTS_W_MAP CvRTParams : public CvDTreeParams |
|
{ |
|
//Parameters for the forest |
|
CV_PROP_RW bool calc_var_importance; // true <=> RF processes variable importance |
|
CV_PROP_RW int nactive_vars; |
|
CV_PROP_RW CvTermCriteria term_crit; |
|
|
|
CvRTParams(); |
|
CvRTParams( int max_depth, int min_sample_count, |
|
float regression_accuracy, bool use_surrogates, |
|
int max_categories, const float* priors, bool calc_var_importance, |
|
int nactive_vars, int max_num_of_trees_in_the_forest, |
|
float forest_accuracy, int termcrit_type ); |
|
}; |
|
|
|
|
|
class CV_EXPORTS_W CvRTrees : public CvStatModel |
|
{ |
|
public: |
|
CV_WRAP CvRTrees(); |
|
virtual ~CvRTrees(); |
|
virtual bool train( const CvMat* trainData, int tflag, |
|
const CvMat* responses, const CvMat* varIdx=0, |
|
const CvMat* sampleIdx=0, const CvMat* varType=0, |
|
const CvMat* missingDataMask=0, |
|
CvRTParams params=CvRTParams() ); |
|
|
|
virtual bool train( CvMLData* data, CvRTParams params=CvRTParams() ); |
|
virtual float predict( const CvMat* sample, const CvMat* missing = 0 ) const; |
|
virtual float predict_prob( const CvMat* sample, const CvMat* missing = 0 ) const; |
|
|
|
CV_WRAP virtual bool train( const cv::Mat& trainData, int tflag, |
|
const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(), |
|
const cv::Mat& sampleIdx=cv::Mat(), const cv::Mat& varType=cv::Mat(), |
|
const cv::Mat& missingDataMask=cv::Mat(), |
|
CvRTParams params=CvRTParams() ); |
|
CV_WRAP virtual float predict( const cv::Mat& sample, const cv::Mat& missing = cv::Mat() ) const; |
|
CV_WRAP virtual float predict_prob( const cv::Mat& sample, const cv::Mat& missing = cv::Mat() ) const; |
|
CV_WRAP virtual cv::Mat getVarImportance(); |
|
|
|
CV_WRAP virtual void clear(); |
|
|
|
virtual const CvMat* get_var_importance(); |
|
virtual float get_proximity( const CvMat* sample1, const CvMat* sample2, |
|
const CvMat* missing1 = 0, const CvMat* missing2 = 0 ) const; |
|
|
|
virtual float calc_error( CvMLData* data, int type , std::vector<float>* resp = 0 ); // type in {CV_TRAIN_ERROR, CV_TEST_ERROR} |
|
|
|
virtual float get_train_error(); |
|
|
|
virtual void read( CvFileStorage* fs, CvFileNode* node ); |
|
virtual void write( CvFileStorage* fs, const char* name ) const; |
|
|
|
CvMat* get_active_var_mask(); |
|
CvRNG* get_rng(); |
|
|
|
int get_tree_count() const; |
|
CvForestTree* get_tree(int i) const; |
|
|
|
protected: |
|
virtual cv::String getName() const; |
|
|
|
virtual bool grow_forest( const CvTermCriteria term_crit ); |
|
|
|
// array of the trees of the forest |
|
CvForestTree** trees; |
|
CvDTreeTrainData* data; |
|
CvMat train_data_hdr, responses_hdr; |
|
cv::Mat train_data_mat, responses_mat; |
|
int ntrees; |
|
int nclasses; |
|
double oob_error; |
|
CvMat* var_importance; |
|
int nsamples; |
|
|
|
cv::RNG* rng; |
|
CvMat* active_var_mask; |
|
}; |
|
|
|
/****************************************************************************************\ |
|
* Extremely randomized trees Classifier * |
|
\****************************************************************************************/ |
|
struct CV_EXPORTS CvERTreeTrainData : public CvDTreeTrainData |
|
{ |
|
virtual void set_data( const CvMat* trainData, int tflag, |
|
const CvMat* responses, const CvMat* varIdx=0, |
|
const CvMat* sampleIdx=0, const CvMat* varType=0, |
|
const CvMat* missingDataMask=0, |
|
const CvDTreeParams& params=CvDTreeParams(), |
|
bool _shared=false, bool _add_labels=false, |
|
bool _update_data=false ); |
|
virtual void get_ord_var_data( CvDTreeNode* n, int vi, float* ord_values_buf, int* missing_buf, |
|
const float** ord_values, const int** missing, int* sample_buf = 0 ); |
|
virtual const int* get_sample_indices( CvDTreeNode* n, int* indices_buf ); |
|
virtual const int* get_cv_labels( CvDTreeNode* n, int* labels_buf ); |
|
virtual const int* get_cat_var_data( CvDTreeNode* n, int vi, int* cat_values_buf ); |
|
virtual void get_vectors( const CvMat* _subsample_idx, float* values, uchar* missing, |
|
float* responses, bool get_class_idx=false ); |
|
virtual CvDTreeNode* subsample_data( const CvMat* _subsample_idx ); |
|
const CvMat* missing_mask; |
|
}; |
|
|
|
class CV_EXPORTS CvForestERTree : public CvForestTree |
|
{ |
|
protected: |
|
virtual double calc_node_dir( CvDTreeNode* node ); |
|
virtual CvDTreeSplit* find_split_ord_class( CvDTreeNode* n, int vi, |
|
float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 ); |
|
virtual CvDTreeSplit* find_split_cat_class( CvDTreeNode* n, int vi, |
|
float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 ); |
|
virtual CvDTreeSplit* find_split_ord_reg( CvDTreeNode* n, int vi, |
|
float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 ); |
|
virtual CvDTreeSplit* find_split_cat_reg( CvDTreeNode* n, int vi, |
|
float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 ); |
|
virtual void split_node_data( CvDTreeNode* n ); |
|
}; |
|
|
|
class CV_EXPORTS_W CvERTrees : public CvRTrees |
|
{ |
|
public: |
|
CV_WRAP CvERTrees(); |
|
virtual ~CvERTrees(); |
|
virtual bool train( const CvMat* trainData, int tflag, |
|
const CvMat* responses, const CvMat* varIdx=0, |
|
const CvMat* sampleIdx=0, const CvMat* varType=0, |
|
const CvMat* missingDataMask=0, |
|
CvRTParams params=CvRTParams()); |
|
CV_WRAP virtual bool train( const cv::Mat& trainData, int tflag, |
|
const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(), |
|
const cv::Mat& sampleIdx=cv::Mat(), const cv::Mat& varType=cv::Mat(), |
|
const cv::Mat& missingDataMask=cv::Mat(), |
|
CvRTParams params=CvRTParams()); |
|
virtual bool train( CvMLData* data, CvRTParams params=CvRTParams() ); |
|
protected: |
|
virtual cv::String getName() const; |
|
virtual bool grow_forest( const CvTermCriteria term_crit ); |
|
}; |
|
|
|
|
|
/****************************************************************************************\ |
|
* Boosted tree classifier * |
|
\****************************************************************************************/ |
|
|
|
struct CV_EXPORTS_W_MAP CvBoostParams : public CvDTreeParams |
|
{ |
|
CV_PROP_RW int boost_type; |
|
CV_PROP_RW int weak_count; |
|
CV_PROP_RW int split_criteria; |
|
CV_PROP_RW double weight_trim_rate; |
|
|
|
CvBoostParams(); |
|
CvBoostParams( int boost_type, int weak_count, double weight_trim_rate, |
|
int max_depth, bool use_surrogates, const float* priors ); |
|
}; |
|
|
|
|
|
class CvBoost; |
|
|
|
class CV_EXPORTS CvBoostTree: public CvDTree |
|
{ |
|
public: |
|
CvBoostTree(); |
|
virtual ~CvBoostTree(); |
|
|
|
virtual bool train( CvDTreeTrainData* trainData, |
|
const CvMat* subsample_idx, CvBoost* ensemble ); |
|
|
|
virtual void scale( double s ); |
|
virtual void read( CvFileStorage* fs, CvFileNode* node, |
|
CvBoost* ensemble, CvDTreeTrainData* _data ); |
|
virtual void clear(); |
|
|
|
/* dummy methods to avoid warnings: BEGIN */ |
|
virtual bool train( const CvMat* trainData, int tflag, |
|
const CvMat* responses, const CvMat* varIdx=0, |
|
const CvMat* sampleIdx=0, const CvMat* varType=0, |
|
const CvMat* missingDataMask=0, |
|
CvDTreeParams params=CvDTreeParams() ); |
|
virtual bool train( CvDTreeTrainData* trainData, const CvMat* _subsample_idx ); |
|
|
|
virtual void read( CvFileStorage* fs, CvFileNode* node ); |
|
virtual void read( CvFileStorage* fs, CvFileNode* node, |
|
CvDTreeTrainData* data ); |
|
/* dummy methods to avoid warnings: END */ |
|
|
|
protected: |
|
|
|
virtual void try_split_node( CvDTreeNode* n ); |
|
virtual CvDTreeSplit* find_surrogate_split_ord( CvDTreeNode* n, int vi, uchar* ext_buf = 0 ); |
|
virtual CvDTreeSplit* find_surrogate_split_cat( CvDTreeNode* n, int vi, uchar* ext_buf = 0 ); |
|
virtual CvDTreeSplit* find_split_ord_class( CvDTreeNode* n, int vi, |
|
float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 ); |
|
virtual CvDTreeSplit* find_split_cat_class( CvDTreeNode* n, int vi, |
|
float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 ); |
|
virtual CvDTreeSplit* find_split_ord_reg( CvDTreeNode* n, int vi, |
|
float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 ); |
|
virtual CvDTreeSplit* find_split_cat_reg( CvDTreeNode* n, int vi, |
|
float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 ); |
|
virtual void calc_node_value( CvDTreeNode* n ); |
|
virtual double calc_node_dir( CvDTreeNode* n ); |
|
|
|
CvBoost* ensemble; |
|
}; |
|
|
|
|
|
class CV_EXPORTS_W CvBoost : public CvStatModel |
|
{ |
|
public: |
|
// Boosting type |
|
enum { DISCRETE=0, REAL=1, LOGIT=2, GENTLE=3 }; |
|
|
|
// Splitting criteria |
|
enum { DEFAULT=0, GINI=1, MISCLASS=3, SQERR=4 }; |
|
|
|
CV_WRAP CvBoost(); |
|
virtual ~CvBoost(); |
|
|
|
CvBoost( const CvMat* trainData, int tflag, |
|
const CvMat* responses, const CvMat* varIdx=0, |
|
const CvMat* sampleIdx=0, const CvMat* varType=0, |
|
const CvMat* missingDataMask=0, |
|
CvBoostParams params=CvBoostParams() ); |
|
|
|
virtual bool train( const CvMat* trainData, int tflag, |
|
const CvMat* responses, const CvMat* varIdx=0, |
|
const CvMat* sampleIdx=0, const CvMat* varType=0, |
|
const CvMat* missingDataMask=0, |
|
CvBoostParams params=CvBoostParams(), |
|
bool update=false ); |
|
|
|
virtual bool train( CvMLData* data, |
|
CvBoostParams params=CvBoostParams(), |
|
bool update=false ); |
|
|
|
virtual float predict( const CvMat* sample, const CvMat* missing=0, |
|
CvMat* weak_responses=0, CvSlice slice=CV_WHOLE_SEQ, |
|
bool raw_mode=false, bool return_sum=false ) const; |
|
|
|
CV_WRAP CvBoost( const cv::Mat& trainData, int tflag, |
|
const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(), |
|
const cv::Mat& sampleIdx=cv::Mat(), const cv::Mat& varType=cv::Mat(), |
|
const cv::Mat& missingDataMask=cv::Mat(), |
|
CvBoostParams params=CvBoostParams() ); |
|
|
|
CV_WRAP virtual bool train( const cv::Mat& trainData, int tflag, |
|
const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(), |
|
const cv::Mat& sampleIdx=cv::Mat(), const cv::Mat& varType=cv::Mat(), |
|
const cv::Mat& missingDataMask=cv::Mat(), |
|
CvBoostParams params=CvBoostParams(), |
|
bool update=false ); |
|
|
|
CV_WRAP virtual float predict( const cv::Mat& sample, const cv::Mat& missing=cv::Mat(), |
|
const cv::Range& slice=cv::Range::all(), bool rawMode=false, |
|
bool returnSum=false ) const; |
|
|
|
virtual float calc_error( CvMLData* _data, int type , std::vector<float> *resp = 0 ); // type in {CV_TRAIN_ERROR, CV_TEST_ERROR} |
|
|
|
CV_WRAP virtual void prune( CvSlice slice ); |
|
|
|
CV_WRAP virtual void clear(); |
|
|
|
virtual void write( CvFileStorage* storage, const char* name ) const; |
|
virtual void read( CvFileStorage* storage, CvFileNode* node ); |
|
virtual const CvMat* get_active_vars(bool absolute_idx=true); |
|
|
|
CvSeq* get_weak_predictors(); |
|
|
|
CvMat* get_weights(); |
|
CvMat* get_subtree_weights(); |
|
CvMat* get_weak_response(); |
|
const CvBoostParams& get_params() const; |
|
const CvDTreeTrainData* get_data() const; |
|
|
|
protected: |
|
|
|
virtual bool set_params( const CvBoostParams& params ); |
|
virtual void update_weights( CvBoostTree* tree ); |
|
virtual void trim_weights(); |
|
virtual void write_params( CvFileStorage* fs ) const; |
|
virtual void read_params( CvFileStorage* fs, CvFileNode* node ); |
|
|
|
virtual void initialize_weights(double (&p)[2]); |
|
|
|
CvDTreeTrainData* data; |
|
CvMat train_data_hdr, responses_hdr; |
|
cv::Mat train_data_mat, responses_mat; |
|
CvBoostParams params; |
|
CvSeq* weak; |
|
|
|
CvMat* active_vars; |
|
CvMat* active_vars_abs; |
|
bool have_active_cat_vars; |
|
|
|
CvMat* orig_response; |
|
CvMat* sum_response; |
|
CvMat* weak_eval; |
|
CvMat* subsample_mask; |
|
CvMat* weights; |
|
CvMat* subtree_weights; |
|
bool have_subsample; |
|
}; |
|
|
|
|
|
/****************************************************************************************\ |
|
* Gradient Boosted Trees * |
|
\****************************************************************************************/ |
|
|
|
// DataType: STRUCT CvGBTreesParams |
|
// Parameters of GBT (Gradient Boosted trees model), including single |
|
// tree settings and ensemble parameters. |
|
// |
|
// weak_count - count of trees in the ensemble |
|
// loss_function_type - loss function used for ensemble training |
|
// subsample_portion - portion of whole training set used for |
|
// every single tree training. |
|
// subsample_portion value is in (0.0, 1.0]. |
|
// subsample_portion == 1.0 when whole dataset is |
|
// used on each step. Count of sample used on each |
|
// step is computed as |
|
// int(total_samples_count * subsample_portion). |
|
// shrinkage - regularization parameter. |
|
// Each tree prediction is multiplied on shrinkage value. |
|
|
|
|
|
struct CV_EXPORTS_W_MAP CvGBTreesParams : public CvDTreeParams |
|
{ |
|
CV_PROP_RW int weak_count; |
|
CV_PROP_RW int loss_function_type; |
|
CV_PROP_RW float subsample_portion; |
|
CV_PROP_RW float shrinkage; |
|
|
|
CvGBTreesParams(); |
|
CvGBTreesParams( int loss_function_type, int weak_count, float shrinkage, |
|
float subsample_portion, int max_depth, bool use_surrogates ); |
|
}; |
|
|
|
// DataType: CLASS CvGBTrees |
|
// Gradient Boosting Trees (GBT) algorithm implementation. |
|
// |
|
// data - training dataset |
|
// params - parameters of the CvGBTrees |
|
// weak - array[0..(class_count-1)] of CvSeq |
|
// for storing tree ensembles |
|
// orig_response - original responses of the training set samples |
|
// sum_response - predicitons of the current model on the training dataset. |
|
// this matrix is updated on every iteration. |
|
// sum_response_tmp - predicitons of the model on the training set on the next |
|
// step. On every iteration values of sum_responses_tmp are |
|
// computed via sum_responses values. When the current |
|
// step is complete sum_response values become equal to |
|
// sum_responses_tmp. |
|
// sampleIdx - indices of samples used for training the ensemble. |
|
// CvGBTrees training procedure takes a set of samples |
|
// (train_data) and a set of responses (responses). |
|
// Only pairs (train_data[i], responses[i]), where i is |
|
// in sample_idx are used for training the ensemble. |
|
// subsample_train - indices of samples used for training a single decision |
|
// tree on the current step. This indices are countered |
|
// relatively to the sample_idx, so that pairs |
|
// (train_data[sample_idx[i]], responses[sample_idx[i]]) |
|
// are used for training a decision tree. |
|
// Training set is randomly splited |
|
// in two parts (subsample_train and subsample_test) |
|
// on every iteration accordingly to the portion parameter. |
|
// subsample_test - relative indices of samples from the training set, |
|
// which are not used for training a tree on the current |
|
// step. |
|
// missing - mask of the missing values in the training set. This |
|
// matrix has the same size as train_data. 1 - missing |
|
// value, 0 - not a missing value. |
|
// class_labels - output class labels map. |
|
// rng - random number generator. Used for spliting the |
|
// training set. |
|
// class_count - count of output classes. |
|
// class_count == 1 in the case of regression, |
|
// and > 1 in the case of classification. |
|
// delta - Huber loss function parameter. |
|
// base_value - start point of the gradient descent procedure. |
|
// model prediction is |
|
// f(x) = f_0 + sum_{i=1..weak_count-1}(f_i(x)), where |
|
// f_0 is the base value. |
|
|
|
|
|
|
|
class CV_EXPORTS_W CvGBTrees : public CvStatModel |
|
{ |
|
public: |
|
|
|
/* |
|
// DataType: ENUM |
|
// Loss functions implemented in CvGBTrees. |
|
// |
|
// SQUARED_LOSS |
|
// problem: regression |
|
// loss = (x - x')^2 |
|
// |
|
// ABSOLUTE_LOSS |
|
// problem: regression |
|
// loss = abs(x - x') |
|
// |
|
// HUBER_LOSS |
|
// problem: regression |
|
// loss = delta*( abs(x - x') - delta/2), if abs(x - x') > delta |
|
// 1/2*(x - x')^2, if abs(x - x') <= delta, |
|
// where delta is the alpha-quantile of pseudo responses from |
|
// the training set. |
|
// |
|
// DEVIANCE_LOSS |
|
// problem: classification |
|
// |
|
*/ |
|
enum {SQUARED_LOSS=0, ABSOLUTE_LOSS, HUBER_LOSS=3, DEVIANCE_LOSS}; |
|
|
|
|
|
/* |
|
// Default constructor. Creates a model only (without training). |
|
// Should be followed by one form of the train(...) function. |
|
// |
|
// API |
|
// CvGBTrees(); |
|
|
|
// INPUT |
|
// OUTPUT |
|
// RESULT |
|
*/ |
|
CV_WRAP CvGBTrees(); |
|
|
|
|
|
/* |
|
// Full form constructor. Creates a gradient boosting model and does the |
|
// train. |
|
// |
|
// API |
|
// CvGBTrees( const CvMat* trainData, int tflag, |
|
const CvMat* responses, const CvMat* varIdx=0, |
|
const CvMat* sampleIdx=0, const CvMat* varType=0, |
|
const CvMat* missingDataMask=0, |
|
CvGBTreesParams params=CvGBTreesParams() ); |
|
|
|
// INPUT |
|
// trainData - a set of input feature vectors. |
|
// size of matrix is |
|
// <count of samples> x <variables count> |
|
// or <variables count> x <count of samples> |
|
// depending on the tflag parameter. |
|
// matrix values are float. |
|
// tflag - a flag showing how do samples stored in the |
|
// trainData matrix row by row (tflag=CV_ROW_SAMPLE) |
|
// or column by column (tflag=CV_COL_SAMPLE). |
|
// responses - a vector of responses corresponding to the samples |
|
// in trainData. |
|
// varIdx - indices of used variables. zero value means that all |
|
// variables are active. |
|
// sampleIdx - indices of used samples. zero value means that all |
|
// samples from trainData are in the training set. |
|
// varType - vector of <variables count> length. gives every |
|
// variable type CV_VAR_CATEGORICAL or CV_VAR_ORDERED. |
|
// varType = 0 means all variables are numerical. |
|
// missingDataMask - a mask of misiing values in trainData. |
|
// missingDataMask = 0 means that there are no missing |
|
// values. |
|
// params - parameters of GTB algorithm. |
|
// OUTPUT |
|
// RESULT |
|
*/ |
|
CvGBTrees( const CvMat* trainData, int tflag, |
|
const CvMat* responses, const CvMat* varIdx=0, |
|
const CvMat* sampleIdx=0, const CvMat* varType=0, |
|
const CvMat* missingDataMask=0, |
|
CvGBTreesParams params=CvGBTreesParams() ); |
|
|
|
|
|
/* |
|
// Destructor. |
|
*/ |
|
virtual ~CvGBTrees(); |
|
|
|
|
|
/* |
|
// Gradient tree boosting model training |
|
// |
|
// API |
|
// virtual bool train( const CvMat* trainData, int tflag, |
|
const CvMat* responses, const CvMat* varIdx=0, |
|
const CvMat* sampleIdx=0, const CvMat* varType=0, |
|
const CvMat* missingDataMask=0, |
|
CvGBTreesParams params=CvGBTreesParams(), |
|
bool update=false ); |
|
|
|
// INPUT |
|
// trainData - a set of input feature vectors. |
|
// size of matrix is |
|
// <count of samples> x <variables count> |
|
// or <variables count> x <count of samples> |
|
// depending on the tflag parameter. |
|
// matrix values are float. |
|
// tflag - a flag showing how do samples stored in the |
|
// trainData matrix row by row (tflag=CV_ROW_SAMPLE) |
|
// or column by column (tflag=CV_COL_SAMPLE). |
|
// responses - a vector of responses corresponding to the samples |
|
// in trainData. |
|
// varIdx - indices of used variables. zero value means that all |
|
// variables are active. |
|
// sampleIdx - indices of used samples. zero value means that all |
|
// samples from trainData are in the training set. |
|
// varType - vector of <variables count> length. gives every |
|
// variable type CV_VAR_CATEGORICAL or CV_VAR_ORDERED. |
|
// varType = 0 means all variables are numerical. |
|
// missingDataMask - a mask of misiing values in trainData. |
|
// missingDataMask = 0 means that there are no missing |
|
// values. |
|
// params - parameters of GTB algorithm. |
|
// update - is not supported now. (!) |
|
// OUTPUT |
|
// RESULT |
|
// Error state. |
|
*/ |
|
virtual bool train( const CvMat* trainData, int tflag, |
|
const CvMat* responses, const CvMat* varIdx=0, |
|
const CvMat* sampleIdx=0, const CvMat* varType=0, |
|
const CvMat* missingDataMask=0, |
|
CvGBTreesParams params=CvGBTreesParams(), |
|
bool update=false ); |
|
|
|
|
|
/* |
|
// Gradient tree boosting model training |
|
// |
|
// API |
|
// virtual bool train( CvMLData* data, |
|
CvGBTreesParams params=CvGBTreesParams(), |
|
bool update=false ) {return false;}; |
|
|
|
// INPUT |
|
// data - training set. |
|
// params - parameters of GTB algorithm. |
|
// update - is not supported now. (!) |
|
// OUTPUT |
|
// RESULT |
|
// Error state. |
|
*/ |
|
virtual bool train( CvMLData* data, |
|
CvGBTreesParams params=CvGBTreesParams(), |
|
bool update=false ); |
|
|
|
|
|
/* |
|
// Response value prediction |
|
// |
|
// API |
|
// virtual float predict_serial( const CvMat* sample, const CvMat* missing=0, |
|
CvMat* weak_responses=0, CvSlice slice = CV_WHOLE_SEQ, |
|
int k=-1 ) const; |
|
|
|
// INPUT |
|
// sample - input sample of the same type as in the training set. |
|
// missing - missing values mask. missing=0 if there are no |
|
// missing values in sample vector. |
|
// weak_responses - predictions of all of the trees. |
|
// not implemented (!) |
|
// slice - part of the ensemble used for prediction. |
|
// slice = CV_WHOLE_SEQ when all trees are used. |
|
// k - number of ensemble used. |
|
// k is in {-1,0,1,..,<count of output classes-1>}. |
|
// in the case of classification problem |
|
// <count of output classes-1> ensembles are built. |
|
// If k = -1 ordinary prediction is the result, |
|
// otherwise function gives the prediction of the |
|
// k-th ensemble only. |
|
// OUTPUT |
|
// RESULT |
|
// Predicted value. |
|
*/ |
|
virtual float predict_serial( const CvMat* sample, const CvMat* missing=0, |
|
CvMat* weakResponses=0, CvSlice slice = CV_WHOLE_SEQ, |
|
int k=-1 ) const; |
|
|
|
/* |
|
// Response value prediction. |
|
// Parallel version (in the case of TBB existence) |
|
// |
|
// API |
|
// virtual float predict( const CvMat* sample, const CvMat* missing=0, |
|
CvMat* weak_responses=0, CvSlice slice = CV_WHOLE_SEQ, |
|
int k=-1 ) const; |
|
|
|
// INPUT |
|
// sample - input sample of the same type as in the training set. |
|
// missing - missing values mask. missing=0 if there are no |
|
// missing values in sample vector. |
|
// weak_responses - predictions of all of the trees. |
|
// not implemented (!) |
|
// slice - part of the ensemble used for prediction. |
|
// slice = CV_WHOLE_SEQ when all trees are used. |
|
// k - number of ensemble used. |
|
// k is in {-1,0,1,..,<count of output classes-1>}. |
|
// in the case of classification problem |
|
// <count of output classes-1> ensembles are built. |
|
// If k = -1 ordinary prediction is the result, |
|
// otherwise function gives the prediction of the |
|
// k-th ensemble only. |
|
// OUTPUT |
|
// RESULT |
|
// Predicted value. |
|
*/ |
|
virtual float predict( const CvMat* sample, const CvMat* missing=0, |
|
CvMat* weakResponses=0, CvSlice slice = CV_WHOLE_SEQ, |
|
int k=-1 ) const; |
|
|
|
/* |
|
// Deletes all the data. |
|
// |
|
// API |
|
// virtual void clear(); |
|
|
|
// INPUT |
|
// OUTPUT |
|
// delete data, weak, orig_response, sum_response, |
|
// weak_eval, subsample_train, subsample_test, |
|
// sample_idx, missing, lass_labels |
|
// delta = 0.0 |
|
// RESULT |
|
*/ |
|
CV_WRAP virtual void clear(); |
|
|
|
/* |
|
// Compute error on the train/test set. |
|
// |
|
// API |
|
// virtual float calc_error( CvMLData* _data, int type, |
|
// std::vector<float> *resp = 0 ); |
|
// |
|
// INPUT |
|
// data - dataset |
|
// type - defines which error is to compute: train (CV_TRAIN_ERROR) or |
|
// test (CV_TEST_ERROR). |
|
// OUTPUT |
|
// resp - vector of predicitons |
|
// RESULT |
|
// Error value. |
|
*/ |
|
virtual float calc_error( CvMLData* _data, int type, |
|
std::vector<float> *resp = 0 ); |
|
|
|
/* |
|
// |
|
// Write parameters of the gtb model and data. Write learned model. |
|
// |
|
// API |
|
// virtual void write( CvFileStorage* fs, const char* name ) const; |
|
// |
|
// INPUT |
|
// fs - file storage to read parameters from. |
|
// name - model name. |
|
// OUTPUT |
|
// RESULT |
|
*/ |
|
virtual void write( CvFileStorage* fs, const char* name ) const; |
|
|
|
|
|
/* |
|
// |
|
// Read parameters of the gtb model and data. Read learned model. |
|
// |
|
// API |
|
// virtual void read( CvFileStorage* fs, CvFileNode* node ); |
|
// |
|
// INPUT |
|
// fs - file storage to read parameters from. |
|
// node - file node. |
|
// OUTPUT |
|
// RESULT |
|
*/ |
|
virtual void read( CvFileStorage* fs, CvFileNode* node ); |
|
|
|
|
|
// new-style C++ interface |
|
CV_WRAP CvGBTrees( const cv::Mat& trainData, int tflag, |
|
const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(), |
|
const cv::Mat& sampleIdx=cv::Mat(), const cv::Mat& varType=cv::Mat(), |
|
const cv::Mat& missingDataMask=cv::Mat(), |
|
CvGBTreesParams params=CvGBTreesParams() ); |
|
|
|
CV_WRAP virtual bool train( const cv::Mat& trainData, int tflag, |
|
const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(), |
|
const cv::Mat& sampleIdx=cv::Mat(), const cv::Mat& varType=cv::Mat(), |
|
const cv::Mat& missingDataMask=cv::Mat(), |
|
CvGBTreesParams params=CvGBTreesParams(), |
|
bool update=false ); |
|
|
|
CV_WRAP virtual float predict( const cv::Mat& sample, const cv::Mat& missing=cv::Mat(), |
|
const cv::Range& slice = cv::Range::all(), |
|
int k=-1 ) const; |
|
|
|
protected: |
|
|
|
/* |
|
// Compute the gradient vector components. |
|
// |
|
// API |
|
// virtual void find_gradient( const int k = 0); |
|
|
|
// INPUT |
|
// k - used for classification problem, determining current |
|
// tree ensemble. |
|
// OUTPUT |
|
// changes components of data->responses |
|
// which correspond to samples used for training |
|
// on the current step. |
|
// RESULT |
|
*/ |
|
virtual void find_gradient( const int k = 0); |
|
|
|
|
|
/* |
|
// |
|
// Change values in tree leaves according to the used loss function. |
|
// |
|
// API |
|
// virtual void change_values(CvDTree* tree, const int k = 0); |
|
// |
|
// INPUT |
|
// tree - decision tree to change. |
|
// k - used for classification problem, determining current |
|
// tree ensemble. |
|
// OUTPUT |
|
// changes 'value' fields of the trees' leaves. |
|
// changes sum_response_tmp. |
|
// RESULT |
|
*/ |
|
virtual void change_values(CvDTree* tree, const int k = 0); |
|
|
|
|
|
/* |
|
// |
|
// Find optimal constant prediction value according to the used loss |
|
// function. |
|
// The goal is to find a constant which gives the minimal summary loss |
|
// on the _Idx samples. |
|
// |
|
// API |
|
// virtual float find_optimal_value( const CvMat* _Idx ); |
|
// |
|
// INPUT |
|
// _Idx - indices of the samples from the training set. |
|
// OUTPUT |
|
// RESULT |
|
// optimal constant value. |
|
*/ |
|
virtual float find_optimal_value( const CvMat* _Idx ); |
|
|
|
|
|
/* |
|
// |
|
// Randomly split the whole training set in two parts according |
|
// to params.portion. |
|
// |
|
// API |
|
// virtual void do_subsample(); |
|
// |
|
// INPUT |
|
// OUTPUT |
|
// subsample_train - indices of samples used for training |
|
// subsample_test - indices of samples used for test |
|
// RESULT |
|
*/ |
|
virtual void do_subsample(); |
|
|
|
|
|
/* |
|
// |
|
// Internal recursive function giving an array of subtree tree leaves. |
|
// |
|
// API |
|
// void leaves_get( CvDTreeNode** leaves, int& count, CvDTreeNode* node ); |
|
// |
|
// INPUT |
|
// node - current leaf. |
|
// OUTPUT |
|
// count - count of leaves in the subtree. |
|
// leaves - array of pointers to leaves. |
|
// RESULT |
|
*/ |
|
void leaves_get( CvDTreeNode** leaves, int& count, CvDTreeNode* node ); |
|
|
|
|
|
/* |
|
// |
|
// Get leaves of the tree. |
|
// |
|
// API |
|
// CvDTreeNode** GetLeaves( const CvDTree* dtree, int& len ); |
|
// |
|
// INPUT |
|
// dtree - decision tree. |
|
// OUTPUT |
|
// len - count of the leaves. |
|
// RESULT |
|
// CvDTreeNode** - array of pointers to leaves. |
|
*/ |
|
CvDTreeNode** GetLeaves( const CvDTree* dtree, int& len ); |
|
|
|
|
|
/* |
|
// |
|
// Is it a regression or a classification. |
|
// |
|
// API |
|
// bool problem_type(); |
|
// |
|
// INPUT |
|
// OUTPUT |
|
// RESULT |
|
// false if it is a classification problem, |
|
// true - if regression. |
|
*/ |
|
virtual bool problem_type() const; |
|
|
|
|
|
/* |
|
// |
|
// Write parameters of the gtb model. |
|
// |
|
// API |
|
// virtual void write_params( CvFileStorage* fs ) const; |
|
// |
|
// INPUT |
|
// fs - file storage to write parameters to. |
|
// OUTPUT |
|
// RESULT |
|
*/ |
|
virtual void write_params( CvFileStorage* fs ) const; |
|
|
|
|
|
/* |
|
// |
|
// Read parameters of the gtb model and data. |
|
// |
|
// API |
|
// virtual void read_params( CvFileStorage* fs ); |
|
// |
|
// INPUT |
|
// fs - file storage to read parameters from. |
|
// OUTPUT |
|
// params - parameters of the gtb model. |
|
// data - contains information about the structure |
|
// of the data set (count of variables, |
|
// their types, etc.). |
|
// class_labels - output class labels map. |
|
// RESULT |
|
*/ |
|
virtual void read_params( CvFileStorage* fs, CvFileNode* fnode ); |
|
int get_len(const CvMat* mat) const; |
|
|
|
|
|
CvDTreeTrainData* data; |
|
CvGBTreesParams params; |
|
|
|
CvSeq** weak; |
|
CvMat* orig_response; |
|
CvMat* sum_response; |
|
CvMat* sum_response_tmp; |
|
CvMat* sample_idx; |
|
CvMat* subsample_train; |
|
CvMat* subsample_test; |
|
CvMat* missing; |
|
CvMat* class_labels; |
|
|
|
cv::RNG* rng; |
|
|
|
int class_count; |
|
float delta; |
|
float base_value; |
|
|
|
}; |
|
|
|
|
|
|
|
/****************************************************************************************\ |
|
* Artificial Neural Networks (ANN) * |
|
\****************************************************************************************/ |
|
|
|
/////////////////////////////////// Multi-Layer Perceptrons ////////////////////////////// |
|
|
|
struct CV_EXPORTS_W_MAP CvANN_MLP_TrainParams |
|
{ |
|
CvANN_MLP_TrainParams(); |
|
CvANN_MLP_TrainParams( CvTermCriteria term_crit, int train_method, |
|
double param1, double param2=0 ); |
|
~CvANN_MLP_TrainParams(); |
|
|
|
enum { BACKPROP=0, RPROP=1 }; |
|
|
|
CV_PROP_RW CvTermCriteria term_crit; |
|
CV_PROP_RW int train_method; |
|
|
|
// backpropagation parameters |
|
CV_PROP_RW double bp_dw_scale, bp_moment_scale; |
|
|
|
// rprop parameters |
|
CV_PROP_RW double rp_dw0, rp_dw_plus, rp_dw_minus, rp_dw_min, rp_dw_max; |
|
}; |
|
|
|
|
|
class CV_EXPORTS_W CvANN_MLP : public CvStatModel |
|
{ |
|
public: |
|
CV_WRAP CvANN_MLP(); |
|
CvANN_MLP( const CvMat* layerSizes, |
|
int activateFunc=CvANN_MLP::SIGMOID_SYM, |
|
double fparam1=0, double fparam2=0 ); |
|
|
|
virtual ~CvANN_MLP(); |
|
|
|
virtual void create( const CvMat* layerSizes, |
|
int activateFunc=CvANN_MLP::SIGMOID_SYM, |
|
double fparam1=0, double fparam2=0 ); |
|
|
|
virtual int train( const CvMat* inputs, const CvMat* outputs, |
|
const CvMat* sampleWeights, const CvMat* sampleIdx=0, |
|
CvANN_MLP_TrainParams params = CvANN_MLP_TrainParams(), |
|
int flags=0 ); |
|
virtual float predict( const CvMat* inputs, CV_OUT CvMat* outputs ) const; |
|
|
|
CV_WRAP CvANN_MLP( const cv::Mat& layerSizes, |
|
int activateFunc=CvANN_MLP::SIGMOID_SYM, |
|
double fparam1=0, double fparam2=0 ); |
|
|
|
CV_WRAP virtual void create( const cv::Mat& layerSizes, |
|
int activateFunc=CvANN_MLP::SIGMOID_SYM, |
|
double fparam1=0, double fparam2=0 ); |
|
|
|
CV_WRAP virtual int train( const cv::Mat& inputs, const cv::Mat& outputs, |
|
const cv::Mat& sampleWeights, const cv::Mat& sampleIdx=cv::Mat(), |
|
CvANN_MLP_TrainParams params = CvANN_MLP_TrainParams(), |
|
int flags=0 ); |
|
|
|
CV_WRAP virtual float predict( const cv::Mat& inputs, CV_OUT cv::Mat& outputs ) const; |
|
|
|
CV_WRAP virtual void clear(); |
|
|
|
// possible activation functions |
|
enum { IDENTITY = 0, SIGMOID_SYM = 1, GAUSSIAN = 2 }; |
|
|
|
// available training flags |
|
enum { UPDATE_WEIGHTS = 1, NO_INPUT_SCALE = 2, NO_OUTPUT_SCALE = 4 }; |
|
|
|
virtual void read( CvFileStorage* fs, CvFileNode* node ); |
|
virtual void write( CvFileStorage* storage, const char* name ) const; |
|
|
|
int get_layer_count() { return layer_sizes ? layer_sizes->cols : 0; } |
|
const CvMat* get_layer_sizes() { return layer_sizes; } |
|
double* get_weights(int layer) |
|
{ |
|
return layer_sizes && weights && |
|
(unsigned)layer <= (unsigned)layer_sizes->cols ? weights[layer] : 0; |
|
} |
|
|
|
virtual void calc_activ_func_deriv( CvMat* xf, CvMat* deriv, const double* bias ) const; |
|
|
|
protected: |
|
|
|
virtual bool prepare_to_train( const CvMat* _inputs, const CvMat* _outputs, |
|
const CvMat* _sample_weights, const CvMat* sampleIdx, |
|
CvVectors* _ivecs, CvVectors* _ovecs, double** _sw, int _flags ); |
|
|
|
// sequential random backpropagation |
|
virtual int train_backprop( CvVectors _ivecs, CvVectors _ovecs, const double* _sw ); |
|
|
|
// RPROP algorithm |
|
virtual int train_rprop( CvVectors _ivecs, CvVectors _ovecs, const double* _sw ); |
|
|
|
virtual void calc_activ_func( CvMat* xf, const double* bias ) const; |
|
virtual void set_activ_func( int _activ_func=SIGMOID_SYM, |
|
double _f_param1=0, double _f_param2=0 ); |
|
virtual void init_weights(); |
|
virtual void scale_input( const CvMat* _src, CvMat* _dst ) const; |
|
virtual void scale_output( const CvMat* _src, CvMat* _dst ) const; |
|
virtual void calc_input_scale( const CvVectors* vecs, int flags ); |
|
virtual void calc_output_scale( const CvVectors* vecs, int flags ); |
|
|
|
virtual void write_params( CvFileStorage* fs ) const; |
|
virtual void read_params( CvFileStorage* fs, CvFileNode* node ); |
|
|
|
CvMat* layer_sizes; |
|
CvMat* wbuf; |
|
CvMat* sample_weights; |
|
double** weights; |
|
double f_param1, f_param2; |
|
double min_val, max_val, min_val1, max_val1; |
|
int activ_func; |
|
int max_count, max_buf_sz; |
|
CvANN_MLP_TrainParams params; |
|
cv::RNG* rng; |
|
}; |
|
|
|
/****************************************************************************************\ |
|
* Auxilary functions declarations * |
|
\****************************************************************************************/ |
|
|
|
/* Generates <sample> from multivariate normal distribution, where <mean> - is an |
|
average row vector, <cov> - symmetric covariation matrix */ |
|
CVAPI(void) cvRandMVNormal( CvMat* mean, CvMat* cov, CvMat* sample, |
|
CvRNG* rng CV_DEFAULT(0) ); |
|
|
|
/* Generates sample from gaussian mixture distribution */ |
|
CVAPI(void) cvRandGaussMixture( CvMat* means[], |
|
CvMat* covs[], |
|
float weights[], |
|
int clsnum, |
|
CvMat* sample, |
|
CvMat* sampClasses CV_DEFAULT(0) ); |
|
|
|
#define CV_TS_CONCENTRIC_SPHERES 0 |
|
|
|
/* creates test set */ |
|
CVAPI(void) cvCreateTestSet( int type, CvMat** samples, |
|
int num_samples, |
|
int num_features, |
|
CvMat** responses, |
|
int num_classes, ... ); |
|
|
|
/****************************************************************************************\ |
|
* Data * |
|
\****************************************************************************************/ |
|
|
|
#define CV_COUNT 0 |
|
#define CV_PORTION 1 |
|
|
|
struct CV_EXPORTS CvTrainTestSplit |
|
{ |
|
CvTrainTestSplit(); |
|
CvTrainTestSplit( int train_sample_count, bool mix = true); |
|
CvTrainTestSplit( float train_sample_portion, bool mix = true); |
|
|
|
union |
|
{ |
|
int count; |
|
float portion; |
|
} train_sample_part; |
|
int train_sample_part_mode; |
|
|
|
bool mix; |
|
}; |
|
|
|
class CV_EXPORTS CvMLData |
|
{ |
|
public: |
|
CvMLData(); |
|
virtual ~CvMLData(); |
|
|
|
// returns: |
|
// 0 - OK |
|
// -1 - file can not be opened or is not correct |
|
int read_csv( const char* filename ); |
|
|
|
const CvMat* get_values() const; |
|
const CvMat* get_responses(); |
|
const CvMat* get_missing() const; |
|
|
|
void set_header_lines_number( int n ); |
|
int get_header_lines_number() const; |
|
|
|
void set_response_idx( int idx ); // old response become predictors, new response_idx = idx |
|
// if idx < 0 there will be no response |
|
int get_response_idx() const; |
|
|
|
void set_train_test_split( const CvTrainTestSplit * spl ); |
|
const CvMat* get_train_sample_idx() const; |
|
const CvMat* get_test_sample_idx() const; |
|
void mix_train_and_test_idx(); |
|
|
|
const CvMat* get_var_idx(); |
|
void chahge_var_idx( int vi, bool state ); // misspelled (saved for back compitability), |
|
// use change_var_idx |
|
void change_var_idx( int vi, bool state ); // state == true to set vi-variable as predictor |
|
|
|
const CvMat* get_var_types(); |
|
int get_var_type( int var_idx ) const; |
|
// following 2 methods enable to change vars type |
|
// use these methods to assign CV_VAR_CATEGORICAL type for categorical variable |
|
// with numerical labels; in the other cases var types are correctly determined automatically |
|
void set_var_types( const char* str ); // str examples: |
|
// "ord[0-17],cat[18]", "ord[0,2,4,10-12], cat[1,3,5-9,13,14]", |
|
// "cat", "ord" (all vars are categorical/ordered) |
|
void change_var_type( int var_idx, int type); // type in { CV_VAR_ORDERED, CV_VAR_CATEGORICAL } |
|
|
|
void set_delimiter( char ch ); |
|
char get_delimiter() const; |
|
|
|
void set_miss_ch( char ch ); |
|
char get_miss_ch() const; |
|
|
|
const std::map<cv::String, int>& get_class_labels_map() const; |
|
|
|
protected: |
|
virtual void clear(); |
|
|
|
void str_to_flt_elem( const char* token, float& flt_elem, int& type); |
|
void free_train_test_idx(); |
|
|
|
char delimiter; |
|
char miss_ch; |
|
//char flt_separator; |
|
|
|
CvMat* values; |
|
CvMat* missing; |
|
CvMat* var_types; |
|
CvMat* var_idx_mask; |
|
|
|
CvMat* response_out; // header |
|
CvMat* var_idx_out; // mat |
|
CvMat* var_types_out; // mat |
|
|
|
int header_lines_number; |
|
|
|
int response_idx; |
|
|
|
int train_sample_count; |
|
bool mix; |
|
|
|
int total_class_count; |
|
std::map<cv::String, int> class_map; |
|
|
|
CvMat* train_sample_idx; |
|
CvMat* test_sample_idx; |
|
int* sample_idx; // data of train_sample_idx and test_sample_idx |
|
|
|
cv::RNG* rng; |
|
}; |
|
|
|
|
|
namespace cv |
|
{ |
|
|
|
typedef CvStatModel StatModel; |
|
typedef CvParamGrid ParamGrid; |
|
typedef CvNormalBayesClassifier NormalBayesClassifier; |
|
typedef CvKNearest KNearest; |
|
typedef CvSVMParams SVMParams; |
|
typedef CvSVMKernel SVMKernel; |
|
typedef CvSVMSolver SVMSolver; |
|
typedef CvSVM SVM; |
|
typedef CvDTreeParams DTreeParams; |
|
typedef CvMLData TrainData; |
|
typedef CvDTree DecisionTree; |
|
typedef CvForestTree ForestTree; |
|
typedef CvRTParams RandomTreeParams; |
|
typedef CvRTrees RandomTrees; |
|
typedef CvERTreeTrainData ERTreeTRainData; |
|
typedef CvForestERTree ERTree; |
|
typedef CvERTrees ERTrees; |
|
typedef CvBoostParams BoostParams; |
|
typedef CvBoostTree BoostTree; |
|
typedef CvBoost Boost; |
|
typedef CvANN_MLP_TrainParams ANN_MLP_TrainParams; |
|
typedef CvANN_MLP NeuralNet_MLP; |
|
typedef CvGBTreesParams GradientBoostingTreeParams; |
|
typedef CvGBTrees GradientBoostingTrees; |
|
|
|
template<> CV_EXPORTS void Ptr<CvDTreeSplit>::delete_obj(); |
|
|
|
CV_EXPORTS bool initModule_ml(void); |
|
} |
|
|
|
#endif // __cplusplus |
|
#endif // __OPENCV_ML_HPP__ |
|
|
|
/* End of file. */
|
|
|